A combined ELONA-(RT)qPCR approach for characterizing DNA and RNA aptamers selected against PCBP-2

Miguel Moreno¹, María Fernández-Algar¹, Javier Fernández-Chamorro², Jorge Ramajo², Encarnación Martínez-Salas², Carlos Briones^{1,3,*}

- ¹ Laboratory of Molecular Evolution. Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain.
- ² Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain.
- ³Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
- *Correspondence and requests for materials should be addressed to C.B. (e-mail: cbriones@cab.inta-csic.es)

SUPPLEMENTARY TABLES

Supplementary Table S1. Sequences of the 26 individual (75 to 76 nt-long) ssDNA aptamers selected after 10 rounds of SELEX process using PCBP-2 as the target molecule. Aptamers marked with an asterisk showed binding capacity to PCBP-2 higher than that of the last SELEX round population and M1-40 starting library (Figure 3), and were further characterized by ELONA-qPCR (Figure 5 and Supplementary Figure S5) as well as colorimetric ELONA (Supplementary Figures S9). Aptamers 05DS10-02 and 05DS10-03 showed identical sequence. Nucleotides highlighted in bold correspond to the 40 nt-long selected sequence within each aptamer.

Name	DNA aptamer sequence
05DS10-01*	GCGGATCCAGACTGGTGTGCACAGCACATGCATTACTGCGGTAATCCGTGTCCTTTGTGCCCTAAAGACAAGCTTC
05DS10-02*	GCGGATCCAGACTGGTGT ACTGGGCTAGTTGCCTCTGCAGATTAGATGACAGTG GCCCTAAAGACAAGCTTC
05DS10-03	GCGGATCCAGACTGGTGT ACTGGGCTAGTTGCCTCTGCAGATTAGATGACAGTG GCCCTAAAGACAAGCTTC
05DS10-04	GCGGATCCAGACTGGTGTGGCACTCTTGCTACCGGGACTCTCCCACTTTCTCACGGGGCCCTAAAGACAAGCTTC
05DS10-05*	GCGGATCCAGACTGGTGT ACCTGTTAGCAAGAGTTTATTATGTAAAGATATCCGTTGG GCCCTAAAGACAAGCTTC
05DS10-06	GCGGATCCAGACTGGTGT AGTTCTCCTCTTTAAGATGCTTTATACGGCGTCTTATTAT GCCCTAAAGACAAGCTTC
05DS10-07	GCGGATCCAGACTGGTGT TGTGGCTACTATCCCTTGGTTATAAGTCTCATGCTCGCTG GCCCTAAAGACAAGCTTC
05DS10-08	GCGGATCCAGACTGGTGTACCTGATAGGCTGATCTTAGGTGAGGAGGTTACCTGTCGTGCCCTAAAGACAAGCTTC
05DS10-09	GCGGATCCAGACTGGTGTGTGTGTGTGTGGGTCTATTATTACAAAGTACCCCCCGTATGCCCTAAAGACAAGCTTC
05DS10-10	GCGGATCCAGACTGGTGT TAACCGGATCGCGCCCTCCTCGCTATCCCCCTCGGTGGT GCCCTAAAGACAAGCTTC
05DS10-11	GCGGATCCAGACTGGTGT CCTCAAACAATCCCGATTCAAACAGCCTCTTCCTTAGTGT GCCCTAAAGACAAGCTTC
05DS10-12*	GCGGATCCAGACTGGTGTGCAGGTATGCCGGATCATGTCGTGAAAGTATCCATTTCTCGCCCTAAAGACAAGCTTC
05DS10-13	GCGGATCCAGACTGGTGTGGCTCACAGAACAGCCTTGAGTTTTATTTCCCTGCCGTTTGCCCTAAAGACAAGCTTC
05DS10-14	GCGGATCCAGACTGGTGT ATCCCTACGCATCGTGTCCTCGACAGACTATGGATCAGTC GCCCTAAAGACAAGCTTC
05DS10-15	GCGGATCCAGACTGGTGTGGCGCTGCGCTGCTGGTGGTCCCTCTTTGCCTATTGTTGTGCCCTAAAGACAAGCTTC
05DS10-16	GCGGATCCAGACTGGTGTGGGGGGGGGGGGTTTCTACCTTAATTCCGTTCCTGGTAACTCCGCCCTAAAGACAAGCTTC
05DS10-17	GCGGATCCAGACTGGTGT TTCGGTGGGGTGGTTTAGTATCTGATTGTCATGTTGTT GCCCTAAAGACAAGCTTC
05DS10-18*	GCGGATCCAGACTGGTGT CCTATCTATAATTTTGCAGTCCACGTTTCTCTTGTGTGTG
05DS10-19	GCGGATCCAGACTGGTGTGGCTTTGCTGTATACAAAGTGCTTTGGTCTTTCGGATTGTGCCCTAAAGACAAGCTTC
05DS10-20	GCGGATCCAGACTGGTGTGGCGCCCGTTTTCGCTGCTCACTTCGCAGAAGGTCATCCGGCCCTAAAGACAAGCTTC
05DS10-21*	GCGGATCCAGACTGGTGT GGAGGTTAGCCGAAACACGTATACGCGTATTTATCCTCGG GCCCTAAAGACAAGCTTC
05DS10-22*	GCGGATCCAGACTGGTGT CAATGGTACTCTTCATTGTAGTCGCTTTGTTTATTAGCCG GCCCTAAAGACAAGCTTC
05DS10-23	GCGGATCCAGACTGGTGT TGCAGCATCGCGTCACGCGTCTACATTGTTCGTCTCACC GCCCTAAAGACAAGCTTC
05DS10-24	GCGGATCCAGACTGGTGTGCCATTACCATGGATCTGTCACCCGCTCTCTCCCCGGGGCGCCCTAAAGACAAGCTTC
05DS10-25	GCGGATCCAGACTGGTGT GGATACGTAACTTGCTATTGATTTGCAATTGTTGATTAT GCCCTAAAGACAAGCTTC
05DS10-26*	GCGGATCCAGACTGGTGTGGGGAATGTTGTTTATGTATTTGTTCTGAGCTCTACCTTTGCCCTAAAGACAAGCTTC

