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Abstract: Iron-induced oxidative stress has been found to be a central player in the pathogenesis
of kidney injury. Recent studies have indicated H2 can be used as a novel antioxidant to protect
cells. The present study was designed to investigate the protective effects of H2 against chronic
intermittent hypoxia (CIH)-induced renal injury and its correlation mechanism involved in iron
metabolism. We found that CIH-induced renal iron overloaded along with increased apoptosis and
oxidative stress. Iron accumulates mainly occurred in the proximal tubule epithelial cells of rats as
showed by Perl’s stain. Moreover, we found that CIH could promote renal transferrin receptor and
divalent metal transporter-1 expression, inhibit ceruloplasmin expression. Renal injury, apoptosis
and oxidative stress induced by CIH were strikingly attenuated in H2 treated rats. In conclusion,
hydrogen may attenuate CIH-induced renal injury at least partially via inhibiting renal iron overload.
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1. Introduction

Obstructive sleep apnea (OSA) affects more than 100 million adults all over the world [1].
Now, OSA has been recognized as one of the important causes or factors of worsening for various
renal injury [2], cardiovascular diseases [3], cerebrovascular damage [4], asthma [5], and pulmonary
edema [6]. Several theories have been developed to explain the excess risks among individuals with
OSA, including oxidative stress, hypoxemia, inflammation, and hypertension [2].

In the literature, the relationship between OSA and chronic kidney disease (CKD) seems
bidirectional. OSA appears to have a high occurrence in CKD patients who require dialysis, the
ratio has shot up to one-third of their total numbers [7]. Especially, occurrence of OSA in people with
end-stage renal disease (ESRD) reaches about 50–70%, which suggests that OSA is common in these
patients [2]. A retrospective cohort study showed a similar effect that OSA was 1.94 times higher in
CKD patients, and this had risen to 2.2 times in ESRD patients [8].

Hydrogen gas (H2) is a biomedical agent with antioxidative, anti-inflammatory and anti-allergic
properties [9]. H2 has favorable cellular bio-availability as it can rapidly diffuse into cells to play
a beneficial role, given the physical properties. More importantly, H2 has no inhibitory effect on
metabolic redox function and reactive oxygen species (ROS) that acts a signaling molecule. H2 can also
be anti-apoptotic and protective by inducing hormesis or pre-condition like cellular states. [10].
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Iron is a required element in the body that acts as a component of many enzymes to exert its
physiological actions [11]. However, excessive iron could accelerate the production of damaging ROS,
leading to lipid peroxidation and DNA mutagenesis [12]. The delivery of transferrin bound iron to cells
is through transferrin–transferrin receptor interaction on the cell surface. Following internalization
of the complex by clathrin-mediated endocytosis, iron traverses from the plasma membrane to enter
the cytosol [13]. When transferrin saturation is exceeded, non-transferrin bound iron uptake will take
place through divalent metal transporter 1 (DMT1) and ferroportin (FPN). The DMT1 distribution
was observed in mice by specific immunoreactivity in proximal tubules, suggesting that DMT-1
may function on apical iron entry [14]. As the sole cellular iron efflux channel identified to date in
vertebrates, FPN extrudes iron from the cells [15]. FPN expressed in proximal tubule cells of rats
and may provide a means of iron exit [16]. Iron overload may develop kidney impairment and
can be an early and sensitive indicator in CIH-induced kidney disease. Wang et al. assessed the
probability of iron deposition in patients undergoing renal biopsy, they found thirty-four of them
showed definite iron staining [17]. Moreover, it has been shown that iron is often sequestered in cells
in CKD patients [18]. Wareing et al. found that serum iron is available for glomeruli to filter, even the
majority of the filtered iron is followed by tubular reabsorption [19].

However, in spite of these particular studies, it is not known whether H2 can reduce the renal
injury caused by CIH. Furthermore, not much has reported about the alterations of renal iron
metabolism under CIH. Thus, we do not know whether H2 protect kidney against CIH-induced
injury via regulating iron metabolism. Therefore, this study was performed to evaluate the effect of H2

treatment against the deleterious renal consequences of CIH and the possible pathway it involves.

2. Results

2.1. H2 Alleviates the Injury of Kidneys in Rats

Compared with the control group, in the CIH group, glomerular and renal cysts and renal
tubular epithelial cells showed clearly swollen as lumen was narrow or nearly closed. However, these
alterations were notably alleviated by H2. There was no obvious renal morphological change in the
CON + H2 group.

