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Abstract: A highly enantioselective catalytic method for the synthesis of quaternary α-fluoro
derivatives of 3-oxo esters is described. The reaction uses europium (III) triflate and commercially
available chiral pybox-type C2-symmetric ligand. Excellent results in terms of yields and
enantioselectivities were assured using the electrophilic NFSI reagent under mild reaction conditions.
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1. Introduction

Fluorine has drawn great interest from the scientific community. It has been used for a broad
variety of purposes in all fields of chemistry, from the polymer industry, with hydrophobic plastics such
as Teflon, to the nuclear power industry, or in the production of refrigerants and new solvents [1–4].
Of special interest is its use in pharmaceutical chemistry, where about 20% of all pharmaceuticals
contain fluorinated moieties (30% in the case of agrochemicals) [5–13]. It is well known that the
exchange of a hydrogen by a fluorine atom in a therapeutic molecule can produce a dramatic change
on its physical and chemical properties, along with its biological activity. Generally, the addition of
fluorine containing substituents in a drug enhances its metabolic stability and allows modulating its
lipophilicity and bioavailability [12,13]. Thus, due to its importance in the pharmaceutical industry,
the enantioselective synthesis of fluorinated molecules [14–16] is a great challenge in synthetic organic
chemistry, especially under catalytic conditions.

Optically active α-fluorinated cyclic β-keto esters are attractive compounds. On the one hand, they
are regarded as non-enolizable and configurationally stable β-keto esters. Moreover, since the ketone is
easily converted to other functional groups, they are versatile synthetic precursors. The development
of stable sources of electrophilic fluorinating agents (Figure 1) such as N-fluorobenzensulfonimide [17]
(NFSI), Selectfluor® [18] and 1-fluoro-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole, have had a great
impact on catalytic enantioselective electrophilic fluorination. An important breakthrough in this
chemistry occurred when Togni and Hintermann [19] described the catalytic α-fluorination reactions
of α-substituted acyclic β-keto esters using a taddol-titanium complex and Selectfluor®, yielding the
fluorinated compounds in 33–90% ee. Remarkable contributions of the group of Sodeoka [20–22] using
palladium-BINAP chiral complexes; Togni [23,24] using Ru(II) chiral complexes; and Cahard [25]
using Cu(II) bis(oxazoline) (Box) chiral complexes merit also to be mentioned. Much effort has been
devoted to the α-fluorination of alkyl 1-indanone-2-carboxylates under metal catalyst (Scheme 1).
Sodeoka’s group using a BINAP-Pd(II) complex in the reaction of tert-butyl 1-indanone-2-carboxylate
and NFSI afforded the α-fluorination product in 83% ee. [20] Then, Cahard and collaborators
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described [25] the reaction of benzyl 1-indanone-2-carboxylate and NFSI under (R)-Ph-Box-Cu(II)
catalysis obtaining 35% ee (1 example). In 2004, Shibata’s group performed a study using the
combination of Ni(ClO4)2·6H2O and Ph-Box-Cu(II) as catalyst and they succeeded with obtaining a 93%
ee in the reaction of tert-butyl 1-indanone-2-carboxylate and NFSI [26]. Moreover, using Nap-Box-Cu(II)
and NFSI as fluorinating reagent, Kesavan’s group obtained 34% ee in the α-fluorination of ethyl
1-indanone-2-carboxylate [27]. The use of iron(III)-salan complexes, NFSI, and AgClO4 has also
been described, affording a large scope of α-fluorinated alkyl 1-indanone-2-carboxylates in good
to excellent ee values up to 97%. [28] Moreover, Xu and collaborators [29] have reported a fast and
highly enantioselective fluorination of different alkyl 1-indanone-2-carboxylates catalyzed by a chiral
non commercial diphenylamineBox and Cu(OTf)2. The reactions were conducted using a ball mill
apparatus [29] (Fritsch Planetary Micro Mill model “Pulverisette 7”) in the absence of solvent and
yielding the fluorinated compounds with enantioselectivities up to 99% ee (19 examples, 27–99% ee).
However, the obtained ee’s depended on the milling period and rotational speed, and normally in this
kind of chemistry, contamination of products can occur as a result of wear and tear principally from the
balls, and partially from the casing, which can be a problem, for example, in preparing building blocks
for pharmaceuticals. To overcome these disadvantages, and due to our consolidated experience in the
enantioselective α-amination of β-keto esters catalyzed by the combination of lanthanides and pybox
ligands [30–33], herein we report the results on catalytic enantioselective electrophilic α-fluorination
reaction of alkyl 1-indanone-2-carboxylates employing fully commercially available reagents.
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2. Results and Discussion