Supplementary Table S2. Sequences of the 32 individual (77 to 79 nt-long) RNA aptamers selected after 10 rounds of SELEX process using PCBP-2 as the target molecule. Aptamers marked with an asterisk showed binding capacity to PCBP-2 higher than that of the last SELEX round population and M1-40 starting library (Figure 4) and were characterized by ELONA-RTqPCR (Figure 6 and Supplementary Figure S6). Nucleotides highlighted in bold correspond to the 40 nt-long selected sequence within each aptamer.

Name	RNA aptamer sequence
0.5RS10-02	GGGGCGGAUCCAGACUGGUGUCAUAUGAUUGUGUUUAGCGGGAGUACCUUGAUGUUUUGCGGCCCUAAAGACAAGCUUC
05RS10-03	GGGGCGGAUCCAGACUGGUGU CUUGUCUAGGCCGGUAAGAUUGGAUGAUAAUUGUUUGG GCCCCUAAAGACAAGCUUC
05RS10-04*	GGGGCGGAUCCAGACUGGUGU CAUUUAGCAAAAACACUUGUAUAAUUCAAGUCGAUGUUGG GCCCUAAAGACAAGCUUC
05RS10-05	GGGGCGGAUCCAGAGUGGUGU GUUGUUAAACGGUGGAUUGGUUUAUUAGUGUUUAGGCG GCCCUAAAGACAAGCUUC
05RS10-06	GGGGCGGAUCCAGACUGGUGU CGCCUUUAGUGUACACAAUAUAUCCUUCCUCUGUUGGGCG GCCCUAAAGACAAGCUUC
05RS10-07	GGGGCGGAUCCAGACUGGUGU CGGGAACUAUCGGCUUGCGACUAUUUACCUGUGUCAUUGG GCCCUAAAGACAAGCUUC
05RS10-08	GGGGCGGAUCCAGACUGGUGU CAUAUGAUUGUGUUUAGCGGGAGUACCUUGAUGUUUUGCG GCCCUAAAGACAAGCUUC
05RS10-09*	GGGGCGGAUCCAGACUGGUGUACACGGUGUUUAGUAGUUUAAUGAAUCUUUUAGUUCUUGGGCCCUAAAGACAAGCUUC
05RS10-10	GGGGCGGAUCCAGACUGGUGU UACCAUUAGCCGACGCCCUCUCUCACUUAUGUGUCGCUGG GCCCUAAAGACAAGCUUC
05RS10-11*	GGGGCGGAUCCAGACUGGUGU GAUCAUAUUAAUAAGACGCUUCCAGGUACGUCGCUGUUGG GCCCUAAAGACAAGCUUC
05RS10-12	GGGGCGGAUCCAGACUGGUGU UCCUCUGACACUUUCAAAACAUUGGCGUACUUCAUUCGUG GCCCUAAAGACAAGCUUC
05RS10-13	GGGGCGGAUCCAGACUGGUGU AUUUGGUAGGGCGUAUUAUUUUAAGAAUUUUGUUGCGUGG GCCCUAAAGACAAGCUUC
05RS10-14	GGGGCGGAUCCAGACUGGUGU CAUUAAAAAACUAAUCUAUUUCUGGUCGUGUAUAGUCUUGG GCCCUAAAGACAAGCUUC