Molecules 2019, 24, x 2 of 14 

 

beneficial role, given the physical properties. More importantly, H2 has no inhibitory effect on 
metabolic redox function and reactive oxygen species (ROS) that acts a signaling molecule. H2 can 
also be anti-apoptotic and protective by inducing hormesis or pre-condition like cellular states. [10]. 

Iron is a required element in the body that acts as a component of many enzymes to exert its 
physiological actions [11]. However, excessive iron could accelerate the production of damaging 
ROS, leading to lipid peroxidation and DNA mutagenesis [12]. The delivery of transferrin bound iron 
to cells is through transferrin–transferrin receptor interaction on the cell surface. Following 
internalization of the complex by clathrin-mediated endocytosis, iron traverses from the plasma 
membrane to enter the cytosol [13]. When transferrin saturation is exceeded, non-transferrin bound 
iron uptake will take place through divalent metal transporter 1 (DMT1) and ferroportin (FPN). The 
DMT1 distribution was observed in mice by specific immunoreactivity in proximal tubules, 
suggesting that DMT-1 may function on apical iron entry [14]. As the sole cellular iron efflux channel 
identified to date in vertebrates, FPN extrudes iron from the cells [15]. FPN expressed in proximal 
tubule cells of rats and may provide a means of iron exit [16]. Iron overload may develop kidney 
impairment and can be an early and sensitive indicator in CIH-induced kidney disease. Wang et al. 
assessed the probability of iron deposition in patients undergoing renal biopsy, they found thirty-
four of them showed definite iron staining [17]. Moreover, it has been shown that iron is often 
sequestered in cells in CKD patients [18]. Wareing et al. found that serum iron is available for 
glomeruli to filter, even the majority of the filtered iron is followed by tubular reabsorption [19].  

However, in spite of these particular studies, it is not known whether H2 can reduce the renal 
injury caused by CIH. Furthermore, not much has reported about the alterations of renal iron 
metabolism under CIH. Thus, we do not know whether H2 protect kidney against CIH-induced injury 
via regulating iron metabolism. Therefore, this study was performed to evaluate the effect of H2 
treatment against the deleterious renal consequences of CIH and the possible pathway it involves. 

2. Results 

2.1. H2 Alleviates the Injury of Kidneys in Rats 

Compared with the control group, in the CIH group, glomerular and renal cysts and renal 
tubular epithelial cells showed clearly swollen as lumen was narrow or nearly closed. However, these 
alterations were notably alleviated by H2. There was no obvious renal morphological change in the 
CON + H2 group. 

Serum creatinine level is an important marker of kidney injury as it inversely correlates with the 
glomerular filtration rate. No statistically significant differences were found among the four groups 
before initiation of the CIH and/or H2. Serum creatinine levels were significantly higher in CIH rats 
on 7th, 14th, and 35th day as compared with the corresponding control group (each p < 0.01). Notably, 
increased creatinine level was normalized by H2 (each p < 0.01). H2, when treated alone, had nearly 
no effect on creatinine levels (Figure 1B). 

 
Figure 1. Effect of H2 on the structure and function of kidney in rats exposed to CIH (chronic
intermittent hypoxia) (A). Representative hematoxylin and eosin stained images. CIH-induced
remarkable renal structure damage, such as glomerular and renal cysts and renal tubular epithelial cell
swelling. These alterations were notably alleviated by H2. Arrow, swollen proximal tubule. Arrow
head, glomerulus. (B). Rats treated with CIH showed increase of serum creatinine levels on 7, 21 and
35 days. A significant decrease occurred in CIH + H2 group compared to corresponding CIH group.
There was no significant change use H2 alone. ** p < 0.01 vs. normoxia group; ## p < 0.01 vs. CIH group.
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Serum creatinine level is an important marker of kidney injury as it inversely correlates with the
glomerular filtration rate. No statistically significant differences were found among the four groups
before initiation of the CIH and/or H2. Serum creatinine levels were significantly higher in CIH rats
on 7th, 14th, and 35th day as compared with the corresponding control group (each p < 0.01). Notably,
increased creatinine level was normalized by H2 (each p < 0.01). H2, when treated alone, had nearly no
effect on creatinine levels (Figure 1B).

