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Abstract: In this paper, the thermal properties of graphene oxide (GO) with vacancy defects were
studied using a non-equilibrium molecular dynamics method. The results showed that the thermal
conductivity of GO increases with the model length. A linear relationship of the inverse length and
inverse thermal conductivity was observed. The thermal conductivity of GO decreased monotonically
with an increase in the degree of oxidation. When the degree of oxidation was 10%, the thermal
conductivity of GO decreased by ~90% and this was almost independent of chiral direction. The
effect of vacancy defect on the thermal conductivity of GO was also considered. The size effect of
thermal conductivity gradually decreases with increasing defect concentration. When the vacancy
defect ratio was beyond 2%, the thermal conductivity did not show significant change with the degree
of oxidation. The effect of vacancy defect on thermal conductivity is greater than that of oxide group
concentration. Our results can provide effective guidance for the designed GO microstructures in
thermal management and thermoelectric applications.
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1. Introduction

Graphene oxide (GO), an oxidation product of graphene [1], has attracted much attention in recent
years as a two-dimensional material [2] because of its unique mechanical and thermal properties [3–5].
The structure of GO is composed of oxygen functional groups connected on the base plane of a layer
of carbon atoms in two-dimensional space [1]. The existence of oxygen functional groups makes its
thermal transport properties quite different from those of graphene. Graphene is the best known
thermal conductive material. Its thermal conductivity can reach 2000–5000 W/mK [6]. However,
the oxygen functional groups on the surface of GO destroy the lattice symmetry [7] and cause local
strain [8], resulting in a reduction of thermal conductivity by 2–3 orders of magnitude [9]. Nika et
al. indicated that the strong phonon scattering in GO resulted in a significant decrease in thermal
conductivity [10].

On the other hand, the reduction method can further regulate the concentration of oxygen
functional groups, which means the thermal transport properties of GO can be regulated in a larger
range. Considering the size effect, Lin and Mu calculated the effect of different degrees of oxidation
on the thermal conductivity of GO [11], and revealed that the thermal conductivity converges to 8.8
W/mK [12]. In recent experiments, the thermal conductivity of GO varies from 2 to 1000 W/mK

Molecules 2019, 24, 1103; doi:10.3390/molecules24061103 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-7042-1992
https://orcid.org/0000-0003-1112-5522
http://www.mdpi.com/1420-3049/24/6/1103?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24061103
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 1103 2 of 10

using different oxygen reduction methods [13–15]. GO can be used in various thermal management
electronic devices [16], such as electronic cooling [17], thermal diodes [18] and thermal logic circuits [19]
due to the ability to adjust thermal conductivity. In addition, GO also shows good thermoelectric
properties [4,20]. Therefore, considering the potential applications of GO in thermal management and
thermoelectric energy conversion, it is necessary to study the thermal conductivity of GO.

In the process of preparation and reduction of GO, structural damage and vacancy defect are
inevitable. GO is often regarded as a monolayer graphene with both oxygen functional groups and
vacancy defects [1]. Renteria et al. revealed that the thermal conductivity of GO films is anisotropic [21].
In recent years, some progress has been made in the study of GO thermal conductivity. Zhao considered
the effect of various defects on thermal conductivity of GO strips with fixed length [22]. The thermal
conductivity of materials depends on phonons, and the phonon scattering is enhanced by GO defects,
thus reducing the thermal conductivity [15,23]. On the other hand, with the presence of oxygen
functional groups and doping defects, the thermal conductivity may be further reduced [9]. However,
current studies cannot accurately describe the coupling effect of degree of oxidation and vacancy
defects on thermal conductivity. Quantitative analysis of this problem is necessary.

In this study, the thermal conductivity of GO is calculated based on the non-equilibrium molecular
dynamics method. Considering the coupling effect of oxygen group concentration and the ratio of
vacancy defects, the variation of in-plane thermal conductivity of monolayer GO is studied, and the
empirical formula for the ratio of vacancy defect, degree of oxidation and thermal conductivity of GO
is established.

