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Abstract: In this study, environmentally friendly, self-healing waterborne polyurethanes (WPUs)
were prepared based on the disulfide metathesis reaction in cystamine. The cystamine acted as a chain
extender in the WPU film, which showed a high mechanical strength of 19.1 MPa. The possibility of
self-healing reaction was simultaneously modeled via liquid chromatography–mass spectrometry
(LC-MS). WPU was confirmed to self-heal a surface crack thermally after a scratch test, and the
efficiency was measured by comparing the mechanical properties before and after a cut-and-healing
test. In addition, the disulfide-thiol exchange reaction was confirmed to occur in WPU with
cystamine as a chain extender and 2-mercaptoethanol. Hot press tests confirmed the possibility of
reprocessing the WPU. The WPU incorporating disulfide groups showed great potential as a smart
self-healing material.
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1. Introduction

Waterborne polyurethanes (WPUs) are attracting attention as environmentally friendly synthetic
materials. The method used for dissolving polyurethanes in existing organic solvents poses
environmental problems. WPUs were developed to solve the problems caused by volatile organic
compounds (VOCs); ionic groups are introduced into the polyurethane chain and these compounds
are dispersed in water [1,2]. Such environmentally friendly, multi-functional WPUs are commonly
used in a wide range of applications, including coatings [3] and adhesives [1,4]. The external exposure
environments of these materials cause contact cracks, friction, continuous impact, and abrasion,
resulting in fine cracks on the polymer surface. These cracks considerably impact the durability and
lifespan of the polymer. Self-healing of such fine cracks could increase the lifespan and durability of
polymers. Therefore, many researchers are striving to introduce self-healing functions into WPUs
as a way to increase their lifetime [5–12]. Tensile strength and healing-efficiency of some previously
reported WPUs are given in Table S1.

Self-healing polymers have recently received attention as breakthrough materials that can repair
their own cracks caused by external impacts; these polymers can maintain a long lifetime and durability
and can even be recycled [13]. The self-healing properties of polymers can be implemented by intrinsic
or extrinsic properties [14]. Self-healing by intrinsic properties is imparted through the dynamic
nature of physical interactions or the introduction of reversible covalent bonds in the polymer chain.
Conversely, external self-healing is conferred by healing agents that are intentionally pre-embedded
in microcontainers [15,16]. Intrinsically self-healing polymers can be fabricated via Diels–Alder
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reactions [5] as well as by introducing disulfide bonds [17–19], hydroxyl groups [20], imine groups [21],
boric acid [22], hindered ureas [23], hydrogen-bonding interactions [24], metal ligands [25], and various
additives [6,7] into polymers to impart self-healing behavior. In these methods, reversible interactions
can be triggered by several external factors (such as heat, moisture, UV, acids, and bases). Among
these approaches, using a disulfide group is of particular research interest. Disulfide bonds have
lower binding energies than C–C and C–H bonds in many molecules and are classified as weak bonds.
These weak bonds can be broken via heating, mechanical stress, and light irradiation, leading to the
aggressive formation of thiolate and new disulfide bonds [26]. Thiol–disulfide exchange has been
previously reported to occur via a radical mechanism [27]. Therefore, introducing disulfide into
polymers can induce self-healing properties [28–30]. Nevejans et al. introduced an aromatic disulfide
group into a WPU film; after drying, the film exhibited high mechanical strength and self-healing
properties [31,32]. Introduction of aromatic disulfide groups into WPUs improves the self-healing
performance of WPUs, however, when WPUs are used as a coating material, the material surface turns
yellow under environmental exposure due to the presence of aromatic groups, therefore some means
to reduce this yellowing of the WPU must be realized.

This paper presents a simple pathway for designing and manufacturing self-healing WPUs based
on aliphatic disulfide reactions. The prepolymer was prepared using the conventional method for
manufacturing WPUs, i.e., by reacting an isocyanate with both terminal ends of a polyol and then
neutralization and dispersion of the product in water. Cystamine was used as chain extender to prepare
disulfide group-bearing WPUs and their self-healing behaviors were compared. We also confirmed
that the disulfide reaction occurs via a reaction with monothiol, thus revealing the recyclability of this
material. Finally, we confirmed the self-healing performance via a surface scratch healing test and
cut-and-healing test.