2.2. H2 Inhibits CIH-Induced Renal Apoptosis

Compared with the control group, the cell apoptosis rate was increased in the CIH group.
However, the renal cell apoptosis was significantly suppressed with H2 inhalation but H2 alone
had no effect (Figure 2A).

A major checkpoint in apoptosis is the expression of anti-apoptotic proteins to pro-apoptotic
proteins. Here we used Western blotting to examine the ratio of Bcl-2 and Bax. CIH-induced decreased
Bcl-2/Bax ratios compared to control (p < 0.01). Bcl-2/Bax ratios increased significantly after H2

inhalation in CIH + H2 group (p < 0.01). Treatment of H2 alone showed no apparent change in the
Bcl-2/Bax ratios (Figure 2B).
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Figure 2. Effect of H2 on CIH-induced renal cell apoptosis and oxidative stress. (A). Representative
images of cell apoptosis. (B). Western blot showing that H2 inhibited the decrease of Bcl-2/bax
ratio. (C). H2 administration suppressed renal MDA (malondialdehyde) content and increased SOD
(superoxide dismutase) activity. ** p < 0.01 vs. normoxia group; ## p < 0.01 vs. CIH group.
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2.3. H2 Reduces CIH-Induced Renal Oxidative Stress

To examine whether the increased level of oxidative stress was responsible for CIH-induced cell
apoptosis, MDA level as well as SOD (superoxide dismutase) activity were determined. The data
showed that, the renal MDA level was significantly increased after suffering from CIH, whereas that
of SOD activity decreased significantly. H2 decreased MDA levels and elevated the activity of SOD
(Figure 2C).

2.4. H2 Alleviates CIH-Induced Renal Iron Overload

To determine whether the iron-dependent lipid peroxidation plays a role in increased oxidative
stress, the distribution and content of iron was detected in rat kidneys.

There is a handful of scattered iron in the control group. Obviously, iron deposition in the proximal
tubules of the kidneys was discovered in the CIH group. After H2 administration, the specific iron
deposition was inhibited in the CIH + H2 group (Figure 3A).
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Figure 3. Effect of H2 on CIH-induced renal iron overload. (A). Representative images of DAB
(3,3′-diaminobenzidine) enhanced Perl’s Prussian blue staining. Iron is shown to deposit in proximal
tubule epithelial cells. (B). The contents of renal non-heme iron were determined by colorimetry.
(C). Western blot showing that H2 inhibited the increase of both FtL and FtH expression. ** p < 0.01 vs.
normoxia group; # p < 0.05, ## p < 0.01 vs. CIH group.

The content of iron in the kidney was confirmed by tissue iron assay kit from the Nanjing Jiancheng
(Figure 3B). The iron content in the kidney increased significantly in the CIH group compared to control
(p < 0.01). In the CIH + H2 group, the iron deposition was inhibited by H2 (p < 0.05).

Ferritin is a protein that stores iron. The results showed that the protein expression of FtL and
FtH was increased significantly in the CIH group by 39% and 134% respectively when compared with
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control (each p < 0.01), indicating a state of iron overload. Decreased FtL and FtH protein expression
level to 73% and 62% respectively was found in the CIH + H2 group (each p < 0.01), whereas no
obvious changes of FtL and FtH were seen in rats treated with H2 alone (Figure 3C).

2.5. H2 Suppresses CIH-Induced Increase Expression of Renal TfR and DMT1 and Decrease of CP

To evaluate the change of iron release and uptake of iron from kidney, we determined the
levels of CP (ceruloplasmin), FPN, TfR, and DMT1 using Western blots (Figure 4A). CP expression
was significantly reduced to 65% after a CIH exposure for 5 weeks in rats, while H2 significantly
enhanced the protein expression of CP by 37% (Figure 4B). However, our measure of renal FPN
expression showed no significant differences among the four groups (Figure 4C). Was the increased iron
reabsorption from tubular fluid responsible for CIH-induced iron accumulation? Here, the TfR level
doubled in the kidney from the CIH groups compared with control (p < 0.01), suggesting an elevation
in transferrin dependent iron uptake (Figure 4D). Moreover, CIH-induced DMT1 up-regulation
by 46% was also seen in the kidneys (Figure 4E). The results indicated that CIH-induced higher
non-transferrin-bound iron uptake than that in the control rats. In contrast, H2 inhalation reduced
both TfR and DMT1 protein expression to 47% and 79% respectively in CIH + H2 group. Additionally,
it was noted that the H2 treated alone group showed no notable difference in the expression of TfR
and DMT1 compared to control.
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(B). Renal CP (ceruloplasmin) expression. (C). Renal FPN (ferroporrtin) expression. (D). Renal TfR
expression. (E). Renal DMT1 (divalent metal transporter 1) expression. ** p < 0.01 vs. normoxia group;
# p < 0.05, ## p < 0.01 vs. CIH group.
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2.6. H2 Normalizes Renal HIF-1α and HO-1 Expression Levels