2. Model and Methodology

GO has two main surface groups, hydroxyl and epoxy groups [24]. The main factor affecting
the thermal conductivity of GO is the content of functional groups (degree of oxidation) rather than
the type of functional groups [22]. Therefore, only one functional group type of hydroxyl (-OH) is
considered in this work.

Here, GO with randomly distributed vacancy defects and hydroxyl groups was built as shown
in Figure 1. To make the calculation model more consistent with the actual situation, the quenching
process of GO was simulated using the ReaxFF reactive force field under NPT ensemble [25,26]. The
GO, established with several different initial functional group concentrations, was first gradually
heated from 300 to 500 K over a time span of 0.2 ns, then annealed at 500 K for 0.2 ns, and subsequently
quenched to 300 K over a time span of 0.2 ns. Finally, the model was further annealed at 300 K and
zero pressure for the duration of 0.2 ns to ensure complete equilibration of the structure. Thus, each
GO model was obtained with the final functional group concentration after quenching.

Through the above steps, the hydroxyl groups and vacancy at several different ratios were
introduced in the model. The hydroxyl groups were randomly attached to the carbon atoms on both
sides of the graphene basal plane at different degrees of oxidation ranging from 0% to 10%, while
removing the carbon atoms from the GO sheet on the surface defect from 0% to 2%.

In the present study, the dynamic response of the system shown in Figure 2 was revealed by a
molecular dynamics (MD) approach. The MD simulations were carried out by using the large-scale
atomic/molecular massively parallel simulator (LAMMPS) [27]. The all-atom optimized potential
for liquid simulations (OPLS-AA) was used for the study of GO thermal conductivity to improve the
computation efficiency [28–30].
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To avoid the computational problems created by high frequency vibration caused by bond 
stretching energy (-OH) and bond angle bending energy (C-O-H), the SHAKE algorithm was 
adopted to fix atoms. Coulomb interactions were computed by using the particle-particle 
particle-mesh (PPPM) algorithm [31]. In this work, the thermal conductivity was computed by 
reverse non-equilibrium molecular dynamics (RNEMD) simulations in a microcanonical NVE 
ensemble [32]. The key point of the method is to impose a heat flux through the system and to 
determine the temperature gradient and temperature junctions as a consequence of the imposed 
flux. The fastest descent method was used to redistribute the atomic positions. 

The above systems were equally divided into 100 thin slabs along the heat transfer direction, 
with the heat source and sink each taking one of the slabs. The heat source (hot slab) and sink (cold 
slab) slabs were located at the middle and the two ends of the model, respectively. The periodic 
boundary conditions were applied in the X and Y direction. A time step of 0.1 fs was selected for 
integration of the equations of atomic motion in the simulations. The system reached the 
equilibrium state at 300 K in Nosé-Hoover thermal bath for 0.2 ns. Then, the system was switch 
linear fitted to the NVE ensemble to exchange the kinetic energies (every 1000-time steps) between 
the coldest atom in the heat sink slab and the hottest atom in the heat source slab for 0.8 ns. The 
total heat flux J  can be obtained from the amount of the injected/released two slabs by 
exchanging the kinetic energies Equation (1). 
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Figure 1. Schematic picture of graphene oxide (GO) with randomly distributed vacancy defects and
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Figure 2. Schematic model for thermal conductance of GO using periodic boundary conditions.

To avoid the computational problems created by high frequency vibration caused by bond
stretching energy (-OH) and bond angle bending energy (C-O-H), the SHAKE algorithm was adopted
to fix atoms. Coulomb interactions were computed by using the particle-particle particle-mesh (PPPM)
algorithm [31]. In this work, the thermal conductivity was computed by reverse non-equilibrium
molecular dynamics (RNEMD) simulations in a microcanonical NVE ensemble [32]. The key point of
the method is to impose a heat flux through the system and to determine the temperature gradient
and temperature junctions as a consequence of the imposed flux. The fastest descent method was used
to redistribute the atomic positions.

