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Abstract: In this study, through simulation and experimental verification, we proposed a novel
hydrocyclone in which a tubular ceramic membrane passed through the overflow outlet to the
underflow outlet. The centers of overflow and underflow outlets were tubular membranes equipped
with an exit of outside-in filtration, and the overflow the underflow outlets were shaped into annular
(donut shape) exits. Thus, this novel hydrocyclone has three outlets, namely the overflow dilute
liquid, the underflow concentrated liquid, and clear filtrate. This system enabled higher dilution of
hydrocyclone overflow concentration than that in the traditional system. Furthermore, underflow
was more concentrated, and we obtained a clear filtrate. Therefore, this device can simultaneously
perform classification and filtration, which is valuable for special liquid recycling. For instance,
in wafer cutting fluid recovery in solar energy processes, the fluid with more silicon can function as
the overflow, the fluid with more silicon carbide can function as the underflow, and the polyethylene
glycol (PEG) organic solvent can function as the clear filtrate.
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1. Introduction

Among the classifying equipment [1,2] currently available, hydrocyclones are one of the most
popular pieces of equipment [3–5] and can be applied in minering [6] and bio-engineering [7,8]
processes and slurry treatment [9] (an emerging field). Based on previous studies, hydrocyclones have
proven to be universal devices with various advantages such as its compact size, no moving parts,
simple and inexpensive manufacturing, and minimal maintenance.

In the past, several attempts have been made to design hydrocyclones with different structures and
changing fluid characteristics, with special emphasis on the development of high separation efficiency
hydrocyclones. For example, Yoshida et al. [10] developed an electric field-assisted cyclone capable of
removing ultrafine particles (0.3 µm) with enhanced efficiency. Hwang and Chou [11] designed a vortex
finder structure for improving hydrocyclone particle separation efficiency. Vieira et al. [12,13] proposed
a filtering hydrocyclone, in which the conical portion was replaced by the filter material, which
enhanced classification efficiency. Because of advances in computing technology [14], computational
fluid dynamics (CFD) is being increasingly used in multiphase flow fields [11,15–18]. Hydrocyclone
separator flow pattern complexity, changing hydrocyclone air core patterns, and unsteady flow have
been discussed in previous studies. Large-eddy simulation (LES) has been used to simulate cyclone
swirls [19–21]. LES is a dynamic simulation, and under the same structure and size, LES requires finer
grid than any other simulation model. As long as the grid is sufficiently fine, the disturbance within
the hydrocyclone flow field coordination can be clearly calculated through LES. Slack et al. [22] used
LES to simulate cyclones and observed excellent velocity prediction. The LES turbulence model is
an extension of the multiphase flow CFD model that includes the stream of hydrocyclone particles;
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this model may be a very effective tool to study the effect of the structure size on separation. Most
importantly, the hydrocyclones that are replaced by various structures and sizes can be promptly
examined. Today, not only does the overall behavior of the flow pattern inside the hydrocyclone
prompt the universal application of the technology, but so do many numerical, CFD calculation,
and experimental verification research [23–25]. Furthermore, the particle–fluid interaction force
has been studied [26]. Relatively fewer studies have mentioned the effect of particle concentration.
Two fluid numerical simulation models developed recently have shown the influence of particle
concentration on hydrocyclone size; in smaller hydrocyclones, more fine particles flow out from the
underflow, whereas in larger hydrocyclones, more coarse particles flow out from the overflow [15].
Velocity profiles demonstrated that the turbulence intensity in the vicinity of the air core and in the
hydrocyclone inner wall was the highest and those in other locations were diminished [27]. At the
spiral flow area under the overflow pipe, the radial pressure gradient, pressure disturbances, as well
as the relative pressure disturbance were considerable. That is, the energy loss and turbulent energy
dissipation in this region is severe [28]. Thus, controlling the central region of the hydrocyclone or
controlling the turbulent structure at the spiral flow area is a highly effective method to improve
performance [29].