05RS10-15	GGGGCGGAUCCAGACUGGUGU UUUGUUCUAUCGGGUUUCUCAAUGUGUUGUUGUCAGUGG GCCCUAAAGACAAGCUUC
05RS10-16	GGGGCGGAUCCAGACUGGUGU GUUAAUUAAAAAACUUUGGUUCCCAUUUUCUCUCUUUGG GCCCUAAAGACAAGCUUC
05RS10-17	GGGGCGGAUCCAGACUGGUGU UGCGUAAUUUGUGUUUUGAUAUAAGUGUACUCCUCACGCG GCCCUAAAGACAAGCUUC
05RS10-18*	GGGGCGGAUCCAGACUGGUGU UUAAUUAUGUAAGUAAAUUGUUUUUUGACUCUCGCAUUGG GCCCUAAAGACAAGCUUC
05RS10-19*	GGGGCGGAUCCAGACUGGUGU AAUCGAUCUUGCAUGCUAUUCGUCAAUCAACUCUUGCCGG CCCUAAAGACAAGCUUC
05RS10-20	GGGGCGGAUCCAGACUGGUGU UUCCCUAGGACUUCCGACUAGUAAUGUUUGGUUUCCCGUG GCCCUAAAGACAAGCUUC
05RS10-22	GGGGCGGAUCCAGACUGGUGU ACUUCUAAAAACUUCUCCAGCAGGGAAACUUCGUUCCUUGG GCCCUAAAGACAAGCUUC
05RS10-23	GGGGCGGAUCCAGACUGGUGU UCUUUUAAUAUAUAGGUCUUUUAUUAGUGUGUCUUUGUG GCCCUAAAGACAAGCUUC
05RS10-24	GGGGCGGAUCCAGACUGGUGU UCUAACGUCCUAUACUCAAUGGGUAUGCUUGUUUUAUUGG GCCCUAAAGACAAGCUUC
05RS10-25	GGGGCGGAUCCAGACUGGUGU UUCCUAUCUUACCCGAGGUAUAACGUUUGAUUCGCGUGG GCCCUAAAGACAAGCUUC
05RS10-26	GGGGCGGAUCCAGACUGGUGU CUUUCUGUCCAGCUCUUAGGUUCAUCUUCAGGUCUACUGG GCCCUAAAGACAAGCUUC
05RS10-27	GGGGCGGAUCCAGACUGGUGU GUGUAUACACUCUGCAUUUUUAUUUGGACACUCAUGG GCCCUAAAGACAAGCUUC
05RS10-28	GGGGCGGAUCCAGACUGGUGU CGAAUAUUAUGAGUGUGUGCCGCAUGUCUUUCCUCGCUCG
05RS10-29	GGGGCGGAUCCAGACUGGUGU CGUUAUUUAACUUGAUAUUUUGAUCAUCGUCACGUUGG GCCCUAAAGACAAGCUUC
05RS10-30*	GGGGCGGAUCCAGACUGGUGU UUCCGCAAAGAGUGGUCUUUGUUAAUGUCAGGUUUCUUCG GCCCUAAAGACAAGCUUC
05RS10-31	GGGGCGGAUCCAGACUGGUGU UUAAUCCUUACGUCCUUUUGCGGUUUUCGUGUGUUCUUGG GCCCUAAAGACAAGCUUC
05RS10-32*	GGGGCGGAUCCAGACUGGUGU CUUCCUGCUUGUGUUAUUUUCUAUUGUCGUGCGUGUUCGG GCCCUAAAGACAAGCUUC
05RS10-33	GGGGCGGAUCCAGACUGGUGU GUAGGUGACUUGGUUAUCCUGUUUCACUAACUUUACUUGG GCCCUAAAGACAAGCUUC
05RS10-34*	GGGGCGGAUCCAGACUGGUGUGAACACAGACGAGAACGUUGCAUAAAACCGCUUUUUUUGGGCCCUAAAGACAAGCUUC