The above systems were equally divided into 100 thin slabs along the heat transfer direction, with
the heat source and sink each taking one of the slabs. The heat source (hot slab) and sink (cold slab)
slabs were located at the middle and the two ends of the model, respectively. The periodic boundary
conditions were applied in the X and Y direction. A time step of 0.1 fs was selected for integration of
the equations of atomic motion in the simulations. The system reached the equilibrium state at 300 K
in Nosé-Hoover thermal bath for 0.2 ns. Then, the system was switch linear fitted to the NVE ensemble
to exchange the kinetic energies (every 1000-time steps) between the coldest atom in the heat sink slab
and the hottest atom in the heat source slab for 0.8 ns. The total heat flux J can be obtained from the
amount of the injected/released two slabs by exchanging the kinetic energies Equation (1).

J =

∑
Ntran f ers

1
2 (mvh

2 −mvc
2)

ttransfer
, (1)

where Ntranfers is the total number of exchanging the kinetic energies, ttranfers is the time over which
the exchanging simulation is started, m represents the mass of the atoms, vh and vc are the velocities of
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the hottest atom of the cold slab and the coldest atom of the hot slab, respectively. When the heat flow
in the structure reaches the non-equilibrium steady state, the temperature profiles is collected to obtain
the temperature gradient as Equation (2).

Ti =
2

3NkB
∑

j

p2
j

2mj
, (2)

where Ti is the temperature of the N number atoms in i -th slab. mj, vj and pj represent the mass and
velocity and momentum of the atom j in i -th slab, respectively. The term kB is Boltzmann’s constant.
The temperature profiles are obtained by averaging results of the last 8 million timesteps.

Four typical samples of the temperature profiles of monolayer GO are shown in Figure 3, where
the temperature gradient ∇T (dT/dx) was obtained by linear fitting in the linear region of the profile
along the longitudinal heat flux direction in Figure 3. The thermal conductivity κG can be calculated as
Equation (3).

κG =
J

2A∇T
, (3)

where A is the cross-section area of corresponding models and the constant 2 in the denominator
accounts for the fact that the system is periodic.
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3. Result and Discussion

First, the effects of the sample width on the thermal conductivity was investigated through MD
simulations. As shown in Figure 4, in the range of 2 to 10 nm for different chirality with a fixed length
of 20 nm, the measure of increasing width W acquired a convergent thermal conductivity.

Then, the effects of the sample length on the thermal conductivity (κG) along the zigzag and
armchair directions were explored with the length varying from 20 to 180 nm and a fixed width of
2 nm. The results (see Figure 5) clearly show that the thermal conductivity does not depend on the
sample’s width. A linear relationship of the inverse length and inverse thermal conductivity can be
observed. This means that the thermal conductivity increases with the length, two fitting functions are
κ−1

G(Zigzag) = 0.4704L−1 + 0.00857 and κ−1
G(Armchair) = 0.4697L−1 + 0.00856.
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The relationship between κ−1
G and L−1 can also be expressed as [33]:

κ−1
G = κ−1

∞ (
2l
L
+ 1), (4)

where l is the mean free path (MFP) of phonon. κ∞ denotes the thermal conductivity in infinite length.
Through Equation (4), the thermal conductivity κ∞ along the zigzag and armchair directions was
found to be 116.82 and 116.68 W/mK, respectively. The corresponding MFP of phonon values l were
27.45 nm (along zigzag direction) and 27.44 nm (along armchair direction), which are much smaller
than that of graphene (~775 nm) [6].

Through the classical lattice heat transport theory, the thermal conductivity of low-dimensional
material can be calculated by κ = Cvl, where C is the specific heat, v is the group velocity. Previous
literature has indicated that the values of C and v changed little by analyzing phonon density of states
in GO [15]. This explains why the thermal conductivity of GO is smaller than that of graphene.