Membrane filtration and centrifugal driving force have been demonstrated as efficient separation
techniques to obtain valuable materials [30,31]. Thus, in this study, we inserted a tubular ceramic
membrane in the central region of the hydrocyclone to offset the air core and change the turbulence
structure for enhancing separation efficiency; when the tubular membrane was used, this hydrocyclone
had one inlet and three outlets [32]. The three outlets are overflow, underflow, and filtrate, which
satisfy classification and filtration requirements. The numerical solution can be implemented using
commercial CFD FLUENT 6.1 software. The previously mentioned LES model implements turbulence
simulation. After the flow field within the hydrocyclone was solved, the motion of the particle flow was
tracked using the discrete phase model (DPM) in a Lagrangian reference frame. The CFD method can
predict hydrocyclone performance under various operating conditions, and this has been confirmed in
the literature [20,33,34]. In addition, the tubular membrane was compared by replacing it with a solid
cylindrical tube. Traditional hydrocyclone is labeled THC; the hydrocyclone in which a solid cylinder
is inserted in the center is labeled SHC; and the hydrocyclone with a tubular ceramic membrane
inserted in the center is labeled MHC.

2. Results and Discussion

2.1. Volume Fraction of Air and Velocity Distribution

Many studies have indicated that the central air core and the adjacent part of the flow are a forced
vortex [28]; the main vortex turbulence energy consumption within the vortex occurs because of energy
transfer and friction losses. When the diameter of the overflow increases, the diameter of air core
increases, therefore, large eddy crushing devices [29] can reduce energy loss. Between the inner wall
of the hydrocyclone and the overflow pipe, more than one area exists at which the direction of the
fluid motion is reversed [35]. The maximum tangential direction speed is usually located inside the
diameter position of the overflow pipe.

Figure 1 depicts an overtime air core development chart of the three hydrocyclone patterns in this
study. From the chart SHC, because of a solid cylinder, the amount of air volume should be minimal.
However, some air still exists around the solid cylinder, which results in an overall maximum diameter
of the air core. The THC air core is relatively unstable compared to the MHC air core. Therefore, MHC
should be able to offset turbulent energy consumption of the central air core.
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Figure 1. Transient development of air core structure in the hydrocyclone separator system obtained from CFD simulations.
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Figure 1. Transient development of air core structure in the hydrocyclone separator system obtained from CFD simulations.
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Figure 2 depicts an XY plane below the overflow pipe bottom (z = 0.125 m, the position of the
overflow entrance) and the distribution liquid volume in the radial direction. The diameter of the air
core was approximately 14–15 mm. SHC and MHC centers contain a metal tube and a ceramic tubular
membrane to block the original air core area. However, an air core is still generated. In addition, the
MHC air core was in the range between 6 and −6 mm. Our inference from the figure was that when
the MHC performed outside-in filtration, it functioned not only as a simple cross-flow filtration but
also as a doping sweep gas–liquid filtration. As a result, the filtration rate was enhanced. In the future,
this filtration should be studied further.
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Figure 2. Water volume fraction at Z = 0.125 m. 
Figure 2. Water volume fraction at Z = 0.125 m.

Figure 3 depicts the Z-axis speed distribution of the XY plane below the overflow pipe bottom
(z = 0.125 m). The figure shows that the flow rate of the THC at the air core region was considerably
higher than those of SHC and MHC. Cilliers and Harrison [36] indicated that reducing the flow vicinity
of the overflow outlet reduced the short circuit flow. Because the central location of the tubular
ceramic membrane can offset turbulence energy consumption, MHC should be able to reduce the short
circuit flow.

Molecules 2019, 24, x FOR PEER REVIEW 2 of 18 

 

4 Bar

y ( m )

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

V
Z

 (
 m

/s
 )

-10

0

10

20

30

40

50

60

THC

SHC

MHC

  

Figure 3. Vertical velocity at Z = 0.125 m. 