Hypoxia-inducible factor (HIF-1) can upregulate several genes with hypoxia responsive elements
(HREs) in the promotors by induce transcription. The results showed that protein expression of HIF-1α
was significantly elevated by 79% in the CIH group while H2 effectively eliminated the elevation to
65%. Besides, the H2 alone group showed no notable difference when compared to control (Figure 5A).

The change of HO-1was in line with the protein levels of HIF-1α (Figure 5B). CIH rats exhibited
elevated HO-1 expression by 43% than that of the control rats. Importantly, the increase of CIH-induced
HO-1 protein expression was reversed by administration of H2 in the CIH + H2 group (to 73%). Besides,
H2 treated alone group showed no notable difference in the expression of HO-1 compared to control.
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3. Discussion

In this study, we examined whether H2 can protect the kidney against CIH-induced injury.
The results confirmed that CIH could damage the structure and function of the kidney, a link already
demonstrated by primary studies [20,21]. Our current study shows that excessive iron may participate
in the CIH-induced kidney cell injury. Furthermore, we discovered that H2 inhalation prevented
progression of CIH-induced kidney injury by inhibiting iron accumulation in proximal tubule cells.

Histological examination confirmed that CIH induced renal injury. Intermittent hypoxia,
characterized by cyclical changes in hypoxemia with reoxygenation, contributes to generation of
too much reactive oxygen species (ROS) [22]. In view of this, we speculated that antioxidants might
lower the risk of CIH-induced renal injury. However, many antioxidant supplements increased
mortality instead of preventing cancer, myocardial infarction and atherosclerosis [23]. It is reported
that H2 can selectively reduce toxic reactive oxygen species [24]. Given that no side effects on the
use of hydrogen have been reported until now, we thought that the profiling result could probably
be used to alleviate the CIH-induced renal injury more efficiently. Our hypothesis was convinced by
our finding that H2 significantly improved kidney pathological changes in rats. There was not any
differential pathology change in the kidney of H2 group, confirmed that H2 had no major side effects.
Serum creatinine, generally used for estimation of the glomerular filtration rate, is a predictor marker
of kidney function. Recently, we and others reported that CIH caused an elevated serum creatinine
in CIH groups compared to control [25]. Another important result of the current study was that H2

inhibited glomerular filtration rate, suggesting that H2 can improve renal function.



Molecules 2019, 24, 1184 7 of 14

Apoptosis is known as a critical pathological process in CIH-induced cell injury, and inhibiting
apoptosis could relieve CIH-induced injury in kidney [26], heart [27,28], aortic endotheliocyte [29],
hippocampus [30] and so on. H2 treatments overwhelmingly reduced apoptosis rate of renal tubule
cells in rats exposed to CIH in this study, which was consistent with previous studies. The benefit of H2

treatments was found to reduce the kidney injury of burn via inhibiting apoptosis and inflammation
induced by lipid peroxidation [31]. Besides, in another study about whether hydrogen could protect
against kidney injury following orthotropic liver transplantation, hydrogen-rich saline dramatically
alleviated renal injury via its antioxidant capability [32].

Our recent and other studies suggested that H2 inhalation could ameliorate CIH-induced oxidative
stress in rats [30,33]. To further illustrate the related molecular mechanism for apoptosis in the
CIH-induced kidney injury, we examined the oxidative stress level. In the CIH groups, the MDA
levels were significantly increased, whereas the SOD activities were reduced significantly. Here,
the application of H2 increased the activity of SOD, and decreased MDA expression in the kidney.
It implied that the increased level of oxidative stress was responsible for CIH-induced cell apoptosis,
whereas H2 markedly reduces the danger of kidney damage by buffering the oxidative stress. Previous
studies suggested that chronically renal iron exposure would cause tubular injury and increase in
glomerular permeability by interfering the redox balance [34]. The change of oxidative stress in this
study corresponding with the iron change in the kidney excited our interest.