In the first part of this present work, we prepared a series of β-keto esters 2 derived from the
corresponding 1-indanones. The acylation reaction of 1-indanones was carried out using sodium
hydride as a base and dimethylcarbonate as electrophile in THF, obtaining compounds 1a–h and 1j in
excellent yields (Scheme 2, 75–100%). In the case of 1i (87% yield), methyl 1H-imidazole-1-carboxylate
was used as acylating reagent; otherwise, exchange of the fluorine atom in 5 position by methoxide was
observed [33]. Next, following the reported methodology of our research group [34], we performed
the transesterification reaction to successfully afford the secondary and tertiary β-keto esters 2 shown
in Scheme 2 (54–89%).

Our previous experience suggested that the use of β-keto esters bearing a bulkier OR group
might be useful to achieve enantioinduction, and secondary 3-pentyl group fulfills this requirement.
Therefore, we selected 2b to investigate the effect of different combinations of lanthanides and
pybox ligands in the α-fluorination process. In the first attempt, we used europium (III) triflate
and (R,R)-Ph-pybox (3) as catalyst and NFSI (7) as the fluorinating agent (Table 1, entry 1).
Selection of NFSI was based in previous reported enantioselective fluorination reactions [25,28].
Under these conditions, product 10b was afforded in a 76% yield but a negligible enantiomeric
ratio. Next, we changed the metal source, moving to lanthanum and ytterbium and obtaining
in both cases 10b in nearly racemic form. At this point, we decided to change the chiral ligand.
From our previous experience [31,32], we envisioned good results using more sterically hindered
pybox ligands 4 and 5. They are non-commercially available and were prepared as previously
described [31,35]. The ee’s improved but not enough (30–56 % ee, entries 4–7 of Table 1). Then,
we studied the commercially available (S,R)-ind-pybox, 6, and the results improved in a great
extend, achieving the highest yield (87%) in combination with La(III) and affording enhanced
enantioselective ratios specially in the case of Eu(III) (78% ee) (entries 8–10 of Table 1). Selectfluor® (8)
and 1-fluoro-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole (9) were assayed giving worse results in terms
of yield and ee (entries 11 and 12, Table 1). The hypervalent iodine fluorinated reagent 9 produces
the oxidation of the α-position, affording the corresponding α-hydroxylated β-keto ester as the only
detected product. This oxidation process has previously been described in the electrophilic cyanation
of β-keto esters using 1-cyano-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole [36]. So, we proceed again
with the optimized reaction, using NFSI, but now at a low temperature (−30 ◦C). The reaction of 2b
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and 1a catalyzed by ind-pybox-La(III) gave rise to the fluorinating products in good yields (60 and 80%
respectively) and moderate ee’s (64 and 63% respectively). Additionally, performing the reaction of 2c
(tert-butyl ester) in the same conditions, product 10c was obtained in an enhanced 76% ee (entry 15,
Table 1). Finally, changing to ind-pybox-Eu(III) compound 10c was achieved in an excellent 96% ee
(entry 16, Table 1).Molecules 2019, 24, x FOR PEER REVIEW 3 of 10 
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Entry 2 Metal Ligand Fluorinating Reagent Yield (%) ee (%)[a] 

1 2b Eu+3 3 NFSI 76 2 

2 2b La+3 3 NFSI 74 5 

3 2b Yb+3 3 NFSI 68 2 

4 2b La+3 4 NFSI 81 56 

Entry 2 Metal Ligand Fluorinating Reagent Yield (%) ee (%)[a]

1 2b Eu+3 3 NFSI 76 2
2 2b La+3 3 NFSI 74 5
3 2b Yb+3 3 NFSI 68 2
4 2b La+3 4 NFSI 81 56
5 2b Eu+3 4 NFSI 45 30
6 2b Yb+3 4 NFSI 78 54
7 2b La+3 5 NFSI 85 50
8 2b La+3 6 NFSI 87 60
9 2b Eu+3 6 NFSI 72 78

10 2b Yb+3 6 NFSI 70 60
11 2b La+3 6 8 59 14
12 2b La+3 6 9 0 n.d.

