Supporting Information

Engineering the Enantioselectivity of Yeast Old Yellow Enzyme OYE2y in Asymmetric Reduction of (*E*/*Z*)-Citral to (*R*)-Citronellal

Xiangxian Ying ^{1,*}, Shihua Yu ¹, Meijuan Huang ¹, Ran Wei ¹, Shumin Meng ¹, Feng Cheng ¹, Meilan Yu ², Meirong Ying ³, Man Zhao ¹, Zhao Wang ¹

- ¹ Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China;
- ² College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- ³ Grain and Oil Products Quality Inspection Center of Zhejiang Province, Hangzhou 310012, China
- * Correspondence: <u>yingxx@zjut.edu.cn</u>; Tel.: +86-571-88320781

Contents

Supplementary tables
Table S1. The primer information of site saturation mutation of P76 in OYE2y2
Table S2 The primer information of site saturation mutation of R330 in Oye2y \dots 4
Supplementary figures7
Figure S1. SDS-PAGE (12%) analysis of the purified OYE2y R330X variants7
Figure S2. SDS-PAGE (12%) analysis of the purified OYE2y P76X variants8
Figure S3. Gas chromatograph analysis for (S)-citronellal (22.459 min), (R)-citronellal (23.067 min), (Z)-citral (29.164 min) and (E)-citral (30.398 min)
Figure S4. Gas chromatograph-mass spectrometry analysis for (<i>S</i>)-citronellal (A), (<i>R</i>)-citronellal (B), (<i>Z</i>)-citral (C) and (<i>E</i>)-citral (D) in the asymmetric reduction of (E/Z) is a
(E/Z)-citral

Primer		Sequence		
P76G	F	TACCTTT <u>GGC</u> TCTCCACAATCTGGGGGTT		
	R	TGGAGA <u>GCC</u> AAAGGTACCCTCAGTGATAATC		
P76A	F	TACCTTT <u>GCC</u> TCTCCACAATCTGGGGGTT		
	R	TGGAGA <u>GGC</u> AAAGGTACCCTCAGTGATAATC		
P76V	F	TACCTTT <u>GTC</u> TCTCCACAATCTGGGGGTT		
	R	TGGAGA <u>GAC</u> AAAGGTACCCTCAGTGATAATC		
P76L	F	TACCTTT <u>CTC</u> TCTCCACAATCTGGGGGTT		
	R	TGGAGA <u>GAG</u> AAAGGTACCCTCAGTGATAATC		
P76I	F	GTACCTTT <u>ATT</u> TCTCCACAATCTGGGGGT		
	R	GTGGAGAAATAAAGGTACCCTCAGTGAT		
P76F	F	TACCTTT <u>TTC</u> TCTCCACAATCTGGGGGTT		
	R	TGGAGA <u>GAA</u> AAAGGTACCCTCAGTGATAATC		
Р76Ү	F	GTACCTTT <u>TAT</u> TCTCCACAATCTGGGGGTT		
	R	GTGGAGAAAAAGGTACCCTCAGTGATAATC		
P76W	F	GTACCTTT <u>TGG</u> TCTCCACAATCTGGGGGTT		
	R	TGTGGAGA <u>CCA</u> AAAGGTACCCTCAGTGAT		
P76S	F	TACCTTT <u>TCC</u> TCTCCACAATCTGGGGGT		
	R	GTGGAGAGAGGAAAAGGTACCCTCAGTGAT		
P76T	F	GTACCTTT <u>ACC</u> TCTCCACAATCTGGGGGTT		
	R	GTGGAGAGAGGTAAAGGTACCCTCAGTGATAATC		
P76C	F	GTACCTTT <u>TGT</u> TCTCCACAATCTGGGGGGTT		
	R	GTGGAGA <u>ACA</u> AAAGGTACCCTCAGTGATAATC		

Table S1. The primer information of site saturation mutation of P76 in OYE2y ^a

P76M	F	GTACCTTT <u>ATG</u> TCTCCACAATCTGGGGGTT
	R	GTGGAGA <u>CAT</u> AAAGGTACCCTCAGTGATAATC
P76N	F	TACCTTT <u>AAC</u> TCTCCACAATCTGGGGGTT
	R	GTGGAGA <u>GTT</u> AAAGGTACCCTCAGTGATAATC
P76Q	F	TACCTTT <u>CAG</u> TCTCCACAATCTGGGGGTT
	R	GTGGAGA <u>CTG</u> AAAGGTACCCTCAGTGATAATC
P76D	F	GTACCTTT <u>GAC</u> TCTCCACAATCTGGGGGTT
	R	GTGGAGA <u>GTC</u> AAAGGTACCCTCAGTGATAATC
P76E	F	TACCTTT <u>GAG</u> TCTCCACAATCTGGGGGTT
	R	GTGGAGA <u>CTC</u> AAAGGTACCCTCAGTGATAATC
Р76К	F	GTACCTTT <u>AAG</u> TCTCCACAATCTGGGGGTT
	R	GTGGAGA <u>CTT</u> AAAGGTACCCTCAGTGATAATC
P76R	F	TACCTTT <u>CGA</u> TCTCCACAATCTGGGGGTT
	R	TGTGGAGA <u>TCG</u> AAAGGTACCCTCAGTGAT
P76H	F	TACCTTT <u>CAC</u> TCTCCACAATCTGGGGGTT
	R	GTGGAGAGAGTGAAAAGGTACCCTCAGTGATAATC

^a The code to introduce the substitution was underlined.