There is a labile iron pool (LIP) that seems accessible for use in the cell and for transport to
the bloodstream via ferroportin [35]. The increase iron pool would give rise to oxidative stress and
protectants like H2 likely induce hormesis-like effects. We therefore examined whether increased iron
was present in the kidneys of CIH-exposed rats. Elevated levels of iron in kidney homogenates were
confirmed in CIH rats by colorimetry. Our results indicated H2 restrained the growth of iron level
in the kidney of rats when exposed to CIH. Note that iron accumulation is limited to renal proximal
tubules as the Perl’s staining shows, meaning that proximal tubules might account for most of the
reabsorption of iron from tubular fluid. Previous studies showed that iron in the tubular lumen was
nearly reabsorbed again by renal tubular cells, as there were undetectable iron in the healthy urine [36].
Also, with regards to mitochondrial content and energy consumption, proximal tubules were mainly
attacking targets of renal damage [37]. Based on these findings, we believe that CIH-induced iron
overload in proximal tubules may be involved in the onset of kidney damage. Ferritin consists of two
subunits (H and L) and is typically induced by increased iron content. In this study, the expressions of
both H-ferritin and L-ferritin is in accordance with iron contents in kidneys.

It is widely believed that the kidney is a key organ involved in homeostasis of iron
concentration. [38]. Ferroportin is one of the rate-limiting proteins as it is the way to get rid
of iron with the aid of the multicopper ferroxidase ceruloplasmin [35]. So, the changes in the
ferroportin–ceruloplasmin system probably could produce such large changes in iron metabolism.
Overexpression of transferrin receptor and DMT1 could explain an iron overload of renal epithelial
cells. Alternatively, the transferrin receptor and DMT1 mRNA translation should be activated via
iron regulatory proteins under iron deficient [39]. That was contradictory to the existing fact that iron
overloaded. Indeed, renal iron metabolism is a tightly regulated process as demonstrated by recent
studies. Zhang et al. found that the TfR expressed in the proximal tubule epithelial cells [40], may
function in Tf-bound iron uptake from glomerular filtrate. As the major protein for iron absorption
from the duodenum, DMT1 expresses in the proximal tubules mainly [41], distal tubules and collecting
ducts [42]. However, the expression of DMT-1 is located at lysosomal membranes and the late
endosomal of proximal tubule cells, suggesting the main function of DMT1 in the proximal tubule is
for facilitating Tf-bound iron uptaking [43]. In another experiment, DMT-1 is found also expressed
in distal tubules, where it can take part in iron resorb when too much iron remains [40]. Our results
found that TfR and DMT1 protein expression was notably increased in the CIH group, indicating
that elevated transferritin-dependent iron uptake was involved in the renal iron overload induced by
the CIH treatment. H2 effectively reduced iron uptake as through decreasing the protein expression
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of both TfR and DMT1. The observation is in line with the current knowledge that TfR [44] and
DMT1 [45] are hypoxia-inducible genes with the putative hypoxia responsive element (HRE) sequence.
It is generally accepted that FPN acts with the help of the ferroxidase to mediate iron export, loss
of its activity will result in cellular iron overload [46]. However, FPN was reported to facilitate iron
reabsorption under basal conditions express as it expressed in the proximal tubules. Additionally,
elevated FtH expression could change the location and expression in the tubule [47]. In this study, we
demonstrated that FPN expression had no statistically significant increase with CIH administration.
As the transcription initiation site of FPN contained putative HREs [48], the increased HIF-1α induced
by CIH may positively regulate the amount of FPN. Hepcidin may negatively regulate the expression
of FPN as increased hepcidin levels were discovered in patients with OSA [49]. Excessive hepcidin
interference with the release of dietary iron and recycled iron in CKD patients by downregulating
FPN expression [50]. Thus, the balance of inhibitors and activators tunes the expression of FPN.
Redistribution of FPN from tubular apical membrane to the basolateral membrane induced by elevated
FtH expression in CIH group should be more meaningful for iron release in renal epithelial cells.
Furthermore, the enhanced iron release ability is not large enough to offset the increased iron uptake
in CIH rats and showed renal iron overload. Ferroxidase activity is needed to maintenance iron
efflux function of ferroportin in some cell types [51]. The protein expression of CP was dramatically
decreased in the CIH group than control, making it likely that reabsorbed iron retained in the renal
tubular epithelial cells. H2 significantly prevents the decreased level of renal CP both in the CIH + H2

group and the CON + H2 group. The promotion of renal CP level by H2 may be due to the antioxidant
capabilities as ROS is reported to promote CP mRNA decay by disturbing RNA-protein complex
formation [52].