SUPPLEMENTARY FIGURES

С

Supplementary Figure S1. Configuration of ELONA-(RT)qPCR experiments performed in high capacity 96-well plates for the affinity analysis (**A**) and the quantification of *Kd* and *Bmax* (**B**) of DNA and RNA aptamers. The schematic representation of aptamer–PCBP-2 binding in the ELONA format corresponding to panel **B** is shown in panel **C**.

Supplementary Figure S2. Nucleotide composition of the 10th round of RNA (blue bars) and DNA (red bars) aptamers selection against PCBP-2.

Supplementary Figure S3. Quality control of the amplification products resulting from either qPCR of the template molecule D-ACTG (**A**) or RTqPCR of the template molecule R-ACUG (**B**). The DNA products resulting from (RT)qPCR amplification using the upper template concentrations shown in Figure 2 were loaded in a non-denaturing 10.0% (19:1) acrylamide/bis-acrylamide gel electrophoresis (in 0.5 X TBE), which was run at 100 V for 1 hour. MW: Molecular weight DNA marker (50 pb).

Supplementary Figure S4. Calibration curves obtained using four high affinity DNA (**A**) and RNA (**B**) aptamer molecules as templates for (RT)qPCR amplification, with SYBR Green as fluorophore. Consensus calibration curves for each group of four curves are shown in black, and the curves corresponding to D-ACTG and R-ACUG templates (in red, already depicted in Figure 2) are superimposed in the interval of six orders of magnitude assayed.

Supplementary Figure S5. Minimum free energy (MFE) structure drawings (predicted by mfold software using the ionic conditions of the SB and a folding temperature of 37°C) of the eight high-affinity ssDNA aptamers specific to PCBP-2 whose functional analysis is shown in Figure 5. The free energies of the MFE depicted are: 05DS10-01, -5.31 kcal/mol; 05DS10-02, -4.74 kcal/mol; 05DS10-05, -1.35 kcal/mol; 05DS10-12, -3.18 kcal/mol; 05DS10-18, -2.84 kcal/mol; 05DS10-21, -2.46 kcal/mol; 05DS10-22, -2.13 kcal/mol; 05DS10-26, -1.75 kcal/mol.

Supplementary Figure S6. Minimum free energy (MFE) structure drawings (predicted by RNAfold software) encoding base-pair probabilities of the eight high-affinity RNA aptamers specific to PCBP-2 whose functional analysis is shown in Figure 6. The free energies of the MFE depicted are: 05RS10-04, -15.10 kcal/mol; 05RS10-09, -14.10 kcal/mol; 05RS10-11, -16.50 kcal/mol; 05RS10-18, -10.80 kcal/mol; 05RS10-19, -15.10 kcal/mol; 05RS10-30, -23.40 kcal/mol; 05RS10-32 -16.60 kcal/mol; 05RS10-34, -17.40 kcal/mol.

Supplementary Figure S7. Characterization of high affinity ssDNA individual aptamers present in the last SELEX round, by means of colorimetric ELONA. The affinity curves obtained for the eight selected individual aptamers (**A**) showed that the best fit curve corresponded to a *One site - specific binding* model (with R² values in the range 0.93-0.99) in all cases, from which the *Kd* and *Bmax* values were derived (**B**). In parallel, D-ACTG molecule used as a negative control (see text for details) could only be adjusted to a linear regression model, thus showing non-specific binding to PCBP-2.

Supplementary Figure S8. Full-length EMSA gels showing the aptamer–PCBP-2 complexes formed by two high affinity RNA aptamers: 05RS10-09(A, C) and 05RS10-32(B, D). Short (16h: A, B) and long (80h: C, D) exposure times at -80° C were used in both cases. Boxes in panels C and D correspond to panels A and B of Figure 7.