2. Results and Discussion

Figure 1 schematizes the morphology of microphase separated films for EDA-chain-extended WPU
(WPU-EDA) and cystamine-chain-extended WPU (WPU-cystamine), which reveals the role and location
of the introduced disulfide groups. Conventionally, polyurethane shows a microphase separation into
hard and soft segments. The hard segments are comprised of segments of the polyurethane structure
that are capable of hydrogen bonding, which may include urethane, urea groups, or benzene rings via
van der Waals interactions.
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In contrast, the soft segment is composed of flexible parts of the polyurethane structure with weak
bonding strength, mainly the polyol part. The disulfide group in this study is introduced through
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cystamine, and it functions as a chain extender of the prepolymer. In addition, it forms a urea group
on both sides and is located in the hard segment. Thus, even if a disulfide group with a weak bonding
force is introduced, good mechanical properties can be attained due to the hydrogen-bonding force
within the hard segments [33,34]. However, for self-healing to occur, the temperature at which the
hydrogen-bonding force is weakened must exceed the glass transition temperature of hard segments,
which is a disadvantage.

Figure 2a shows the disulfide metathesis reaction. Heat-disrupted disulfides form thiolates, which
attack other disulfides to form new disulfide groups. Experiments with model compounds, Disulfide 1
and Disulfide 2, were performed using liquid chromatography–mass spectrometry (LC-MS) to confirm
this disulfide metathesis. As shown in Figure 2b, two kinds of disulfide compounds with different
molecular weights were dissolved in water and the reaction was carried out at 80 ◦C for 24 h to ensure
that the disulfide metathesis reaction proceeded sufficiently. Figure 2c shows the formation of the
product (Mn 197 g mol−1) of metathesis reaction between Disulfide 1 (Mn 154 g mol−1) and Disulfide
2 (Mn 240 g mol−1). The LC-MS spectra clearly confirm the disulfide metathesis reaction. All the
products formed via disulfide metathesis reaction were also confirmed by their 1H-NMR spectra
(Figures S1 and S2).
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Figure 3 shows the tensile stress–strain curves of WPU chain extended with EDA or cystamine.
WPU-EDA has high mechanical strength of 26.5 MPa and a high maximum strain value of 516%.
In contrast, the mechanical strength of WPU-cystamine is 19.1 MPa, and maximum strain is 323%.
As the molecular weight of WPU-cystamine is not so much different from that of WPU-EDA (Table S2),
the different physical properties are attributable to the characteristics of cystamine.

These results indicate that the disulfide groups, which are weakly bonded to each other, cannot
sustain a mechanical force and break at the center of the hard segment, leading to weak mechanical
properties. However, unlike similar materials in other papers [28], WPU-cystamine shows adequate
mechanical properties for practical applications.

Figure 4 shows the DSC thermograms of WPU films. Glass transition temperatures of soft
segments (Tgs) and hard segment (Tgh) for WPU-EDA and WPU-cystamine were observed around
−80 ◦C and above 50 ◦C, respectively. Figures S3–S5 show the dynamic mechanical properties of WPU
films. Glass transition temperatures (Tgs) of polymers were determined from the peak temperatures of
loss moduli in DMA (Figure S4). Table 1 lists the Tgs for WPU films determined via DSC and DMA.
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Table 1. Glass transition temperatures of WPU-EDA and WPU-cystamine.

Sample Code
DSC DMA

Tgs (◦C) Tgh (◦C) Tgs (◦C) Tgh (◦C)