HIF-1 can activate its target genes by transcription [53]. In this study, higher HIF-1α levels
induced by CIH may be associated with the increased TfR and DMT1 whose transcription initiation
site contained putative HREs. We concluded that H2 may decrease TfR and DMT1 expression in CIH
rats via regulating the expression of HIF-1α.

HO-1 is reported to be increased by HIF-1α and chronic hypoxia [54]. Previous studies have
demonstrated that HO-1 can breakdown heme and increases the availability of its degradation products
iron [55]. Thus, the increased renal expression of HO-1 in CIH rats is likely to contribute to iron overload
via a cascade of oxidative reactions resulting in the loss of heme. Additionally, administrating H2

during CIH may inhibit excessiveness of iron extract from heme.
In conclusion, the results presented here give a support to a sequence of events whereby iron

overload participated in CIH-induced renal injury through oxidative stress. CIH could promote
renal TfR and DMT1 expression, as they are oxygen-responsive genes with HREs sequence within
their promoter. FPN is an oxygen-responsive gene that is affected by HIF-1 and mediated by the
iron-regulatory hormone hepcidin. The current renal FPN expression should be a balance of hypoxia
and hepcidin. Moreover, CIH inhibit CP expression via promoting its mRNA decay. What’s more,
CIH-induced iron extracted from heme by increasing HO-1 expression. Thus, iron overloaded proximal
tubule epithelial cells may suffer from oxidative stress and apoptosis through generating both hydroxyl
radicals and higher oxidation states. H2 could inhibit iron overload in the renal tubule epithelial cells,
and alleviate renal injury, potentially through regulating HIF-1 and HO-1, suggesting iron metabolism
might be a therapeutic target in future treatment of OSA (Figure 6).
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Figure 6. Proposed signaling pathways involved in the protective effect of H2 in CIH-induced renal
injury. The renal injury, apoptosis and oxidative stress induced by CIH were strikingly attenuated
in H2 treated rats. Mechanistically, hydrogen gas attenuated CIH-induced elevated expression of
HIF-1α, and downregulation of HIF-1α blunted its binding to the hypoxia-response element (HRE)
DNA sequence of target proteins such as TfR and DMT1. FPN is an oxygen-responsive gene that
affected by HIF-1 and mediated by the iron-regulatory hormone hepcidin. The current renal FPN
expression should be a balance of hypoxia and hepcidin. Meanwhile, CIH inhibit CP expression via
promoting its mRNA decay. What’s more, H2 suppressed CIH induced iron extracted from heme by
decreasing HO-1 expression.

4. Materials and Methods

4.1. Animals and Experimental Design

All animal research was approved by the Bioethics Committees of Hebei University of Chinese
Medicine. Male Sprague–Dawley rats (weight, 200 ± 10 g) were obtained from the Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China). These rats were maintained on a 12 h light
and 12 h dark cycle. Animals were provided free access to water and diet. All animal studies in this
study were approved by the Bioethics Committees of Hebei University of Chinese Medicine, the ethic
approval number is HEBCM-2018-019.

Twenty four rats were allocated into four groups: Control, CIH, CIH + H2, and CON + H2 group.
Exposure of animals to CIH is similar to that described before [56]. Briefly, unrestrained, freely moving
rats were placed in intermittent hypoxic chambers (Oxycycler model A84XOV, BioSpherix, Lacona,
NY, USA) with electronically regulated solenoid switches that controlled the O2 concentration by a
supply of oxygen and nitrogen. The rats in CIH and the CIH + H2 group were exposed to 21% to 9%
of inspired oxygen (FiO2) every 3 min. The hypoxic pattern was repeated for 8 h/day in a total of
35 days. The rats in control and CON + H2 group were subjected to identical exposure conditions
with room air. The rats in H2 treatment groups inhaled H2 for 2 h daily after CIH exposure through a
ventilator circuit. H2 was produced by a hydrogen-Oxygen nebulizer (AMS-H-01, Shanghai Asclepius
Meditec Co., Ltd., Shanghai, China).
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4.2. Histopathological Examinations

Kidney tissues were collected and fixed in 4% paraformaldehyde for 24 h and then followed
by embedding in paraffin. Hematoxylin-eosin (HE) staining was carried out on 4 µm thick sections
for general cell morphology. The sections were examined by Leica DM2500M microscope (Leica
Microsystems, Wetzlar, Germany).

