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Abstract: Recently, the efficient chemical fixation of carbon dioxide (CO2) into high value chemicals
without using noble metal catalysts has become extremely appealing from the viewpoint of
sustainable chemistry. In this work, a one-pot three component reaction of propargylic alcohols,
anines and CO2 that can proceed in an atom economy and environmentally benign manner by
combination of CuI and tetrabutylphosphonium imidazol ([P4444][Im]) as a catalyst was described.
Catalysis studies indicate that this catalytic system is an effective catalyst for the conversion of CO2

into oxazolidinones at room temperature and ambient pressure without any solvent. The results
provide a useful way to design novel noble metal-free catalyst systems for the transformation of CO2

into other valuable compounds.
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1. Introduction

With the global consumption of fossil fuels, the increasing concentration of CO2 in the atmosphere
could have a significant impact on the global climate [1,2]. Therefore, the development of efficient
strategies to reduce CO2 emissions has becoms an imperative task for scientific researchers [3–5]. The
chemical fixation and transformation of CO2 into valuable chemicals is an ideal pathway for reducing
CO2 emissions and fully utilize this cheap C1 source [6–10]. Thus, considerable efforts have been
devoted to the exploration of efficient strategy for chemical utilization of CO2 to produce high-value
chemical commodities [11–16].

Oxazolidinones are a class of nitrogen-containing heterocyclic compounds which have been
used as organic intermediates, chiral additives, antibacterial drugs and muscle relaxants, etc. [17–20].
The synthesis of oxazolidinones between propargyl alcohol, CO2 and an amine is an important and
atom-economic reaction for chemical utilization of CO2 [12,21]. However, the biggest obstacle is the
lack of an effective catalyst to facilitate its activation and conversion, since CO2 is a highly oxidized
and thermodynamically stable molecule [22]. In recent years, various metal catalysts [23–28] and
metal-free catalysts [29,30] have been verified to be efficient for the reaction. Nevertheless, most of the
catalytic systems usually required high temperatures, high pressures, toxic organic solvents and noble
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metals. Therefore, a cheap, green and highly active catalyst is urgently needed in order to make the
reaction go smoothly at room temperature and atmospheric pressure.

Our previous work has revealed that metal salts combined with ionic liquid (IL) represent a new
hybrid catalyst that can be regarded as one of the most promising and efficient catalysts for chemical
transformations of CO2 because of their remarkable synergistic catalysis mechanism [31]. For example,
a Cu(I) salt/protic IL catalytic system can efficiently catalyze the cycloaddition of CO2 with propargylic
alcohols to produce α-alkylidene cyclic carbonates under mild conditions. Inspired by these works, we
now report that Cu(I) salt and the IL tetrabutylphosphonium imidazol([P4444][Im]) act as a catalyst for
the three component reaction of terminal propargyl alcohols, CO2 and anines (Scheme 1). The results
show that the CuI/[P4444][Im] catalyst system exhibits excellent catalytic performance for the reaction
with a wide range of substrates under atmospheric pressure and room temperature conditions. In
addition, the ionic liquid could be recovered and reused at least five times without an obvious loss of
catalytic activity and selectivity.
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Scheme 1. Cycloaddition reaction of propargyl alcohol and amines with CO2.

2. Result and Discussion

Owing to the unique catalytic performance of ILs in CO2 conversion [32–34], several quaternary
phosphonium-based ILs and various copper (I) salts were selected to catalyze the reaction. Figure 1
shows the structures of the ILs.
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Figure 1. The structure and abbreviations of CO2-reactive ILs employed in this work.