13[b] 1b La+3 6 NFSI 60 64
14[b] 1a La+3 6 NFSI 80 63
15[b] 2c La+3 6 NFSI 86 76
16[b] 2c Eu+3 6 NFSI 78 96

[a] The racemic compounds 10 were prepared by reaction of the alkyl 1-indanone-2-carboxylates with Selectfluor®

(1 equiv.) in CH3CN at 50 ◦C. The ee’s were determined by using chiral HPLC (see supplementary information).
[b] Reaction done at −30 ◦C.
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Therefore, as the best performance in terms of selectivity was obtained using sterically hindered
tert-butyl 1-oxo-indanecarboxylate 2c (entry 16, Table 1), we also performed the reaction with
adamantan-1-yl 1-oxo-2-indanecarboxylate in the same conditions, obtaining 10d in a slightly lower
90% ee (Figure 2). Thus, we focused our attention on other tert-butyl 1-indanone-2-carboxylates
possessing different groups in the aromatic ring. α-Fluorinated compounds 10e–j were achieved in
high yields (66–85%) and enantiomeric excesses up to 93% when using ind-pybox-Eu(III) combination.
Lanthanium gave lower selectivities in all the studied substrates (Figure 2). First, we selected three
different substituents in 6 positions of the aromatic ring. The change from OMe (10e, 90% ee) to CF3

(10g, 81% ee) lessen the ee and the reaction time from 24h to 8h. Addition of an extra OMe group in
5 position (10h) did not improve the ee (91%). Compounds 10i and 10j were obtained in 84 and 85% ee
respectively. In general, the presence of electron withdrawing groups harmed the ee (10g, 10i and 10j,
Figure 2), except in the case of 10f (F in 6 position), which was obtained in an excellent 93% ee.
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The assignment of the absolute configuration of compounds 10 was done by comparison of
the sign of the optical rotation values already described for 10c–f [28]. For new compounds 10b
and 10g–j the assignment was based on the comparison of the circular dichroism (CD) (all studied
compounds show a negative Cotton Effect, see supplementary information). In all cases, the absolute
configuration was assigned to be R. The advantage of this method is that we could also have access to
(S)-10 enantiomers by using commercially available (R,S)-ind-pybox.

Furthermore, a plausible catalytic cycle is proposed for this enantioselective fluorination reaction
(Scheme 3) [30,33]. First, we propose the formation of the [pyboxEu(OTf)2]+ (a1) complex that can
exchange the labile triflate ligand by the enolate form of the β-keto ester affording the complex
[pyboxEu(OTf)(enolate-2]+ (a2). Similar complexes were detected by ESI Mass Spectometry when
mixing La(OTf)3 and ip-pybox [30]. The pybox ligand is the responsible base for the formation of the
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enolate-2. Abstraction of the intercarbonylic proton can be produced directly from 2 (as indicated
in Scheme 3); or once the β-keto ester is coordinated to the europium enhancing its acidity. Next,
a coordination of the NFSI, through the donor oxygen atom, to the europium forming a ternary
complex is proposed. The known large coordination number of lanthanides makes that possible.
The enantioselectivity of the reaction stems from the efficient blockage of one of the diastereotopic
faces of the Eu(III) enolate by one unit of the C2-symmetric ligand. Subsequent reaction affords the
formation of the stereogenic C–F bond through a SN2 mechanism.
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3. Materials and Methods

General transesterification procedure: In a round-bottomed flask, the corresponding 1-indanone
(1 eq.), ZnO (0.2 eq.) and the corresponding alcohol (10 equivalents) were dissolved in toluene
(5 mL/mol 1-indanone). The reaction mixture was heated up to 140 ◦C under a distillation setup until
total conversion of the 1-indanone was observed by TLC (from 6 to 8 h). If necessary, more toluene was
added. Afterwards, the reaction mixture was filtered through Celite® and the solvent was removed
under reduced pressure. The product obtained was purified by column chromatography on silica-gel.

