

- ¹ Supplementary Materials: Sequencing and
- 2 Comparative Analysis of the Chloroplast Genome of
- 3 Angelica polymorpha and the Development of a Novel
- 4 Indel Marker for Species Identification
- 5 Inkyu Park, Sungyu Yang, Wook Jin Kim, Jun-Ho Song, Hyun-Sook Lee, Hyun Oh Lee, Jung-

6 Hyun Lee, Sang-Nag Ahn, and Byeong Cheol Moon*

- 8 **Figure S1:** Distribution of paired-end reads mapped onto the complete chloroplast (CP) genome sequence of *A*.
- 9 polymorpha.

- 11 **Figure S2:** Codon frequencies and relative synonymous codon usage (RSCU) values of the CP genomes of *A*.
- 12 polymorpha and L. officinale. (A) Amino acid frequencies in protein-coding genes. (B) Codon usage for 20 amino
- 13 acids and stop codons in 78 protein-coding genes.

Figure S3: Distribution of simple sequence repeats (SSRs) in the CP genomes of A. polymorpha and L. officinale.

16 (A) Number of SSRs in CP genomes. (B) Number of SSRs in exons, introns and intergenic spacer (IGS) regions. (C) Number of different types of SSRs in CP genomes.

Figure S4: Analysis of tandem repeats in the CP genomes of *A. polymorpha* and *L. officinale*. (A) Distribution of
tandem repeats in different regions of CP genomes. (B) Number of tandem repeats in IGS regions, exons, and

21 introns. (C) Distribution of tandem repeats of variable lengths in CP genomes.

22

Table S1: Details of raw sequence reads and CP genome assembly of *A. polymorpha*.

Parameter	Number of reads
Input reads	5,000,000
Trimmed reads	4,307,210
Total raw bases (bp)	1,255,000,000
Trimmed bases (bp)	940,906,215
Aligned reads	51,266
Coverage (X)	75
Chloroplast genome size (bp)	147,127

Molecules 2018, 24, 1038

25	
26	

Table S2: PCR-based sequence validation of junctions between the large single copy (LSC), small single copy

	(SSC), and invert	ed repeat (IRa and II	Rb) regions in the C	P genome of A. po
Location	PCR-based sequence (bp)	Start position (bp)	End position (bp)	Identity (%)
LSC/IRa	376	93,336	93,711	100
IRa/SSC	175	111,453	111,572	100
SSC/IRb	508	128,855	129,362	100
IRb/LSC	732	146,942	546	100

Table S3: List of genes and encoded proteins identified in the CP genomes of *A. polymorpha* and *L.*

officinale.

Gene group	Gene name			
Photosystem I	psaA, B, C, I, J, ycf3 ²⁾ , ycf4			
Photosystem II	psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z			
Cytochrome b6/f	petA, B ¹⁾ , D ¹⁾ , G, L, N			
ATP synthase	<i>atpA, B, E, F</i> ¹ <i>, H, I</i>			
Rubisco	rbcL			
NADH oxidoreductase	ndhA1), B1)3), C, D, E, F, G, H, I, J, K			
Large subunit ribosomal proteins	<i>rpl</i> 2 ¹⁾³⁾ , 14, 16 ¹⁾ , 20, 22, 23 ³⁾ , 32, 33, 36			
Small subunit ribosomal proteins	rps2, 3, 4, 7 ³⁾ , 8, 11, 12 ²⁾³⁾⁴⁾ , 14, 15, 16, 18, 19			
RNA polymerase	<i>rpoA</i> , <i>B</i> , C1 ¹), C2			
Unknown function protein-coding gene	$ycf1^{3)}$, 2, $15^{3)}$			
Other genes	accD, ccsA, cemA, clp $P^{2)}$, matK			
Ribosomal RNAs	rrn16 ³⁾ , 23 ³⁾ , 4.5 ³⁾ , 5 ³⁾			
	trnA-UGC ¹⁾³⁾ , trnC-GCA, trnD-GUC, trnE-UUC, trnF-			
	GAA, trnG-UCC ¹⁾ , trnG-GCC, trnH-GUG, trnI-CAU,			
	trnI-GAU ¹⁾³⁾ , trnK-UUU ¹⁾ , trnL-UAA ¹⁾ , trnL-UAG, trnL-			
Transfer RNAs	CAA ³), trnM-CAU, trnfM-CAU, trnN-GUU ³), trnP-UGG,			
	trnQ-UUG, trnR-ACG ³⁾ , trnR-UCU, trnS-GCU, trnS-			
	GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-UAC ¹⁾ ,			
	trnV-GAC ³⁾ , trnW-CCA, trnY-GUA			

30 ¹Genes containing a single intron.

31 ²Genes containing two introns.

32 ³ Genes present as two copies in the IR regions.

33 ⁴Trans-spliced gene.

34

No	Gene	Region	Exon I ¹	Intron I ¹	Exon II ¹	Intron II ¹	Exon III ¹
1	trnK- UUU	LSC	37	2523*	35		
2	rps16	LSC	40	855 (857)	197		
3	trnG-UCC	LSC	23	704	48		
4	atpF	LSC	145	722	401		
5	rpoC1	LSC	435	754	1605		
6	ycf3	LSC	126	720	226	778	155
7	trnL-UAA	LSC	35	504	50		
8	trnV-UAC	LSC	39	591	35		
9	rps12*	LSC	114		232		26
10	clpP	LSC	71	840	292	638	231
11	petB	LSC	6	756	642		
12	petD	LSC	8	743	475		
13	rpl16	LSC	9	969	399		
14	ndhB	IR	777	684	756		
15	trnI-GAU	IR	37	951	35		
16	trnA- UGC	IR	38	817	35		
17	ndhA	SSC	553	1073	540		

¹Numbers represent the gene size (bp) in *A. polymorpha;* numbers in parentheses represent the gene size in *L.*

36 *officinale.* * The intron length of *trnK-UUU* includes *matK*.

