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Abstract: Hydrogenation of a lithium-potassium (double-cation) amide (LiK(NH;);), which is
generated as a product by ammonolysis of litium hydride and potassium hydride (LiH-KH)
composite, is investigated in details. As a result, lithium amide (LiNH;) and KH are generated
after hydrogenation at 160 °C as an intermedjiate. It is noteworthy that the mixture of LiH and KNH,
has a much lower melting point than that of the individual melting points of LiNH; and KH, which
is recognized as a eutectic phenomenon. The hydrogenation temperature of LINH, in the mixture is
found to be significantly lower than that of LiNH; itself. This improvement of reactivity must be due
to kinetic modification, induced by the enhanced atomic mobility due to the eutectic interaction.

Keywords: hydrogen carrier; ammonia; metal hydride; double-cation amide; eutectic melting

1. Introduction

The use of hydrogen energy has attracted attention for the introduction of renewable energy [1].
Since renewable energy fluctuates significantly depending on the season, weather, and location, it is
necessary to stably store and transport it by conversion to a suitable chemical energy. Hydrogen can
be produced by water electrolysis using renewable energy-based power sources, and stored compactly
at low pressure by using a hydrogen storage alloy [2]. Finally, hydrogen can be used with a fuel
cell to obtain electric and heat power according to demand [3]. In terms of hydrogen transportation,
gravimetric hydrogen density of hydrogen storage alloys are generally lower than 2 wt%, which
is insufficient for transportation application [4]. Compressed and liquid hydrogen are the options;
however, there are some problems to be solved for practical use (e.g., development of a lightweight
pressure-tight tank, a durable hydrogen compressor, a cryogenic insulation container, a cryogenic
liquid pump, and so on) [5]. Hydrides composed of light elements (e.g., LiH, NaBH,, CH4, BH3NHj,
NH;, LiNH;, MgHj, and NaAlHjy) are expected to be promising hydrogen storage materials, which can
store hydrogen with high gravimetric and volumetric hydrogen density at moderate conditions [5-8].
Numerous studies for hydrogen storage properties of the hydrides and their combinations have been
reported so far. The combination of solid hydrides (i.e., LiH and LiNH,) is one of the most notable
systems and is known as an amide-imide (M-N-H) hydrogen storage system [9-15]. The first report of
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the above system was published by Chen et al. in 2002 [16]. The hydrogen absorption and desorption
reaction with the high hydrogen capacity of 6.5 mass% proceeds as follows,

LiH + LiNH, < Li,NH + H, 1)

The enthalpy change of the hydrogen release (AHges) by reaction (1) has been reported to be
65.6 k] mol~! H, [17]. The equilibrium temperature was estimated to be 234 °C to obtain 1 atm
of equilibrium hydrogen pressure when the entropy change was assumed as 130 ] mol~' K~! [18].
To modify the thermodynamics, other M-N-H systems with alternative metals (e.g., K, Na, Ca, and
Mg) have been studied so far. Besides, many researchers have studied these systems to reveal the
reaction mechanism. Ichikawa et al. have clarified that the de/re-hydrogenation reaction is composed
of two-step reactions, including the decomposition of LINH; to generate NHj as follows [19],

2LiNH, < Li;NH + NHj )

LiH+NH; < LiNH, + H, 3)

Improving the kinetics of the de/re-hydrogenation, and suppressing the emission of NHj3 gas by
reaction (2), could be achieved by using various catalysts, such as KOH, TiCl3, LiTipO4, CeFy, etc. [15].