Pentan-3-yl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2b): Following the general procedure, 1.00 g
(5.26 mmol, 1 eq) of 1a was allowed to react with 3-pentanol (52.7 mmol, 10 eq.) and ZnO (0.09 g,
1.06 mmol, 0.2 eq.) in 6 mL of toluene for 5 h. After purification by column chromatography on
silica-.gel (hexanes (95): AcOEt (5)) a brown oil was obtained in 90% yield (1.17 g). IR (ATR) ν =
2968, 1711 (C=O), 1608, 1572, 1207, 1092 cm−1; 1H-NMR (360 MHz [D]CDCl3, 298 K, TMS) δ = 10.50
(bs, 0.08H, OH, enol), 7.79 (d, 3J(H,H) = 7.5 Hz, 1H, ArH), 7.64 (t, 3J(H,H) = 7.1 Hz, 1H, ArH), 7.52 (d,
3J(H,H) = 7.5 Hz, 1H, ArH), 7.50–7.44 (m, 0.17H, ArH, enol), 7.41 (3J(H,H), J = 7.5 Hz, 1H, ArH), 4.98 (quint,
3J(H,H) = 6.1 Hz, 0.16H, OCH, enol), 4.86 (quint, 3J(H,H) = 6.3 Hz, 1H, OCH,), 3.74 (dd, 3J(H,H) = 4.2 Hz,
3J(H,H) = 8.7 Hz, 1H, CH2CH), 3.59 (d, 3J(H,H) = 4.2 Hz, 0.42H, CH2C, enol), 3.55 (d, 3J(H,H) = 3.7 Hz,
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1H, CH2CH), 3.40 (dd, 3J(H,H) = 8.3 Hz, J = 17.5 Hz, 1H, CH2CH), 1.70 (m, 1H, CH2CH3, enol), 1.65
(m, 4H, CH2CH3), 1.02–0.86 ppm (m, 7.36, CH2CH3); 13C-NMR (101 MHz, [D]CDCl3, 298 K, TMS) δ
= 199.6, 169.0, 153.6, 143.1, 137.0, 135.3, 135.2, 129.1, 127.7, 126.7, 126.5, 124.6, 124.6, 120.6, 102.7, 78.3,
76.4, 53.6, 32.52, 30.3, 26.6, 26.4, 9.6, 9.4 ppm; HRMS (ESI): (M + Na)+ Calcd for C15H18O3Na 269.1148;
found 269.1144.

Tert-butyl-5,7-difluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2i): Following the general
procedure, 0.50 g (2.21 mmol, 1 eq) of 1i was allowed to react with tert-butanol (22.1 mmol, 10 eq.)
and ZnO (0.04 g, 0.45 mmol, 0.2 eq.) in 5 mL of toluene for 5 h. After purification by column
chromatography on silica-.gel (hexanes (95): AcOEt (5)) a purple oil was obtained in 64% yield (0.38 g).
IR (ATR) ν = 2961, 1758 (C=O), 1722, 1617, 1283, 1045 cm−1; 1H-NMR (360 MHz [D]CDCl3, 298 K,
TMS) δ = 10.62 (bs, 0.07H, OH, enol), 6.97 (d, 3J(H,F) = 7.3 Hz, 1H, ArH), 6.74 (t, 3J(H,F) = 9.1 Hz, 1H,
ArH), 3.64 (dd, 3J(H,H) = 3.9 Hz, 3J(H,H) = 8.2 Hz, 1H, CH2CH), 3.48 (dd, 3J(H,H) = 4.4 Hz, 3J(H,H) = 16.7
Hz, CH2CH), 3.30 (dd, 3J(H,H) = 8.3 Hz, J = 17.6 Hz, 1H, CH2CH), 1.47 (s, 9H, C(CH3)3); 19F-NMR
(235 MHz [D]CDCl3, 298 K, TMS) δ = −99.9 (d, 3J(F,F) = 13.7 Hz, 1F), −111.3 ppm (d, 3J(F,F) = 13.7 Hz,
1F); 13C-NMR (91 MHz, [D]CDCl3, 298 K, TMS) δ = 194.5 (d, 3J(C,F) = 2.2 Hz), 167.8 (dd, 3J(C,F) = 3.9 Hz,
1J(C,F) = 259.5 Hz), 167.5 (s), 160.0 (dd, 3J(C,F) = 14.2 Hz, 1J(C,F) = 267.5 Hz), 157.7 (m), 120.1 (m), 109.5
(dd,4J(C,F) = 4.2 Hz, 2J(C,F) = 22.5 Hz), 103.9 (dd, 2J(C,F) = 22.7 Hz, 2J(C,F) = 24.7 Hz), 82.5 (s), 55.0 (s), 27.8
(s) ppm; HRMS (ESI): (M + Na)+ Calcd for C14H14F2O3Na 291.0803; found 291.0805.