2.2. The Concentration and the Filtering Effect of the MHC 

MHC is effective in filtration. Figure 4 depicts the filtration rate of MHC at various pressures. 

The average filtrate can be obtained at approximately 400–450 L/m2-h-bar. Because of the MHC 

material’s effect of reducing turbulent flow and filtering, the concentration difference between 

overflow and underflow is the largest and benefits the subsequent drying process. As presented in 

Table 1, the raw material concentration was 0.35%. For THC, the concentrations from overflow and 

underflow were 0.30% and 0.42%, respectively; For SHC, the concentrations from overflow and 

underflow were 0.24% and 0.59%, respectively; however, by using MHC, the concentrations from 

overflow and underflow were 0.21% and 1.31%, respectively. 

Time ( s )

0 200 400 600 800 1000 1200 1400 1600 1800 2000

q
 (

 g
/s

 )

0

1000

2000

3000

4000

5000

6000

7000

8000

2 Bar

4 Bar

 

Figure 4. Filtrate obtained for MHC. 

Figure 3. Vertical velocity at Z = 0.125 m.



Molecules 2019, 24, 1116 5 of 17

2.2. The Concentration and the Filtering Effect of the MHC

MHC is effective in filtration. Figure 4 depicts the filtration rate of MHC at various pressures.
The average filtrate can be obtained at approximately 400–450 L/m2-h-bar. Because of the MHC
material’s effect of reducing turbulent flow and filtering, the concentration difference between overflow
and underflow is the largest and benefits the subsequent drying process. As presented in Table 1,
the raw material concentration was 0.35%. For THC, the concentrations from overflow and underflow
were 0.30% and 0.42%, respectively; For SHC, the concentrations from overflow and underflow
were 0.24% and 0.59%, respectively; however, by using MHC, the concentrations from overflow and
underflow were 0.21% and 1.31%, respectively.

Molecules 2019, 24, x FOR PEER REVIEW 2 of 18 

 

4 Bar

y ( m )

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

V
Z

 (
 m

/s
 )

-10

0

10

20

30

40

50

60

THC

SHC

MHC

  

Figure 3. Vertical velocity at Z = 0.125 m. 

2.2. The Concentration and the Filtering Effect of the MHC 

MHC is effective in filtration. Figure 4 depicts the filtration rate of MHC at various pressures. 

The average filtrate can be obtained at approximately 400–450 L/m2-h-bar. Because of the MHC 

material’s effect of reducing turbulent flow and filtering, the concentration difference between 

overflow and underflow is the largest and benefits the subsequent drying process. As presented in 

Table 1, the raw material concentration was 0.35%. For THC, the concentrations from overflow and 

underflow were 0.30% and 0.42%, respectively; For SHC, the concentrations from overflow and 

underflow were 0.24% and 0.59%, respectively; however, by using MHC, the concentrations from 

overflow and underflow were 0.21% and 1.31%, respectively. 

Time ( s )

0 200 400 600 800 1000 1200 1400 1600 1800 2000

q
 (

 g
/s

 )

0

1000

2000

3000

4000

5000

6000

7000

8000

2 Bar

4 Bar

 

Figure 4. Filtrate obtained for MHC. Figure 4. Filtrate obtained for MHC.

Table 1. Outlet concentration of various hydrocyclones.

Origin = 0.35 wt %

Pressure (Bar) Over (wt %) Under (wt %) Filtration (wt %)