The metal hydride-ammonia (MH-NHj3) hydrogen storage system was derived from the reaction
in the equation (3). By using this system, H, can be desorbed and absorbed below 300 °C [20-24].
Here, NHj has a top-class hydrogen capacity; the gravimetric density is 17.8 mass%, and it condenses
at 25 °C when pressurized to 1 MPa. Therefore, the MH-NHj3 system is also regarded as a high
gravimetric and volumetric hydrogen carrier (M = Li; 8.1 wt%, 4.5 kg /100 L) [21]. Previously, it was
experimentally revealed that the exothermic ammonolysis of MH to generate H, proceeds at room
temperature [21,22,25-29]. Besides, the hydrogenation of MNH, to form MH and NHj; can proceed
below 300 °C. The reaction rate of both ammonolysis and hydrogenation become higher in the order
of elements placed in the periodic table (K > Na > Li) [22]. Therefore, the kinetics of the LiH-NHj3
system with the highest gravimetric hydrogen density needs to be improved. In previous work, we
investigated the LiH-KH composite NHj3 system [30]. The reaction rate of the ammonolysis of the
LiH-KH composite was found to be improved by a synergetic effect. Here, a new double-cation metal
amide phase (i.e., LIK(NH,),) was reported to be formed as a reaction product. Interestingly, the
complete hydrogenation of complex LiK(NHj), proceeded at a much lower temperature than that of
LiNH;. In this work, thermal and hydrogenation properties of complex LiK(NH,), are investigated in
further detail to understand its reaction mechanism, which would be useful and applicable to some
related M-N-H systems.

2. Results and Discussion

2.1. Investigation for Hydrogenation of Complex LiK(NH;), at Lower Temperature
The hydrogenation of amides (M(NH3),;) proceeds by the following reaction,

M(NH,),, + mHp — MH,, + mNH; @)

where m represents the stoichiometric coefficient and is equal to the valence number of the metal
cation (M"™*). The hydrogenation reaction proceeds through an ion-exchange reaction between solid
M(NH;); and gaseous H, that is, amide ions (NH; ™) in M(NH>),, are replaced by hydride ions (H™)
to form solid MH,, and gaseous NHj3. Thus, the weight loss during the hydrogenation is shown due to
the weight difference between M(NH3),, and MH,,. The reaction yield (Y) is estimated by the weight
loss of the solid samples after the hydrogenation by the following equation,

Y =100- | Aw | -WpiNw2ym / (m-w-WNn) ©)
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where w, Aw, Wy NH2)m, and Wnp represent the weight of the sample before the reaction, the weight
loss of the sample due to the hydrogenation, the molecular weight of M(NH>),;,, and NH, respectively.
The hydrogenation of complex LiK(NH;), was performed under hydrogen flow condition at adequate
flow rate as compared to a small amount of sample; therefore, the generated NHj3; was removed
continuously from the reaction field to maintain the non-equilibrium condition during the reaction [31].
Thus, the endothermic hydrogenation could proceed even below 300 °C.

Figure 1a shows the thermal desorption mass spectroscopy (TD-MS) profile of complex LiK(NH;)»
under 0.5MPa H; flow condition during heating process to 160 °C and the isothermal step for 1 h.
In the TD-MS profile, a peak corresponding to NHj3 was originated at 80 °C, which decreased during
the isothermal step, suggesting that the hydrogenation by the reaction described in Equation (4)
proceeded to form NHj. The reaction yield was only 56.3%, which means that half the amount of
metal amides remained unreacted.
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Figure 1. Thermal desorption mass spectroscopy (TD-MS) profile of complex LiK(NH,), under 0.5 MPa
H; flow condition at 160 °C for 1 h (a), and following 220 °C for 4 h (b), where the heating rate is
5°C/min and m/z is 17 for NHj.

Figure 2a,b show X-ray diffraction (XRD) patterns of the samples before and after the
hydrogenation at 160 °C for 1 h. The peaks of complex LiK(NH;), phase completely disappeared, and
the diffraction patterns corresponded to the KH and LiNH; phases. It was considered that KH and
LiNH, were formed by the reaction of complex LiK(NH;), with H; below 160 °C, in other words, the
K-related components in the complex amide selectively reacted with H; prior to the reaction of the
Li-related component. The phase variation at 160 °C was consistent with the above approximately
50% reaction yield, estimated from the weight change, because the atomic ratio of Li:K in the complex
LiK(NH;), was 1. Here, the slightly excess reaction yield, beyond 50%, must be caused by the partial
hydrogenation of the LiINH, component; however, the diffraction peaks corresponding to LiH could
not be detected by XRD because of the small amount and low diffraction intensity, which was due to the
low electron number. The above consideration about the reactivity of KNH; and LiNH, components
was consistent with the previous reports. The complex LiK(NH;), was hydrogenated to form a
mixture of LINH; and KH through the formation of LiK3(NH;)4 as an intermediate [30]. Besides, the
hydrogenation of KNH; under H; flow condition proceeded even at 50 °C, which was significantly
lower than that of LiNH, [22]. The above results indicate that the molecular properties of KNH, and
LiNH; remained intact in LiK(NH>), and strongly affected the hydrogenation properties, even though
crystal structure of the complex amide was different from those of the single cation amides.
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Figure 2. X-ray diffraction (XRD) patterns of complex LiK(NH;), before (a) and after (b) the
hydrogenation at 160 °C for 1 h, and following 220 °C for 4 h (c). The inset shows the enlarged
figure for profile (c) to find the peaks of LiH; XRD pattern of LiH (PDF#78-0838), LiNH, (PDF#75-0049),
and KH (PDF#65-9244) are referred from databases.