General procedure for the enantioselective electrophilic fluorinations: In a 10 mL Schlenk flask
in presence of 4 Å MS, Ln(OTf)3 (0.13 eq.) and the desired pybox ligand (0.15 eq.) were dissolved with
dry ACN (5 mL). The colorless reaction mixture was left stirring at room temperature under argon
atmosphere overnight. Next, the corresponding indanone derivative 2 (80 mg; 1 eq.) was added to the
reaction mixture and left stirring at room temperature for 1 h. Then, the reaction mixture was cooled
down until −30 ◦C and, once at this temperature, NFSI (1.15 eq.) was added to the mixture in one
portion. The reaction mixture was left at this temperature under argon atmosphere until complete
conversion of the reagent. Afterwards, the solvent was removed under reduced pressure and the
product was purified by column chromatography on silica gel, yielding the α-fluorinated compound.

Pentan-3-yl (R)-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (10b): Following the general
procedure using La(OTf)3 and (S,R)-ind-pybox, 79 mg (0.29 mmol, 60% yield) of 10b were obtained as a
tan oil from 0.37 mmol of 2b. It was purified by column chromatography on silica-gel (hexane/AcOEt
5:1). IR (ATR) ν = 2970, 1760 (C=O), 1607 (C=O), 1464, 1287, 1214, 1191, 1156, 1100 cm−1; 1H-NMR
(250 MHz [D]CDCl3, 298 K, TMS) δ = 7.85 (d, 3J(H,H) = 8.1 Hz, 1H, ArH), 7.71 (t, 3J(H,H) = 7.4 Hz,
1H, ArH), 7.57 (m, 2H, ArH), 4.90 (quint, 3J(H,H) = 6.3 Hz, 1H, OCH), 3.78 (dd, 2J(H,H) = 11.4 Hz,
3J(H,F) = 17.8 Hz, 1H, CH2CF), 3.40 (dd, 2J(H,H) = 22.8 Hz, 3J(H,F) = 25.7 Hz, 1H, CH2CF), 1.55 (m, 4H,
CH2CH3), 0.84 (m, 6H); 13C-NMR (91 MHz [D]CDCl3, 298 K, TMS) δ = 195.5 (d, 2J(C,F) = 18.2 Hz), 167.1
(d, 2J(C,F) = 27.8 Hz), 150.9 (d, 3J(H,F) = 3.7 Hz), 136.4 (d, J = 3.0 Hz, Ar-C), 133.4 (s), 128.6 (s), 126.5
(d, 4J(C,F) = 1.2 Hz), 125.5, 94.5 (d, 1J(C,F) = 201.2 Hz), 79.6 (s), 38.4 (d, 2J(C,F) = 24.1 Hz), 26.4 (s), 26.3
(s), 9.5 (s), 9.3 (s). 19F-NMR (235 MHz [D]CDCl3, 298 K, TMS) δ = −164.8 ppm (s, 1F); HPLC: Daicel
Chiralpack AD-H, Hexane/iPrOH=99.5:0.5, 0.75 mL/min, 254 nm, tr(minor) = 33.4 min, tr(major)
= 40.7 min (64% ee); [α]20

D: −10.3 (c=5.9, CHCl3). HRMS (ESI): (M + Na)+ Calcd for C15H17O3FNa
287.1054; found 287.1059.