THC
2 0.324 0.405 -
4 0.301 0.416

SHC
2 0.295 0.423 -
4 0.236 0.590

MHC
2 0.321 0.821 0.004
4 0.211 1.305 0.008

2.3. Particle Trajectories

To further understand the particle trajectory in the hydrocyclone, particularly when the particles
are released in the vicinity of the overflow, and to determine whether they ultimately left from overflow
or underflow, Figure 5 presents the six release positions of the particles in the study. The horizontal
position shows intermediate (X = ±0.0115 m) between the water cyclone overflow tube and the wall.
The vertical position shows Z = 0.135, 0.145, 0.155 m. The particle density was set to 3200 kg/m3,
and the particle sizes were set separately at 1, 5, 10, and 15 µm. According to the simulation result,
position 3 of the particle track was slightly different, and those at other positions were similar. Thus,
Figure 6 presents the particle trajectory of THC, SHC, and MHC at position 3. For THC, particles of
1, 5, and 10 µm flowed to the overflow outlet, and only 15 µm particles flowed to underflow, which
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indicates short circuit flow at position 3. Figure 7 indicates that the d50 for the three hydrocyclones
is 8.5 µm. For SHC, only 1 µm particles exited from the overflow. This can be attributed to the solid
cylinder inside the hydrocyclone, which causes boundary layer variance. For MHC, particles larger
than 10 µm flowed to the underflow.
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Figure 6. Particle trajectory of size 1, 5, 10, and 15 µm in three hydrocyclones. (a) THC; (b) SHC; and
(c) MHC.
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2.4. Classification Efficiency

The classification efficiency curve is the rate of a particle of a certain size flowing from the
feeding inlet of the hydrocyclone and leaving from underflow of the hydrocyclone. Figure 7 depicts the
classification efficiency curve of the three separators under the 4-bar operation. Under the same feeding
conditions, although three hydrocyclones d50 values were approximately 8.5 µm, the result indicates
that a fish hook effect occurs in SHCs and THCs, which indicates that placing a solid cylinder cannot
effectively solve the fish hook effect problem. However, for MHCs, the membrane’s permeability
eliminates excessive turbulence. Thus, the fish hook effect does not occur and effective separation is
obtained. Approximately 80% of >10 µm particles flow out from the underflow outlet. As for THC and
SHC, 80% particles flowing from the underflow are approximately larger than 15 and 20 µm. Overall
separation efficiency was Et = (QuCu)/(Q f C f ), and we can see from Figure 8 that irrespective of 4
or 2 bar pressure, the overall separation efficiency of MHC was considerably higher than the other
two hydrocyclones.
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3. Materials and Methods

3.1. Materials

Silicon carbide powder of 13–23 µm diameter was used in this study. The particle size distribution
is presented in Figure 9. The average particle diameter was 16.5 µm, and the specific gravity of particles
was 3.2. The adopted composite ceramic tubular membrane was made by TAMI Industries (Nyons,
Drôme, France) [http://www.tami-industries.com/en/enadvanced-ceramic-filtration/]. The support
layer of the tubular membrane was made of titania, and the filter layer was made of titania and zirconia,
with a pore size of 0.8 µm. The tubular membrane diameter and length were 10 mm and 600 mm,
respectively. Furthermore, the membrane was single-channel with a surface area of 0.008 m2. Laser
particle size distribution analyzer model No. Horibala LA-30 (Horiba, Kyoto, Japan) was used to
measure particle size distribution from 0.1–600 µm. Based on the light scattering theory, a 405 nm
helium-neon LED light source was used to measure the sample particle size distribution on the
overflow and underflow.
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3.2. Experimental Setups and Operation

The experimental apparatus in this study is presented in Figure 10. First, the bypass valve
(V3) was fully opened. Then, the overflow valve (V4) and underflow valve (V2) were fully opened,
the feeding end valve (V1) was adjusted, and the feeding gauge pressure was observed (P1) until
the pressure reached the desired level. The inlet pressure, overflow pressure (P2), and underflow
pressure (P3) were recorded. The diluted liquid from overflow and the concentrated liquid stream
from underflow were measured and sampled, and the amount of clear liquid filtrate was recorded at
the outlet end of the outside-in filtration. Particle distribution, concentration, and separation efficiency
were then obtained.

http://www.tami-industries.com/en/enadvanced-ceramic-filtration/
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Figure 10. Hydrocyclone separator system experimental setup. The various components include a
centrifugal pump, storage tank, agitator, pressure gauges (P1, P2, P3), recycle valve (V3), inlet valve
(V1), overflow valve (V4), underflow valve (V2), and the hydrocyclone separator.