In order to understand the thermal properties of the hydrogenated product of LiK(NH;); at 160 °C
(i.e., the mixture of LiNH, and KH), the differential scanning calorimetery (DSC) measurement under
0.5 MPa H; atmosphere in a closed condition was performed, where the Hy atmosphere prevents the
H,; desorption from the mixture of LINH; and KH by the equivalent process, described as Equation (1).
A reversible sharp peak around 240 °C was observed in the DSC profile (Figure S1). Since no phase
transition is known for either LiNH, or KH at this temperature, this reversible peak suggested a
possibility of melting; however, the melting point of both of LiNH; and KH are also higher than
350 °C [22,32]. Therefore, the phase transition must have originated in the coexistence of KH and
LiNHy, indicating a eutectic melting phenomenon. To further understand the reversible change of
the mixture during the DSC measurement, and to confirm whether it is melting or not, the thermal
behavior of a ball-milled mixture of KH and LiNH; (similar to the hydrogenation product of complex
LiK(NH;),) was investigated by the DSC measurements.

Figure 3 shows the DSC profile for the ball-milled mixture of KH and LiNH; in the temperature
range from room temperature (RT, 22 °C) to 270 °C under 0.5 MPa H; atmosphere in the closed
condition. The ball-milled mixture of KH and LiNH; showed a similar reversible sharp peak around
240 °C. It is noteworthy that the temperatures of these peaks were not shifted even under the
different H, pressures (Figure S2), indicating that the reversible peaks were not originated due
to de/re-hydrogenation. Besides, the sample after the DSC measurement was in a lump state, as
shown in the insert image of Figure 3. Moreover, the XRD results of the sample before and after DSC
measurement confirmed the existence of LiNH; and KH phases, as shown in Figure 4. Thus, it was
experimentally revealed that a mixture of LiNH; and KH shows the eutectic phenomenon. Herein, the
composition of the mixture of LiNH, /KH is not necessarily in a eutectic composition and might show
a suspension after the melting. The accurate eutectic composition will be revealed by performing DSC
measurements for the mixture of various compositions in the future.
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Figure 3. Differential scanning calorimetery (DSC) profile of the ball-milled mixture of LiNH, and KH.
The DSC was performed under 0.5 MPa H; atmosphere in closed condition up to 270 °C, with heating
rate of 5 °C/min. The inset shows the appearance of the ball-milled mixture of KH and LiNH; before
(b) and after (a) the DSC measurement.
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Figure 4. XRD patterns of the ball-milled mixture of LiNH, and KH before (a) and after (b) DSC
measurement under H, atmosphere up to 270 °C with a heating rate of 5 °C/min; XRD patterns of

LiNH, (PDF#75-0049) and KH (PDF#65-9244) are referred from databases.