The synthesis of 1,3-oxazolidin-2-one 3a was carried out to systematically investigate the effect
of various parameters on the reaction. The reaction was performed at 30 oC, 1 atm CO2, and 24 h,
and the results are shown in Table 1. As expected, the reaction did not occur in the absence of any
catalysts. The individual IL [P4444][Im] and CuI as a catalyst were ineffective for the reaction, giving a
low yield of product (Table 1, entries 2–3). To our delight, the yield of the product reached rose to 91%
in the presence of CuI and [P4444][Im] (Table 1, entry 4). Encouraged by the result, we investigated
the effect of the type of anion on the yield of 3a in the reaction. The yield of 3a was found to be 70%,
41%, 35%, 30%, and 28%, respectively, when CuI/[P4444][Triz], CuI/[P4444][Ind], CuI/[P4444][CF3COO],
CuI/[P4444][NO3] and [P4444][Br] were used as catalysts (Table 1, entries 5-9). The significant differences
in their catalytic activity may be ascribed to the different nucleophilicity of these ILs as a result of their
different basicity (Table S1). A larger IL pKa resulted in an improved absorption capacity of CO2 in the
reaction system, which led to stronger reactivity between CO2 with propargylic alcohol, amine and the
catalyst, to afford a higher product yield [35]. The result indicated that the ionic liquid anions play an
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important role in this conversion. Next, a variety of copper (I) salts with [P4444][Im] were used for this
reaction. The activity of these copper salts followed the order: CuI > CuBr > CuCl (Table 1, entries
4, 10–11). Owing to the fact that among the halogenated metal salts the iodide anion had a stronger
dissociation capacity, the metal cation and iodide anion could efficiently activate the substrates and
promote the reaction in high yields [36]. The result suggested that the dissociation capacity of the
anions acted a significant role in determining the catalytic activity of the halogenated copper salts. In
addition, Cu2O and CuCN could also catalyze the reaction, affording moderate yields (65% and 32%,
respectively) (Table 1, entries 12,13). Thus, CuI/[P4444][Im] was the best catalyst to further investigate
this reaction.

Table 1. Reaction of 2-methyl-3-butyn-2-ol (1a), n-butylamine (2a) and CO2 in various catalyst systems a.
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a Reaction condition: 1a, 1.0 mmol, 2a, 1.0 mmol, catalyst, 0.1 mmol, CO2 (0.1 MPa, 99.999%), 24 h, 30 ◦C; b Isolated
yieid; c Without copper salt; d Without IL.

Subsequently, the influence of catalyst amount on the yield of product was studied at 30 oC and
1 atm CO2 with a reaction time of 24 h. As seen in Figure S1, the yield of 3a was strongly dependent
on the catalyst amount, and a maximum yield of 90% was obtained in the presence of 10 mol% CuI.
It was shown that the yield of 3a will slowly decrease with further increase of the catalyst loading.
Similar results were also obtained for the effect of IL amount in this reaction (Figure S2). Also, the
dependence of reaction time on the yield of 3a was studied and the results are shown in Figure 2. The
reaction was carried out at 30 ◦C, 1atm CO2 using CuI (10 mol%) and [P4444][Im] (10mol%) as catalyst.
It is shown that a yield of 92% could be obtained after 24h, and the yield of 3a does not improve with
further prolonged reaction time. Moreover, the effect of CO2 pressure on the reaction was studied. As
shown in Table S2, the yield of 3a increased significantly with increasing pressure. More CO2 could be
dissolved in the liquid phase with further increasing pressure, which led to more contact between CO2

with the substrates and the catalyst, and thus a higher yield of product was obtained. From the above
findings, the optimal reaction conditions for the reaction were: CuI/[P4444][Im] as the catalyst, 30 ◦C,
24 h, and 1 atm CO2.
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isolated yield.

The reactions of CO2 with different kinds of propargylic alcohols and amines were evaluated
under the optimized reaction conditions, and the results are listed in Table 2. It was shown that the
coupling reaction of different alkyl substituted propargylic alcohols with CO2 and anines proceeded
smoothly, producing the corresponding oxazolidinones in good yields under mild conditions. It was
noted that a moderate yield of product was obtained for the propargylic alcohol with a cyclohexyl group
(3i), indicating the steric hindrance of the substituent seemed to hamper the reaction. Furthermore, we
also investigate the effect of amines with various substituents in this transformation. It was clearly
shown that most of alkyl-substituted amines were efficient substrates to produce the corresponding
oxazolidinones. However, when the R3 group of amines was a phenyl group, no product was obtained
(compound 3k), even after a prolonged reaction time of 36 h. This phenomenon can be attributed to
both the weak N-nucleophilicity and steric hindrance of the substrates, which further hamper the
reaction [37]. From the above analysis, the catalyst system reported here is more favorable for alkyl
amines than aromatic amines.