Primer		Sequence
	F	GCTCTG <u>TTC</u> CCAGAAGTTGTCAGAGAAG
R330F	R	TTCTGG <u>GAA</u> CAGAGCAAAGTTACCAGCT
	F	GCTCTG <u>TGG</u> CCAGAAGTTGTCAGAGAAG
R330W	R	TTCTGG <u>CCA</u> CAGAGCAAAGTTACCAGCT
	F	GCTCTG <u>CCC</u> CCAGAAGTTGTCAGAGAAG
R330P	R	TTCTGG <u>GGG</u> CAGAGCAAAGTTACCAGCT
	F	GCTCTG <u>TAC</u> CCAGAAGTTGTCAGAGAAG
R330Y	R	TTCTGG <u>GTA</u> CAGAGCAAAGTTACCAGCT
	F	GCTCTG <u>ATG</u> CCAGAAGTTGTCAGAGAAGAGGT
R330M	R	TTCTGG <u>CAT</u> CAGAGCAAAGTTACCAGCTC
	F	GCTCTG <u>GGC</u> CCAGAAGTTGTCAGAGAAG
R330G	R	TTCTGG <u>GCC</u> CAGAGCAAAGTTACCAGCT
	F	GCTCTG <u>GCC</u> CCAGAAGTTGTCAGAGAAG
R330A	R	TTCTGG <u>GGC</u> CAGAGCAAAGTTACCAGCT
	F	GCTCTG <u>GTC</u> CCAGAAGTTGTCAGAGAAG
R330V	R	TTCTGG <u>GAC</u> CAGAGCAAAGTTACCAGCT
	F	GCTCTG <u>CTC</u> CCAGAAGTTGTCAGAGAAG
R330L	R	TTCTGG <u>GAG</u> CAGAGCAAAGTTACCAGCT
Daaal	F	GCTCTG <u>ATC</u> CCAGAAGTTGTCAGAGAAG
K3301	R	TTCTGG <u>GAT</u> CAGAGCAAAGTTACCAGCT
Dance	F	GCTCTG <u>AGC</u> CCAGAAGTTGTCAGAGAAG
K330S	R	TTCTGG <u>GCT</u> CAGAGCAAAGTTACCAGCT

Table S2. The primer information of site saturation mutation of R330 in Oye2y $^{\rm a}$

R330T	F	GCTCTG <u>ACC</u> CCAGAAGTTGTCAGAGAAG
10001	R	TTCTGG <u>GGT</u> CAGAGCAAAGTTACCAGCT
R330N	F	GCTCTG <u>AAC</u> CCAGAAGTTGTCAGAGAAG
	R	TTCTGG <u>GTT</u> CAGAGCAAAGTTACCAGCT
R330O	F	GCTCTG <u>CAG</u> CCAGAAGTTGTCAGAGAAG
hoolg	R	TTCTGG <u>CTG</u> CAGAGCAAAGTTACCAGCT
R330D	F	GCTCTG <u>GAC</u> CCAGAAGTTGTCAGAGAAG
ROOD	R	TTCTGG <u>GTC</u> CAGAGCAAAGTTACCAGCT
R330E	F	GCTCTG <u>GAA</u> CCAGAAGTTGTCAGAGAAG
Robbel	R	TTCTGG <u>TTC</u> CAGAGCAAAGTTACCAGCT
R330K	F	GCTCTG <u>AAG</u> CCAGAAGTTGTCAGAGAAG
Resource	R	TTCTGG <u>CTT</u> CAGAGCAAAGTTACCAGCT
R330C	F	GCTCTG <u>TGC</u> CCAGAAGTTGTCAGAGAAG
10000	R	CTTCTGG <u>GCA</u> CAGAGCAAAGTTACCAGCT

^a The code to introduce the substitution was underlined.

Supplementary figures

R330I R330A R330N R330C R330W R330V R330E R330H R330Q OYE2y

Figure S1. SDS-PAGE (12%) analysis of the purified OYE2y R330X variants. Lane M, standard molecular mass proteins. Other lanes are named according to the substitution for OYE2y. The proteins were visualized by staining with Coomassie brilliant blue R-250.

Figure S2. SDS-PAGE (12%) analysis of the purified OYE2y P76X variants. Lane M, standard molecular mass proteins. Other lanes are named according to the substitution for OYE2y. The proteins were visualized by staining with Coomassie brilliant blue R-250.

Figure S3. Gas chromatograph analysis for standards (*S*)-citronellal (22.459 min), (*R*)-citronellal (23.067 min), (*Z*)-citral (29.164 min) and (*E*)-citral (30.398 min).

Figure S4. Gas chromatograph-mass spectrometry analysis for (*S*)-citronellal (A), (*R*)-citronellal (B), (*Z*)-citral (C) and (*E*)-citral (D) in the asymmetric reduction of (*E*/*Z*)-citral.