2.2. Investigation for Hydrogenation of Complex LiK(NH;), at Higher Temperature

Further hydrogenation of the mixture of LINH, and KH, produced from the partial hydrogenation
at 160 °C, was performed at 220 °C, which is lower than that of the eutectic melting point to avoid
the influence of the phase transition, such as the decrease in surface area by melting. Figure 1b shows
TD-MS profile of complex LiK(NHy); under 0.5 MPa H; flow condition up to 220 °C; the temperature
was increased and kept at 160 °C for 1 h and 220 °C for 4 h during the DSC scan. The intensity
of the MS peak corresponding to NH3 obviously increased above 180 °C after the first reaction at
160 °C, which should be attributed to the hydrogenation of the residual LiNH;. In fact, XRD results
in Figure 2c showed the diffraction pattern of KH without that of LiNH,. The existence of LiH was
also confirmed in the enlarged XRD profile between 36 to 46 of 20 range. The total reaction yield was
found to be 95.6% and indicated the complete hydrogenation of complex LiK(NH;);. In this view,
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the reaction yield in this work was much higher than the previous reports. Yamamoto et al. reported
that the reaction yield for hydrogenation of single LINH; was 4.2% at 200 °C for 4 h and 71.0% at
300 °C [22]. Dong et al. reported that the reaction yield for hydrogenation of single LiNH; was 24.3%
at 200 °C for 4 h [24]. Even though it is difficult to directly compare our results with these previous
reports because of the difference in H, flow rate, reaction scale, and any other reaction conditions, it
can be concluded that the hydrogenation performance of complex LiK(NH;), was obviously improved
as compared with the LiNH, itself, because it showed almost 100% hydrogenation at a relatively lower
temperature and shorter retention time for the reaction. Furthermore, it can be suggested that the
high reactivity of LiNH, in the mixture at 220 °C originated from the eutectic interaction between
KH and LiNH;. As a similar phenomenon, Yamamoto et al. [22] reported a sudden change in the
hydrogenation of NaNH; at around 200 °C; the temperature was quite close to the melting point of
NaNH; at 210 °C [33]. As described above, the melting point of LINH, was lowered down to about
240 °C by the eutectic interaction with KH. Particularly, the atoms in the solid phase possibly became
active with high mobility near the melting point, resulting in high reactivity with Hj to form NHj.
Such atomic mobility is important for the hydrogenation of complex LiK(NH>);, because it is necessary
to release heavy N atoms in the form of NH3.
A lot of studies for M-N-H systems with various combinations of Mj(NH;),,-MH,, composites
(My, My = Li, Na, K, Ca, Mg with the valence number of Mj and Mj; cations as m and n) have been
published before [34-42]. To cite an instance, an interaction between Mg(NH;), and LiH, known
as Li-Mg-N-H system, has been regarded as one of the most practicable hydrogen storage material,
because it can generate 5.5 mass% of Hy and be re-hydrogenated under 150 °C by the following
reaction [43-45],
Mg(NH,;), + 2LiH <> MgLi,(NH); + 2H, 6)

Although the Li-Mg-N-H system has suitable thermodynamics (i.e., AHges of —38.9 k] mol~! H,)
and is expected to show desorption pressure of 0.1 MPa at <90 °C, its slow reaction rate is still the main
issue for its practical use [46]. Thus, many approaches to improve the de/re-hydrogenation kinetics of
the Li-Mg-N-H system have been reported [47-51]. It is noted that the eutectic melting phenomenon of
M;i(NHy),,-MuH,, would be important as an advantage for such M-N-H system. As described above,
the de-hydrogenation of the M-N-H system proceeds in the solid-solid reaction; therefore, the contact
between the particles should be an important factor. Besides, it is reported that the de-hydrogenation
process includes a decomposition process of metal amide to generate NHj as an intermediate, then
the decomposition could directly affect the de-hydrogenation rate. In this view, Leng et al. reported
the decomposition properties of several metal amides [35]. Using the thermogravimetry-differential
thermal analysis (TG-DTA), they have shown the two-step decomposition of LiNH, at different
temperatures. They claimed that these steps are originated in the decomposition on the surface at
a lower temperature and in the bulk at higher temperature. Interestingly, the decomposition of the
second step is likely to occur near the melting point of LINH; and due to the modification of the atomic
mobility in the solid by the melting. From the above considerations of the contact between the particles
and the decomposition rate of metal amide in the de-hydrogenation process of the M-N-H system,
the melting phenomenon of the Mj(NH3),,-MyH,, composite should have a significant effect on the
reaction kinetics. However, the melting phenomenon of the M;(NH,),,-MH,, composite has not been
studied so far. In this work, the eutectic melting phenomenon of the mixture of KH and LiNH, has
been revealed for the first time by performing the thermal investigation in an unusual circumstance,
that is a compressed H; environment. Recently, Dong et al. reported that dehydrogenation properties
of the Li-N-H system was improved by doping 1-10 mol% KH [52]; the eutectic phenomenon could
be believed to be one of the factors for the improvement. Thus, a systematic detailed investigation of
such eutectic melting phenomena is expected to lead to a breakthrough for the development of a novel
M-N-H system in future.
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3. Materials and Methods

