Supporting Information for

Oxytrodiflavanone A and Oxytrochalcoflavanones A,B: New Biflavonoids from *Oxytropis chiliophylla*

Yang Liu¹, Norbo Kelsang¹, Jianghai Lu², Yingtao Zhang¹, Hong Liang¹, Pengfei Tu¹, Dexin Kong^{3,4,*} and Qingying Zhang^{1,*}

¹ State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China;

² National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing 100029, China;

³ Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China

⁴ Research Center, School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin 301700, China

Contents of Supporting Information

Figures

Figure S1. ¹H NMR spectrum of oxytrodiflavanone A (1) in CDCl₃

- Figure S2. ¹³C NMR spectrum of oxytrodiflavanone A (1) in CDCl₃
- Figure S3. ¹H-¹H COSY spectrum of oxytrodiflavanone A (1) in CDCl₃
- Figure S4. HSQC spectrum of oxytrodiflavanone A (1) in CDCl₃
- Figure S5. HMBC spectrum of oxytrodiflavanone A (1) in CDCl₃

Figure S6. ¹H NMR spectrum of oxytrodiflavanone A (1) in Pyridine-d₅

Figure S7. NOESY spectrum of oxytrodiflavanone A (1) in Pyridine- d_5

Figure S8. ¹H NMR spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S9. ¹³C NMR spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S10. ¹H-¹H COSY spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S11. HSQC spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S12. HMBC spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S13. Targeted MS/MS spectra of oxytrodiflavanone A (1), oxytrochalcoflavanones A (2) and B (3) at CE of 25 eV in negative ion mode

Figure S14. Chiral analysis of oxytrochalcoflavanones A-B (2-3)

Figure S15.¹H NMR spectra of the epimers of oxytrochalcoflavanones A–B (2-3)

Figure S16. Cell growth inhibitory activities of oxytrodiflavanone A (1) and oxytrochalcoflavanones B (3) on PC3 cells

Table

Table S1. Raw data of cell growth inhibitory activities of oxytrodiflavanone A (1) and oxytrochalcoflavanones B (3)

Figure S1. ¹H NMR spectrum of oxytrodiflavanone A (1) in CDCl₃

Figure S2. ¹³C NMR spectrum of oxytrodiflavanone A (1) in CDCl₃

Figure S3. ¹H-¹H COSY spectrum of oxytrodiflavanone A (1) in CDCl₃

Figure S4. HSQC spectrum of oxytrodiflavanone A (1) in CDCl₃

Figure S5. HMBC spectrum of oxytrodiflavanone A (1) in $CDCl_3$

Figure S6. ¹H NMR spectrum of oxytrodiflavanone A (1) in Pyridine-d₅

Figure S8. ¹H NMR spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S9. ¹³C NMR spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S10. ¹H-¹H COSY spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S11. HSQC spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S12. HMBC spectrum of oxytrochalcoflavanones A (2) and B (3) in CDCl₃

Figure S13. Targeted MS/MS spectra of oxytrodiflavanone A (1), oxytrochalcoflavanones A (2) and B (3) at CE of 25 eV in negative ion mode

Figure S14. Chiral analysis of oxytrochalcoflavanones A–B (2-3)

Figure S15.¹H NMR spectra of the epimers of oxytrochalcoflavanones A–B (2-3)

Figure S16. Cell growth inhibitory activities of oxytrodiflavanone A (1) and oxytrochalcoflavanone B (3) on PC3 cells. The activities of indicated concentrations of Comound 1, Compound 3 and ZSTK474 (postive control) on PC3 cells were determined by MTT assay. Data are presented as mean \pm SD, representative of three independent experiments.

Compounds	Concentration (µM)	cell viability (mean±SD, %)
1	0.1	98.6 ± 4.0
	0.5	91.4 ± 10.7
	1	93.8 ± 4.1
	5	58.6 ± 5.1
	10	41.3 ± 5.8
	25	4.9 ± 2.9
3	0.1	99.4 ± 12.4
	0.5	95.5 ± 8.1
	1	70.5 ± 0.4
	5	33.8 ± 6.2
	10	29.4 ± 12.1
	25	2.6 ± 4.1
ZSTK474	0.01	90.0 ± 2.5
	0.05	73.0 ± 3.4
	0.1	66.0 ± 4.4
	0.5	47.0 ± 5.1
	1	43.0 ±6.3
	10	32.0 ±7.5

Table S1. Raw data of cell growth inhibitory activities of oxytrodiflavanone A (1), oxytrochalcoflavanones B (3)