Tert-butyl (R)-2-fluoro-1-oxo-6-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate (10g): Following
the general procedure, using Eu(OTf)3 and (S,R)-ind-pybox, 67 mg (0.21 mmol, 80% yield) of 10g
were obtained as a brown oil from 0.31 mmol of the starting material. It was purified by column
chromatography on silica-gel (hexane/AcOEt 7:3). IR (ATR) ν = 2916, 2849, 1736 (C=O), 1467, 1330, 1259,
1179 cm−1; 1H-NMR (360 MHz [D]CDCl3, 298 K, TMS) δ = 8.11 (s, 1H, ArH), 7.95 (d, 3J(H,H) = 7.9 Hz,
1H, ArH), 7.68 (d, 3J(H,H) = 7.9 Hz, 1H, ArH), 3.82 (dd, 2J(H,H) = 10.7 Hz, 3J(H,F) = 18.5 Hz, 1H, CH2CF),
3.47 (dd, 2J(H,H) = 18.2 Hz, 3J(H,F) = 21.8 Hz, 1H, CH2CF), 1.45 (s, 9H, OC(CH3)3); 19F-NMR (235 MHz
[D]CDCl3, 298 K, TMS) δ = −63.2 (s, 3F, CF3), -163.9 pm (s, 1F, CF); 13C-NMR (91 MHz [D]CDCl3,
298 K, TMS) δ = 194.7 (d, 2J(C,F) = 18.6 Hz), 165.6 (d, 2J(C,F) = 27.5 Hz), 154.7 (d, 3J(C,F) = 3.6 Hz), 133.9
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(s), 132.8 (q, 4J(C,F) = 3.2 Hz), 131.4 (q, 2J(C,F) = 33.5 Hz), 127.4 (s), 123.4 (q, 1J(C,F) = 272.5 Hz), 122.5
(q, 3J(C,F) = 4.0 Hz), 94.2 (d, 1J(C,F) = 203.5 Hz), 84.7 (s), 38.3 (d, 2J(C,F) = 24.2 Hz), 27.2 (s) ppm; HPLC:
Daicel Chiralpack AD-H, Hexane/iPrOH=99.9:0.1 0.7 mL/min, 254 nm, tR(minor) = 20.2 min, tS(major)
= 23.1 min (81% ee); [α]20

D: −5.6 (c=6.2, CHCl3). HRMS (ESI): (M + Na)+ Calcd for C15H14O3F4Na
341.0771; found 341.0772.

Tert-butyl (R)-2,5,7-trifluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (10i): Following the general
procedure, using Eu(OTf)3 and (S,R)-ind-pybox, 45 mg (0.15 mmol, 71% yield) of 10i were obtained
as a colorless oil from 0.22 mmol of 2i. It was purified by column chromatography on silica-gel
(hexane/AcOEt 9:1). IR (ATR) ν = 2921, 1751 (C=O), 1721, 1484, 1298, 1149,1040 cm−1; 1H-NMR
(400 MHz [D]CDCl3, 298 K, TMS) δ = 7.01 (d, 3J(H,F) = 6.5 Hz, 1H, ArH), 6.86 (t, 3J(H,F) = 8.2 Hz, 1H,
ArH), 3.74 (dd, 2J(H,H) = 10.0, 3J(H,F) = 17.6 Hz, 1H), 3.42 (dd, 2J(H,H) = 15.5, 3J(H,F) = 23.9 Hz, 1H),
1.48 ppm (s, 9H, OC(CH3)3); 19F-NMR (376 MHz [D]CDCl3, 298 K, TMS) δ = −94.9 (d, 4J(F,F) = 14.7 Hz,
1F, ArF), −106.4 (d, 4J(F,F) = 14.7 Hz, 1F, ArF), −162.5 ppm (s, 1F, CF); 13C-NMR (101 MHz [D]CDCl3,
298 K, TMS) δ = 193.2 (d, 2J(C,F) = 18.2 Hz), 167.8 (dd, 3J(C,F) = 3.9 Hz, 1J(C,F) = 259.5 Hz), 165.8 (d, 2J(C,F)
= 24.5 Hz), 160.0 (dd, 3J(C,F) = 14.2 Hz, 1J(C,F) = 267.5 Hz), 153.4 (m), 120.1, 109.8 (dd,4J(C,F) = 4.2 Hz,
2J(C,F) = 22.5 Hz), 95.4 (d, 1J(C,F) = 202.4 Hz), 82.5 (s), 38.9 (d, 2J(C,F) = 24.1 Hz), 27.8 (s) ppm; HPLC:
Daicel Chiralpack AD-H, Hexane/iPrOH=97:3, 1.0 mL/min, 254 nm, tr(major) = 8.7 min, tr(minor)
= 12.9 min (84% ee); [α]20