WPU-EDA −82.3 52.7 −70.5 40.0
WPU-cystamine −78.6 54.5 −68.1 49.3

The self-healing process of WPU film was investigated through scratch tests, which were separately
conducted at 110 ◦C and 130 ◦C, as shown in Figures 5 and 6, respectively. Specifically, the upper
surface of the WPU film was scratched with a razor blade, followed by heat treatment for 0, 1, and
3 h at each temperature, which initiated a disulfide metathesis reaction. Scratches on the WPU-EDA
film apparently remain intact during the heat treatments at 110 ◦C and 130 ◦C. However, in the case of
WPU-cystamine, the crack was observed to close slightly during the heating process at 110 ◦C. Thus,
scratches partially disappear, confirming the possibility of self-healing via the disulfide metathesis
reaction. Moreover, scratches significantly disappear after only 1 h of heat treatment at 130 ◦C. This
finding reveals that the surface of the damaged film can be restored via the disulfide metathesis reaction.
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As shown in Figure 7 and Table 2 and Table S3, the efficiency of the self-healing process of WPU
films after cut-and-healing tests was systematically investigated using Equation (1):

Self-healing efficiency = σhealed/σuncut × 100% (1)

where σhealed and σuncut are the tensile strengths of self-healed and uncut (as synthesized) samples,
respectively. The self-healing behavior was confirmed by measuring the mechanical properties of the
WPU films before and after cut-and-healing tests. The films were formed into a dog bone shape and
then completely cut into two pieces using a razor blade. The two separate slices were then brought
into contact in two convection ovens at 110 ◦C and 130 ◦C to observe the change in the self-healing
efficiency with time. A maximum efficiency of 28% was achieved after 3 h of heat treatment at
110 ◦C; the efficiency decreased thereafter. A high efficiency of up to 40% was observed after 3 h of
heat treatment at 130 ◦C. These findings confirm that the self-healing efficiency of the WPU system
based on the disulfide bonds of cystamine is maximized after 3 h at 130 ◦C. Beyond 3 h at elevated
temperatures in the convection oven, the self-healing efficiency might decline due to the weakening of
the hard segment packing via hydrogen-bond breakage caused by exchange reactions in the specimens.
As shown in Figures S6 and S7, the heat treatment lowered the Tghs of the WPU films. The effects of
the thermal treatments are summarized in Tables S4 and S5. Weakening of the hydrogen bonds in
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the hard segments appeared in the FT-IR spectra of the heat-treated WPU films (Figures S8 and S9).
Before the heat treatment, hydrogen-bonded carbonyl groups of urethane and urea are observed at
1695 and 1637 cm−1, respectively, in the FT-IR spectra of the WPU films. After heat-treating the WPU
films at 110 ◦C and 130 ◦C, the carbonyl peak of urea was decreased whereas the free-carbonyl peak
increased, thereby shifting the urethane carbonyl peak [35,36]. The heat treatment of WPU films also
accompanied slight yellowing with time as shown in Figure S10. The yellowing of the WPU films is
attributable to the side reactions during the heat treatments in the convection oven. It is speculated
that the side reactions also decline the self-healing efficiency of WPU films.
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Table 2. Tensile properties and self-healing efficiency of WPU-cystamine.

Sample Code Tensile
Strength (MPa) Strain (%)

Healing
Temperature (◦C)

Self-Healing Efficiency (%)

1 h 3 h 6 h 12 h

WPU-EDA 26.5 516
110 - - - -
130 - - - -

WPU-cystamine 19.1 323
110 26 28 28 21
130 28 40 30 29

The exchange reaction of the disulfide group of WPU-cystamine by a thiol could be directly
confirmed. One way to confirm this reaction is to use 2-mercaptoethanol. As shown in Figure 8a,
a piece of each type of WPU film was placed in a bottle with 2-mercaptoethanol and the disintegration
via the exchange reaction with 2-mercaptoethanol was then activated at 80 ◦C for 2 h.

The shape of the WPU-EDA film was retained as shown in the left bottle of Figure 8a. In contrast,
the WPU-cystamine film evidently degraded due to the exchange reaction of disulfide groups because
the thiol group of the 2-mercaptoethanol reduces the disulfide group of WPU-cystamine, which turned
into small molecules, as shown schematically in Figure 8b. The results show that the disulfide group of
WPU-cystamine can also undergo an exchange reaction, thus demonstrating the possibility of being
recycled using small thiol compounds.