3.3. Geometry and Meshes

The three hydrocyclones types used in this study are presented in Figure 11. Figure 11a presents
a THC. In Figure 11b, we used a 1 cm diameter solid cylinder inside the hydrocyclone to replace
the original air core (SHC). The comparison of Figure 11c with Figure 11b indicates a 1 cm diameter
solid cylinder and a 1 cm diameter tubular ceramic membrane (MHC). The conical section length
of the hydrocyclone was 110 mm, and the angle between the vertical line was 2.6◦; the diameter
of the cylindrical section was 25 mm, with a length of 40 mm; the inlet size of hydrocyclone was
5 mm × 5 mm; and the overflow and underflow outlet diameters were 18 and 15 mm, respectively.
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Figure 11. Hydrocyclone separator system geometry used for both computational fluid dynamics
(CFD) simulations and experiments. (a) THC; (b) SHC; (c) MHC.
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3.4. Calculating Methods

The flow pattern within the hydrocyclone was a turbulent flow, and the simulation method was
LES. The air core was simulated using the volume of fluid model. Derivationally, the fluid volume
fraction is decided by αv of each controlling body; the transport equation of air–water interface is
defined in Equations (1) and (2):

∂

∂t
(αwρw

→
v w) +∇•(αwρw

→
v w
→
v w) = −αw∇p +∇•τw + αwρw

→
g +

n

∑
s=1

(
→
Rsw + msw

→
v sw) (1)

∂

∂t
(αsρs

→
v s) +∇•(αsρs

→
v s
→
v s) = −αs∇p +∇•τs + αsρs

→
g +

n

∑
w=1

(
→
Rws + mws

→
v ws) (2)

The Lagrangian discrete phase model (DPM) follows the Euler–Lagrange approach. The fluid
phase is considered a continuous phase and is governed by the time-averaged Navier–Stokes equation.
However, the dispersed phase is solved by tracking trajectories of a large number of particles through
the calculated flow field velocity. The dispersed phase can exchange momentum, mass, and energy
with the continuous fluid phase.

As depicted in Figure 12, the density of the mesh cell number 1,500,000 is presented. Mesh
independence analysis indicates that it is suitable for simulating the optimum velocity value under
a reasonable prediction computation time. Feeding fluid velocity is constant, and the boundary
conditions are as follows:

→
v = constant @ inlet pipe (3)

P = 0 @ underflow (4)

P = 0 @ overflow (5)

The outlet fluid was under atmospheric pressure, and therefore the overflow and underflow
pressures of the flow were set to zero.

The hydrocyclone inner wall setting follows the no-slip boundary condition. Using governing
Equations (1) and (2) as well as the relevant boundary condition Equations (3)–(5), CFD FLUENT 6.1
software (Fluent, NY, USA) calculates the flow field within the hydrocyclone. The pressure staggered
option effectively predicted the high swirl flow within the hydrocyclone. The SIMPLE algorithm
program, which uses a combination of continuous and momentum equations to derive pressure
equation, was used in this simulation method. Calculations were implemented under the maximum
relative error of 10−4 of the estimated fluid velocity.
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4. Conclusions

In this study, silicon carbide particles were used to implement hydrocyclone experiments, and the
simulation verification was calculated by using Fluent CFD software. Air core areas with metal
cylinders and ceramic tubular membranes were compared, and the effects of the separation phenomena
of different hydrocyclones were explored.

By inserting a tubular membrane, the resultant hydrocyclone has three outlets, namely the
overflow dilute liquid, underflow concentrated liquid, and clear filtrate. This hydrocyclone can
accomplish classification and filtration. The proposed hydrocyclone had a classification function
equivalent to that of the conventional hydrocyclone. However, the overflow concentration was
relatively dilute, the underflow concentration was relatively concentrated, and a clear filtrate
was obtained.
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