4.3. Assay of Serum Creatinine Level

Blood samples were collected by retroorbital bleeding and then let stand at room temperature for
15 min. Following centrifugation at 1500 rpm for 15 min, serum was isolated and was stored at −20 ◦C
until usage. Serum creatinine were detected using commercial kit (Jiancheng Institute of Biotechnology,
Nanjing, China) according to the protocol described previously [57].

4.4. Cell Apoptosis Assay

Cell apoptosis was determined using terminal dUTP nick end-labeling (TUNEL) assay with an
in situ cell death detection kit (Roche Applied Science, Mannheim, Germany). Deparaffinized 4 µm
thick sections were treated with proteinase K (20µg/mL in PBS), and then the sections were incubated
with TUNEL-reaction mixture at 37 ◦C for 1 h. Subsequently, the tissue sections were washed with
phosphate-buffered saline followed by staining of the nuclei with DAPI. All sections were examined
by Leica DM2500M microscope (Leica Microsystems, Wetzlar, Germany).

4.5. Measurements of Malondialdehyde (MDA) and Superoxide Dismutase (SOD) Activity

Oxidative stress was investigated in renal cortex homogenates by commercial kit (Jiancheng
Institute of Biotechnology, Nanjing, China) to measure the levels of MDA and SOD activity according
to the methods of Ohkawa et al. [58] and Nishikimi et al. [59].

4.6. Assay of Renal Iron Level

The commercial kit (Jiancheng Institute of Biotechnology, Nanjing, China) was used to measure
renal iron level according to Xie et al. [60]. Briefly, Fe3+ was reduced to Fe2+ in an acidic buffer solution,
after which Ferene S reacted with Fe2+ to produce a blue color. The absorbance was recorded using a
microplate spectrophotometer (Varioskan LUX, Thermo Scientific, Rockford, IL, USA) at 520 nm.

Iron levels and distribution in the kidneys were determined by Perls’ Prussian blue staining with
modifications [61]. Assays were performed as follows: The sections were first treated with 0.3% H2O2

in methanol for 30 min to block endogenous peroxidase activity. The slides were incubated with a
freshly made Perl’s solution (4% potassium ferrocyanide:4% hydrochloric acid = 1:1) at 37 °C for 12 h
and then followed 3,3′-diaminobenzidine (DAB) stain (Zhongshan Golden Bridge, Beijing, China) for
15 min. Hematoxylin was then used to counterstain the cell nuclei.

Iron overload was also assessed using Western blots by L-ferritin (FtL) and H-ferritin (FtH)
expression levels.

4.7. Western Blot Analyses

The protein expression values of DMT1, FPN1 and CP were detected using Western blot analysis.
Protein was extracted from renal cortex samples by homogenizing with RIPA lysis buffer. The total
protein concentration was detected by Bicin-choninic Acid Assay Kit (Beijing Kangwei Century
Biotechnology, Beijing, China). Antibodies against FtL, FtH, TfR, HIF-1α, HO-1 and β-actin were
supplied by Abcam (Hong Kong, China), while the antibodies against DMT1, FPN1 and CP were
supplied by Alpha Diagnostic International (San Antonio, TX, USA). The immunoreactive bands
were detected on a Chemiluminescence Analyzer (LAS-3000, Fujifilm, Tokyo, Japan) with enhanced
chemiluminescence reagent (Beijing Kangwei Century Biotechnology, Beijing, China).
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4.8. Statistical Analysis

All quantitative results were presented as mean± standard deviation (SD). Independent Student’s
t-test was used for comparing 2 groups and one-way ANOVA followed by Bonferroni post-test for
multiple comparisons using GraphPad Prism v. 6.0 (GraphPad Software, Inc., La Jolla, CA, USA).
Statistical significance for all data was p < 0.05.

5. Conclusions

Increased expression of renal transferrin receptor and divalent metal transporter-1 expression,
as well as inhibited ceruloplasmin expression may be possible causes of iron accumulation in the
proximal tubule epithelial cells of rats after CIH treated. Inhalation of H2 could prevent renal injury
induced by CIH; this protection may be associated with inhibition of iron overload in renal epithelial
cells, which was involved in the mechanism of oxidative stress-mediated injury.
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