Figure 9 shows the recyclability of the WPU-cystamine films estimated by repeating the heat and
pressure applications. When the WPU-cystamine films are pulverized and then subjected to high
temperature and pressure, a disulfide metathesis reaction occurs between the surfaces. In this way,
several pieces can be reprocessed into specimens for the tensile tests. After all repeated recycling tests,
the tensile strength of WPU-cystamine recovered to nearly 85% (Figure 9b). However, WPU-EDA
could not be reprocessed under the same conditions (Figure S11).
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(WPU-cystamine) and reprocessed films (1st, 2nd, and 3rd recycle).

3. Experimental

3.1. Materials

Poly(tetramethylene ether glycol) (PTMEG, molecular weight (Mn) = 2000 g mol−1) was purchased
from Sigma-Aldrich (Yong-In, Korea), and it was placed in a vacuum oven at 60 ◦C for 1 day to
remove moisture before use. 2,2-Bis(hydroxymethyl) propionic acid (DMPA) and 2-hydroxyethyl
disulfide were also purchased from Sigma-Aldrich. Isophorone diisocyanate (IPDI), triethylamine
(TEA), ethylenediamine (EDA), 2-mercaptoethanol, and L-cystine were purchased from Daejung
Chemical (Si-Heung, Korea), whereas cystamine dihydrochloride was purchased from Tokyo Chemical
Industry (Tokyo, Japan). All compounds were used without further purification.

3.2. Synthesis of Waterborne Polyurethane

WPU films were prepared by prepolymer production, dispersion, and film drying in three
stages. Acetone was used to dissolve DMPA and decrease the viscosity of the prepolymer. Scheme 1
shows the detailed synthesis process while Table 3 shows the recipes for synthesizing WPU-EDA
and WPU-cystamine.
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Scheme 1. Preparation of WPU-EDA and WPU-cystamine from the polyurethane prepolymer.

Table 3. Composition and sample code of prepared WPU.

Sample Code
Composition (by wt) Hard Segment

Contents (%)DMPA PTMEG IPDI EDA Cystamine

WPU-EDA 6.00 57.02 32.57 4.40 - 42.98
WPU-cystamine 6.00 51.83 31.41 - 10.76 48.17

To prepare the prepolymer, PTMEG, DMPA, and IPDI were added to the reactor and stirred at
60 ◦C for 3 h under a nitrogen atmosphere. The isocyanate groups of IPDI were allowed to react until
the theoretical value of the isocyanate content for the prepolymer was reached. The isocyanate content
was determined during the reaction using the ASTM D1638-74 method. At this point, the temperature
of the reactor was reduced to room temperature and enough moles of TEA were added to neutralize
the carboxyl groups of DMPA by stirring for 30 min. To disperse the neutralized prepolymer, the
mixture was then stirred at 600 rpm and deionized water (solid contents 20%) was added. EDA or
cystamine, which were separately used as chain extenders, were dissolved in a small amount of water
and added dropwise into the dispersion. After all of the EDA or cystamine was added, the temperature
of the reactor was raised to 60 ◦C, and reaction proceeded with stirring for 3 h. After stirring for 3 h,
WPU dispersion was attained. The particle size distributions of WPUs are shown in Figure S12, and
the average particle sizes are listed in Table S2. Even though WPU-cystamine showed the presence of
large particles, the dispersion did not lose the stability for three months. WPU films were prepared by
casting the respective dispersions in a Teflon mold and drying them in a 30 ◦C convection oven for one
week to prevent fine bubble formation and in a vacuum oven for one day.
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3.3. Confirmation of the Disulfide Metathesis Reaction

To confirm that the disulfide metathesis reaction proceeded successfully, a piece of each type of
WPU film was separately placed in a bottle and enough mercaptoethanol was added to fully submerge
the film. Thereafter, the disulfide metathesis reaction was activated by heating the bottles to 80 ◦C in
a convection oven for 2 h.