To study the coupling effects of the hydroxyl-group and vacancy defects on the thermal
conductivity of GO, we defined a ratio between oxygen and carbon atoms ROH to describe the
degree of oxidation. Also, RV is defined as the ratio of vacancy defect in the system, which can be
calculated by the density of atoms removed from the pristine GO.

From Figure 6, the concentration of functional groups and the ratio of vacancy defects have
a negative impact on the thermal conductivity of the structure in a certain degree. For a known
concentration of functional groups, the thermal conductivity of the structure decreases gradually with
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the increase in vacancy defects in the structure. The decline in thermal conductivity is no longer
obvious with the increase in vacancy defect ratio. When the vacancy defect RV ≤ 1.0%, the thermal
conductivity is very sensitive to both the change in vacancy defect and the concentration of functional
groups. For GO without vacancy defect, the thermal conductivity drops most significantly while the
functional group concentration increases. When RV exceeds 2.0%, the functional group concentration
has little effect on thermal conductivity.
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Figure 6. The relative thermal conductivity of GO with varying degrees of oxidation and vacancy
defect ratio in the same sample size of 20 nm. Six different symbols indicate the different degree of
oxidation with varied vacancy defect ratios, the red and blue line denote the fitting curves.

According to the results, the lower and upper envelope curves of nonlinear fitting are drawn
in Figure 6. The upper curve in red indicates the thermal conductivity of the model is only affected
by the vacancy defect ratio. The fitting formula is κG/κGmax = 0.1142 + 0.8859e−RV/0.5126. The lower
envelope curve in blue is the thermal conductivity of the system with 10% oxidation affected by
the vacancy defect ratio. The fitting formula is κG/κGmax = 0.1003 + 0.5034e−RV/0.6365. The region
between the lower and upper envelope curve indicates all the cases of coupling effects between a
single vacancy (RV: 0 ~ 2%) and the hydroxyl group (ROH: 0 ~ 10%) in 20 nm length (Figure 6). The
simulation results also reveal that the effect of vacancy defects on thermal conductivity of GO is greater
than that of functional group concentration.

To explore the coupling effect of such factors, we define the D(RV) (see Figure 6) as the difference
between the upper envelope curve and lower envelope curve at a same ratio of vacancy. D(RV)

decreases as RV increases and approximately approaches zero when RV > 2.0%. Results indicated
that the vacancy has a strong effect on thermal conductivity compared with the oxygen functional
concentration. For example, when RV = 2.0%, the thermal conductivity with samples size of 20 nm is
about 6.01 W/mK, regardless of the changing concentration of the functional group.

To further investigate the thermal conductivity on a macroscopic scale, the coupling effect of ROH

and RV with five different GO lengths was employed. The ranges of the GO envelope are shown in
black curves in Figure 7. As the length (L) of the GO sheet increases, the area between the lower and
upper envelope curves is extended.