To gain insight into the reaction mechanism, the catalytic role of [P4444][Im]/CuI with CO2 and the
substrates were elucidated by 1H-NMR and 13C-NMR spectroscopy. In the 1H-NMR spectrum of the
mixture of [P4444][Im]/CuI with 1a and n-BuNH2 (Figure 3), the OH signal became broad and shifted
from 5.28 to 5.57, which indicated the formation of a hydrogen bond between [P4444][Im] and 1a [35]. In
addition, the 13C-NMR signal assigned to the C1, C2, and C3 sites could be attributed to the interaction
between CuI with the C≡C bond, leading to the activation of propargylic alcohol (Figure 4). These
analysis suggested that the -OH and C≡C bond on the substrate 1a were synergistically activated
by [P4444][Im] and CuI. Moreover, several additional control experiments were performed and the
results are shown in Scheme 2. It was shown that the CuI/[P4444][Im] catalyst could efficiently catalyze
the reaction of 1a with CO2 to form cyclic carbonate 4a with a yield of 70%. In addition, 4a reacted
with n-butylamine to afford 3a smoothly without any catalyst. Therefore, the reaction of propargylic
alcohols, anines and CO2 can be assumed to go through the cyclic carbonate pathway [37].

Based on the above results, a plausible mechanism for the reaction catalyzed by CuI/[P4444][Im]
as depicted in Scheme 3 is proposed. Firstly, the hydroxyl group of the propargyl alcohol is activated
by IL [P4444][Im], then it reacts with CO2 to generate a zwitterionic carbamate species 1. Meanwhile,
the C≡C triple bond of the propargyl alcohol was activated by CuI, and then the intermediate 2 was
obtained. Then the intermediate cyclic carbonate 3 was formed by an intramolecular ring-closing
reaction with the release of the catalyst. Finally, the cyclic carbonate undergoes a nucleophilic attack
by a primary amine to generate the product oxazolidinone 5.
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were performed and the results are shown in Scheme 2. It was shown that the CuI/[P4444][Im] catalyst 

could efficiently catalyze the reaction of 1a with CO2 to form cyclic carbonate 4a with a yield of 70%. 

In addition, 4a reacted with n-butylamine to afford 3a smoothly without any catalyst. Therefore, the 

reaction of propargylic alcohols, anines and CO2 can be assumed to go through the cyclic carbonate 

pathway [37]. 
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3. Experimental Section

3.1. Chemicals

Propargylic alcohols, amines, CuI, Cu2O, CuCl, CuBr, CuCN were obtained from J&K Scientific
Company Limited (Beijing, China). The ILs [P4444][CF3COO], [P4444][NO3] and [P4444][Br] were
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purchased from Lanzhou Greenchem ILs (Lanzhou, Gansu, China). Other ILs such as [P4444][Triz],
[P4444][Ind] and [P4444][Im] were synthesized by the ion exchange method [38].

3.2. General Procedures for the Synthesis of Oxazolidinones

Typically, propargylic alcohol 1a (1.0 mmol), n-butylamine (2a, 1.0 mmol) and CuI
(0.1 mmol)/[P4444][Im] (0.1 mmol) were mixed in a 10 mL Schlenk flask. Then the reaction mixture was
stirred at 30 ◦C for 24 h in the pressure of 0.1 MPa CO2. After the reaction was completed, water (5 mL)
was added into this mixture, and the organic phase was purified through column chromatography. The
ionic liquid was collected and reused without further treatment by removing any water under vacuum.

3.3. Characterization of the Products

The products were confirmed by using 1H-NMR analysis on Avance NEO 400 spectrometer
(Bruker, Beijing, China) and Avance III HD 600 spectrometer (Bruker, Beijing, China). All of the
products matched well with the previously reported experimental results [26].

3-butyl-5,5-dimethyl-4-methyleneoxazolidin-2-one (3a), orange oil; 1H-NMR (CDCl3, 400 MHz does not
match above) δ: 4.07 (d, J = 4.0 Hz, 1 H), 3.98 (d, J = 4.0 Hz, 1 H), 3.44 (t, J = 8.0 Hz, 2 H), 1.61–1.52 (m,
2 H), 1.49 (s, 6 H), 1.37–1.29 (m, 2 H), 0.95 (t, J = 7.2 Hz, 3 H) ppm.

3-butyl-5-isobutyl-5-methyl-4-methyleneoxazolidin-2-one (3b), orange solid; 1H-NMR (CDCl3, 600 MHz)
δ: 4.09 (s, 1 H), 3.93 (s, 1 H), 3.51-3.38 (m, 2 H), 1.80–1.43 (m, 8 H), 1.40–1.31 (m, 2 H), 1.02–0.89 (m,
9 H) ppm.

3-cyclohexyl-5,5-dimethyl-4-methyleneoxazolidin-2-one (3c), orange solid; 1H-NMR (CDCl3, 600 MHz) δ:
4.19 (d, J = 3.0 Hz, 1 H), 3.97 (d, J = 3.0 Hz, 1 H), 3.55 (t, J = 12.0 Hz, 1 H), 1.86-1.66 (m, 13 H), 1.25–1.14
(m, 4 H) ppm.