3.4. Characterization

LC/MS (AGIL ENT 1100, Agilent Technologies, Palo Alto, CA, USA) was used to model the
disulfide metathesis reaction in WPU. The mechanical strength and self-healing efficiency of films
after cut-and-healing tests were measured on a universal testing machine (UTM, LR5K plus, Lloyd
Instruments, West Sussex, UK). During the test, the center of the dog bone specimens were cut using
a razor blade and the cut surfaces were contacted each other to promote self-healing at the 110 ◦C
and 130 ◦C in the oven. The tensile properties of the samples were measured at 25 ◦C by pulling at
500 mm/min. All samples were measured with three specimens, and the average values were obtained.
A thin scratch was applied to the fixed sample surface using a razor blade. The sample surface cut
with razor blade had thin visible scratches. An image of the scratch on the surface was obtained using
a scanning electron microscope (SEM, AIS2100, Seron Technologies Inc., Seongnam, Korea). Then, the
sample surface was coated using an ion coater (HC-21, Hoyeontech, Seongnam, Korea). Differential
scanning calorimetry (DSC, Q 20, TA Instruments, New Castle, DE, USA) was used to measure the
films’ thermal properties from −100 to 150 ◦C at a heating rate of 10 ◦C/min in the presence of nitrogen
gas. The dynamic mechanical properties were investigated employing a dynamic mechanical analyzer
(DMA, Q 800, TA Instruments) from −100 to 200 ◦C at a heating rate of 5 ◦C/min. The structure of the
model compound was analyzed using 1H-NMR spectra obtained on a 600 MHz FT-NMR spectrometer
(JNM-ECA600, JEOL Ltd., Tokyo, Japan). All samples were dissolved in deuterium oxide (D2O)
and spectra measured. Fourier transform-infrared (FT-IR) spectra of the samples before and after
the heat treatment were also studied in attenuated total reflection mode using FT/IR 300E (JASCO,
Tokyo, Japan).

4. Conclusions

By introducing cystamine into the polymer backbone of a WPU, we have designed and synthesized
a new kind of WPU that can exploit the disulfide metathesis reaction. The WPU-cystamine film
showed excellent self-healing behavior. A scratch test showed cracks disappearing at 130 ◦C within 1 h.
The self-healing behavior was investigated through a cut-and-healing test, the efficiency found to be
40% at 130 ◦C for 3 h. However, the disulfide groups were located inside the hard segment due to the
addition as a chain extender; thus, the self-healing efficiency was not high because molecular chains
were not free to diffuse and migrate. However, unlike other studies in which aliphatic disulfide groups
were added to WPU, the WPU-cystamine sample in this study showed a high mechanical strength
of 19.1 MPa. This research thus enables the possibility of increasing the durability and lifetime of
environmentally friendly WPU via self-healing abilities.

Supplementary Materials: The following data are available online at http://www.mdpi.com/1420-3049/24/8/1492/

s1. Figure S1: 1H NMR spectra of the model compounds in the disulfide metathesis reaction: (a) Disulfide 1;
(b) Disulfide 2, Figure S2: 1H NMR spectra of the model compounds in the disulfide metathesis reaction: (a)
mixture of Disulfide 1 and Disulfide 2; (b) Product, Figure S3: Storage moduli of the WPU films, Figure S4: Loss
moduli of the WPU films, Figure S5: Tan δ of the WPU films, Figure S6: Thermal properties of WPU-EDA during
heat treatment at different temperatures (◦C): (a) 110; (b) 130, Figure S7: Thermal properties of WPU-cystamine
during heat treatment at different temperatures (◦C): (a) 110; (b) 130, Figure S8: FT-IR spectra of WPU-EDA during
heat treatment at different temperatures (◦C): (a) 110; (b) 130, Figure S9: FT-IR spectra of WPU-cystamine during
heat treatment at different temperatures (◦C): (a) 110; (b) 130, Figure S10: Photographs of WPU films during the
heat treatments, Figure S11: Reprocessing of the WPU-EDA films, Figure S12: Particle size distribution of WPU
dispersion determined by Particle Size Analyzer (UPA-150, Microtrac, Montgomeryville, USA), Table S1: Tensile
strength and healing efficiency of WPUS reported in literatures, Table S2: Average particle size and molecular
weights of WPU dispersion, Table S3: Mechanical properties and self-healing efficiencies after cut-and-healing

http://www.mdpi.com/1420-3049/24/8/1492/s1
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test of WPU-cystamine films, Table S4: Glass transition temperature of heat-treated WPU-EDA, Table S5: Glass
transition temperature of heat-treated WPU-cystamine.
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