Combined with Equation (4), the thermal conductivity is extrapolated to infinite size. As the
red curves show in Figure 7, the upper envelope indicates that the thermal conductivity of graphene
tends to converge with the increase in the defect ratio. The results are similar to those obtained by
Malekpour [34,35]. Also, the lower envelope is a thermal conductivity of ROH = 10% GO. Two lines
indicate that the maximum range of thermal conductivity can be up to 96%. With the increase of
RV, the regulatory range of functional groups decreases gradually. The range of functional group
regulation is only ~11% when the vacancy defect ratio is at 1%. When the vacancy defect reaches
2%, the concentration of functional groups has little effect on the thermal conductivity. Therefore, in
order to obtain a larger range of thermal conductivity control capabilities, it is necessary to reduce the
vacancy defects in GO.
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As shown in Figure 8, with the increase in vacancy defects in GO, the size effect is no longer
obvious. The thermal conductivity converges to 6.23 W/mK with a 2% defect. This proves that the
thermal conductivity of defect-GO is less dependent on model length than that of the corresponding
graphene and GO, since the thermal conductivity of defect-GO is mainly influenced by short-range
acoustic and optical phonons which are length-independent [36]. Also, the less length-dependent
thermal conductivity of defect-GO indicates that the long-range acoustic phonons are mainly scattered
at vacancy. Moreover, a linear relationship of the inverse length and inverse thermal conductivity can
be observed in the four types of defect ratio (see Figure 8b). Through formula (4), the corresponding
MFPs of phonon are shown in Table 1. When the simulated size is larger than the MFP of phonon, the
ballistic transport no longer plays a leading role and the thermal conductivity gradually converges [10].
Therefore, the larger the defect ratio, the smaller the simulation domain size as the GO thermal
conductivity converges.
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To elucidate the mechanism of heat transfer of GO sheets, the spatial distribution of the heat
flux by vector arrows on each atom under non-equilibrium steady state is shown in Figure 9, which
displays the heat flux of GO for the specified structure.

The atomic heat flux is defined from the expression:
→
Ji = ei

→
vi − Si

→
vi, where ei, vi, and Si are

the energy, velocity vector and stress tensor of each atom i, respectively [37]. It can be obtained by
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calculating the atomic heat flux in the MD simulations and the results are averaged over 1 ns. The
vector arrows show the migration of the heat flux on the GO and vividly reflect the transformation of
the heat flux path as well as the phonon scattering around the vacancy/hydroxyl group regions.

Table 1. The mean free path (MFP) of phonon for four types of defect ratio in GO.

Type Fitting Functions MFP of Phonon

ROH(10%)− RV(0.0%) κ−1
G = 0.4697L−1 + 0.00856 27.44 nm

ROH(10%)− RV(0.5%) κ−1
G = 0.4422L−1 + 0.02581 8.57 nm

ROH(10%)− RV(1.0%) κ−1
G = 0.2199L−1 + 0.05130 2.14 nm

ROH(10%)− RV(2.0%) κ−1
G = 0.0895L−1 + 0.15162 0.29 nm

The heat flow scattering occurs at the vacancy and hydroxyl group regions on the surface of GO
(see Figure 9). When a propagating heat flux tries to pass through a barrier in GO, under a single
vacancy defect, the heat flow not only diffuses out of the plane, but also disturbs the heat flow around
the pore in the plane. The heat flow shows irregular transmission while the addition of functional
groups only slightly disturbs the surrounding heat flow. In other words, the hydroxyl groups do not
break the underlying hexagonal lattice and preserve relatively well the lattice symmetry of carbon
atoms and integrity, thus disturb the thermal transport weakly. In contrast, the presence of vacancies
reduces the thermal conductivity of graphene significantly as they break the in-plane network of sp2

carbon bonds. Therefore, among the factors affecting thermal conductivity, the scattering effect of
functional groups is less than that of vacancy defects. As shown in the previous analysis, when the
vacancy defect ratio reaches a certain value, the perturbation caused by functional groups is covered
by vacancy defects and the influence is negligible, thus, the change in thermal conductivity with the
concentration of functional groups is no longer obvious.
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4. Conclusions

In summary, classical MD simulations were performed to investigate the thermal conductivity
of GO with vacancy defect. Based on the simulation results, we found that GO has a significant size
effect. The size effect of GO deteriorates with the increase in vacancy defects. It was also found that the
effect of vacancy defects on thermal conductivity is more obvious than the degree of oxidation. With
the increase in vacancy defects, the ability of functional group concentration to regulate the thermal
conductivity of GO decreases. When the vacancy defect ratio is over 2%, the thermal conductivity does
not show significant change with the degree of oxidation. This study provides theoretical guidance
for the design and manufacture of thermoelectric and thermal management devices using GO as a
raw material.
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