Lithium hydride (LiH) (99.4%, Alfa aesar), potassium hydride (KH) (dispersion in mineral oil,
Aldrich), lithium amide (LiNHy) (95%, Aldrich), and potassium amide (KNH3), synthesized by the
reaction of KH with NHj3 (99.999%), were used for the experiments. The KH with mineral oil was
introduced into anhydrous tetrahydrofuran (THF) (>99.9%, Aldrich) and stirred for 3 min. Then,
the supernatant solution was drained to remove the mineral oil. The above procedure was repeated
5 times. Finally, the slurry of the KH was evacuated for 5 h to completely remove the remaining
THEF. The complex LiK(NH;), was prepared by the milling of LiH and KH with a 1:1 molar ratio
in a stainless steel container with twenty 7-mm steel balls, at 370 rpm for 10 h under 1.0 MPa H,
atmosphere, by using a planetary ball mill apparatus (Fritsch, P7). Then, this milled LiH-KH composite
was heat-treated at 220 °C under 1.0 MPa H; atmosphere and reacted with 0.8 MPa NHj3 at room
temperature to form complex LiK(NH;), [30]. A ball-milled mixture of LiNH, and KH, with a
molar ratio of LINH2/KH = 1, was prepared by ball-milling for 10 h under 0.1 MPa Ar atmosphere.
The samples were examined by X-ray diffraction (XRD) (Rigaku, RINT-2100) using Cu Ko radiation.
The samples were sensitive to air and handled in a glove box (Miwa MFG, MP-P60 W) filled with
highly pure Ar (>99.9999%).

Investigation for hydrogenation of complex LiK(NH;), was performed by thermal desorption
mass spectroscopy (TD-MS) (Canon Anelva Corporation, M-100QA) (Kawasaki, Japan) under 0.5 MPa
H, flow condition at 200 sccm (= cc/min at 0.1 MPa, 0 °C), where 5 mg and/or less amount of
sample was used. The weight of the sample before and after the TD-MS measurement was measured
to estimate the reaction yield. The products, after the TD-MS measurements, were identified by
XRD measurement.

Thermal properties of the mixture of LiNH; and KH were investigated under 0.5-2 MPa H,
atmosphere by differential scanning calorimetry (DSC) (TA Instruments, Q10 PDSC). The products
after the DSC measurements were identified by XRD measurement.

4. Conclusions

The hydrogenation reaction of complex LiK(NH,); is found to occur at 220 °C under H; flow
condition completely, which is lower than that of LiNH,. The hydrogenation was proceeded by two
step reactions. At the first step, the hydrogenation of the KNH, component in the complex amide
occurred to form KH and NHj3 below 160 °C, followed by the hydrogenation of LiNH; to form LiH and
NHj at 220 °C. In this case, the reactivity of LINH; could be enhanced by the eutectic interaction with
KH. Thus, it has been clarified that not only ammonolysis but also the hydrogenation of the LiH-NHj3
system can be improved by the interaction with KH. In the future, the eutectic melting phenomena of
the Mj(NHy),,-MpH,, composite will be investigated in further detail.

Supplementary Materials: The following are available online, Figure S1: DSC profile of the reaction product after
the hydrogenation of complex LiK(NH;), at 160 °C. The DSC was performed under 0.5 MPa H; atmosphere
in closed condition by heating up to 270 °C at 5 °C/min heating rate. Figure S2: DSC profile of the ball-milled
mixture of LINH; and KH. The DSC was performed under 2.0 MPa H; atmosphere in closed condition by heating
up to 270 °C at 5 °C/min heating rate.
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