3-isobutyl-5,5-dimethyl-4-methyleneoxazolidin-2-one (3d), colorless oil; 1H-NMR (CDCl3, 600 MHz) δ: 4.27
(s, 1 H), 3.11–3.04 (m, 1 H), 2.96–2.89 (m, 1 H), 1.99-1.92 (m, 1 H), 1.51 (s, 3 H), 1.43. (s, 2 H), 1.34 (d, J =
12 Hz, 2 H), 0.92–0.87 (m, 6 H) ppm.

3-hexyl-5,5-dimethyl-4-methyleneoxazolidin-2-one (3e), colorless oil; 1H-NMR (CDCl3, 600 MHz) δ: 4.07
(d, J = 2.4 Hz, 1 H), 3.97 (d, J =3 Hz, 1 H), 3.43 (t, J = 7.8 Hz, 2 H), 1.63–1.58 (m, 2 H), 1.49 (s, 1 H),
1.32–1.30 (m, 6H), 0.89–0.88 (m, 3H) ppm.

5-ethyl-3-isobutyl-5-methyl-4-methyleneoxazolidin-2-one (3f), colorless oil; 1H-NMR (CDCl3, 600 MHz) δ:
4.10 (d, J = 3 Hz, 1 H), 3.92 (d, J = 3 Hz, 1 H), 3.30–3.19 (m, 2 H), 1.85–1.80 (m, 1 H), 1.48–1.45 (d, J = 7.2
Hz, 5 H), 1.02 (t, J = 7.8 Hz, 2 H), 0.93–0.90 (m, 6 H), 0.89 (s, 1 H)ppm.

3,5-diisobutyl-5-methyl-4-methyleneoxazolidin-2-one (3g), orange solid; 1H-NMR (CDCl3, 600 MHz) δ: 4.09
(s, 1 H), 3.93 (s, 1 H), 3.28–3.23 (m, 2 H), 2.14–2.04 (m, 1 H), 1.51 (s, 1 H), 1.04–0.98 (m, 2 H), 0.97–0.91
(m, 12 H) ppm.

3-cyclohexyl-5-isobutyl-5-methyl-4-methyleneoxazolidin-2-one (3h), orange solid; 1H-NMR (CDCl3, 600
MHz) δ: 4.24 (s, 1 H), 3.93 (s, 1 H), 3.64–3.53 (m, 1 H), 2.15–1.45 (m, 12 H), 1.34–1.15 (m, 4 H), 0.94–0.91
(m, 6 H) ppm.

3-cyclohexyl-5-ethyl-5-methyl-4-methyleneoxazolidin-2-one (3i), orange solid; 1H-NMR (CDCl3, 600 MHz)
δ: 4.25 (d, J = 3.0 Hz, 1 H), 3.93 (d, J = 3.0 Hz, 1 H), 3.62–3.55 (m, 1 H), 1.66–1.47 (m, 11 H), 1.35–1.18 (m,
4 H), 0.88 (t, J = 7.8 Hz, 3 H) ppm.

3-Butyl-4-methylene-1-oxa-3-azaspiro[4.5]decan-2-one (3j), orange oil; 1H-NMR (CDCl3, 600 MHz) δ: 4.07
(d, J = 3.0 Hz, 1 H), 3.95 (d, J = 2.4 Hz, 1 H), 3.43 (t, J = 7.8 Hz, 2 H), 1.76–1.65 (m, 5 H), 1.61–1.50 (m,
7 H), 1.40–1.31 (m, 2 H), 0.94 (t, J = 7.2 Hz, 3 H) ppm.
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4. Conclusions

In conclusion, we have developed an excellent and cost-competitive catalytic process catalyzed
by the CuI/[P4444][Im] system for the transformation of CO2 to form oxazolidinones. The reaction can
proceed efficiently under room temperature and atmospheric pressure conditions to give high yields
of product. A wide range of propargylic alcohols and amines has been employed, which confirmed the
versatility of the catalyst system for the synthesis of oxazolidinones. Preliminary mechanistic studies
suggest that the reaction of propargylic alcohols, anines and CO2 could involve the cyclic carbonate
pathway. This work reveals the great potential of ionic liquids combined with metal salts as an efficient
type of catalysts for CO2 conversion under mild conditions.
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