D: −10.7 (c=6.8, CHCl3). HRMS (ESI): (M + Na)+ Calcd for C14H13F3O3Na
309.0709; found 309.0709.

Tert-butyl (R)-2-fluoro-7-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (10j): Following the general
procedure, using Eu(OTf)3 and (S,R)-ind-pybox, 48 mg (0.14 mmol, 73% yield) of 10j were obtained
as a colorless oil from 0.20 mmol of 2j. It was purified by column chromatography on silica-gel
(hexane/AcOEt 9:1). 1H-NMR (360 MHz [D]CDCl3, 298 K, TMS) δ = 7.61 (d, 3J(H,H) = 7.6 Hz, 1H,
ArH), 7.51 (t, 3J(H,H) = 7.6 Hz, 1H, ArH), 7.45 (d, 3J(H,H) = 7.6 Hz, 1H, ArH), 3.69 (dd, 2J(H,H) = 11.2,
3J(H,F) = 17.6 Hz, 1H), 3.37 (dd, 2J(H,H) = 17.6, 3J(H,F) = 22.9 Hz, 1H), 1.44 ppm (s, 9H, OC(CH3)3);
19F-NMR (235 MHz [D]CDCl3, 298 K, TMS) δ = −163.8 ppm (s, 1F); 13C-NMR (91 MHz [D]CDCl3, 298
K, TMS) δ = 193.2 (d, 2J(C,F) = 19.2 Hz), 165.8 (d, 2J(C,F) = 27.6 Hz), 153.4 (d, 3J(C,F) = 3.6 Hz), 136.7 (s),
133.4 (s), 131.3 (s), 125.4 (s), 121.2 (s), 94.5 (d, 1J(C,F) = 202.4 Hz), 84.5 (s), 37.4 (d, 2J(C,F) = 24.1 Hz), 27.8 (s)
ppm; HPLC: Daicel Chiralpack AD-H, Hexane/iPrOH=97:3, 1.0 mL/min, 254 nm, tr(major) = 12.1 min,
tr(minor) = 18.9 min (85% ee); [α]20

D: −34.7 (c=6.3, CHCl3). HRMS (ESI): (M + Na)+ Calcd for
C14H14BrFO3Na 351.0003; found 351.0005.

4. Conclusions

In conclusion, we have established a catalytic method for the highly enantioselective
α-fluorination of a series of alkyl 1-oxo-indanecarboxylates, using europium (III) triflate and
(S,R)-ind-pybox as pre-catalyst, and NFSI as electrophilic fluorinating agent in acetonitrile at −30 ◦C.
Selectivities up to 96% ee could be obtained in mild conditions, and using a commercially available
chiral ligand. Results reveal a dependence of the enantiocontrol on the sterically hindrance of the
ester in substrates. Access to both enantiomers of the α-fluorinated oxo ester is guaranteed by the
commercial availability of both (R,S) and (S,R) ind-pybox C2-symmetric ligands.

Supplementary Materials: The following are available online: synthesis and characterization of starting materials
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