Table S5: Codon-anticodon recognition patterns and codon usage in the CP genomes of *A. polymorpha* and *L. officinale.*

		officinale	•	
Amino acid Codon <i>A. polymorpha</i>				
	Codon	Count	RSCU ¹	tKINA
Phe	UUU	798	1.32	
Phe	UUC	411	0.68	trnF-GAA
Leu	UUA	749	1.96	trnL-UAA
Leu	UUG	450	1.18	trnL-CAA
Leu	CUU	483	1.26	
Leu	CUC	154	0.4	
Leu	CUA	316	0.83	trnL-UAG
Leu	CUG	141	0.37	
lle	AUU	875	1.45	
lle	AUC	340	0.56	trnI-GAU
				trnI-CAU
lle	AUA			trn(f)M-CAU
		595	0.99	trnM-CAU
Met	AUG	512	1	trnM-CAU
Val	GUU	474	1.51	
Val	GUC	147	0.47	trnV-GAC
Val	GUA	458	1.46	trnV-UAC
Val	GUG	176	0.56	
Ser	UCU	463	1.75	
Ser	UCC	251	0.95	trnS-GGA
Ser	UCA	294	1.11	trnS-UGA
Ser	UCG	167	0.63	
Pro	CCU	354	1.57	
Pro	CCC	163	0.72	trnS-GCU
Pro	CCA	237	1.05	
Pro	CCG	146	0.65	
Thr	ACU	467	1.65	trnP-UGG
Thr	ACC	210	0.74	
Thr	ACA	333	1.18	
Thr	ACG	123	0.43	trnT-GGU
Ala	GCU	569	1.81	trnT-UGU
Ala	GCC	198	0.63	
Ala	GCA	341	1.09	
Ala	GCG	147	0.47	trnG-UCC
Tyr	UAU	644	1.61	trnA-UGC

	1			
Tyr	UAC	157	0.39	
Stop	UAA	43	1.61	
Stop	UAG	21	0.79	trnY-GUA
His	CAU	389	1.51	
His	CAC	126	0.49	
Gln	CAA	558	1.49	
Gln	CAG	191	0.51	
Asn	AAU	722	1.51	trnH-GUG
Asn	AAC	233	0.49	trnQ-UUG
Lys	AAA	774	1.5	
Lys	AAG	256	0.5	
Asp	GAU	677	1.59	trnN-GUU
Asp	GAC	172	0.41	trnK-UUU
Glu	GAA	801	1.49	
Glu	GAG	273	0.51	
Cys	UGU	175	1.51	trnD-GUC
Cys	UGC	57	0.49	trnE-UUC
Stop	UGA	16	0.6	
Trp	UGG	377	1	
Arg	CGU	298	1.4	trnC-GCA
Arg	CGC	87	0.41	trnW-CCA
Arg	CGA	299	1.41	trnR-ACG
Arg	CGG	109	0.51	
Ser	AGU	327	1.23	
Ser	AGC	89	0.34	
Arg	AGA	359	1.69	trnR-UCU
Arg	AGG	124	0.58	
Gly	GGU	530	1.35	
Gly	GGC	176	0.45	trnG-GCC
Gly	GGA	591	1.51	trnG-UCC
Gly	GGG	268	0.68	

39 ¹RSCU, relative synonymous codon usage.

Species	Position	Loop (bp)	Position	Repeat unit length (bp)	Repeat unit sequence
	IGS ¹ (trnH-GUG, psbA)	6	IGS (rnH-GUG, psbA)	31	TGAAATATAAAAAGAAGAAAATACCGCCCTCTTG
A. polymorpha	IGS (psbM, trnD-GUC)	490	IGS (trnE-UUC, trnT-GGU)	39	AAAAGGGAAAGATGATTGATGTACTTATTGAATCTGTCG
	IGS (trnT-GGU, psbD)	62	IGS (trnT-GGU, psbD)	26	TTATCATCCTACTAAATTAGAATTTA
	IGS (psbE, petL)	0	IGS (psbE, petL)	32	TCTTTCTTACTTTACTTGTTGCTTGTCAGTGT
	IGS (psbT, psbN)	3	IGS (psbT, psbN)	21	TTGAAGTAATGAGTCCCCCAA
	IGS (trnH-GUG, psbA)	13	IGS (rnH-GUG, psbA)	24	AAAAAAGCAATACCGCCCTCTTG
	IGS (psbM, trnD-GUC)	490	IGS (trnE-UUC, trnT-GGU)	39	AAAAGGGAAAGATGATTGATGTACTTATTGAATCTGTCG
I officinals	IGS (trnT-GGU, psbD)	62	IGS (trnT-GGU, psbD)	26	TTATCATCCTACTAAATTAGAATTTA
L. Officinate	IGS (psbE, petL)	10	IGS (psbE, petL)	27	TCTTTCTTACTTTACTTGTTGCTTGTC
	IGS (psbT, psbN)	3	IGS (psbT, psbN)	21	TTGAAGTAATGAGTCCCCCAA
	Intron (<i>petB</i> , <i>petB</i>)	9	Intron (petB, petB)	20	TAAATCGAAAGAAAGGTTTG

Table S6: Details of palindromic repeats present in the LSC region of the CP genomes of *A. polymorpha* and *L. officinale*.

41 ¹IGS, intergenic spacer.

Table S7: List of A.	<i>polymorpha</i> ar	nd L. officinale	accessions	used in th	nis study

No.	Species	Collection information	Voucher number	Coordinates	GenBank accession number	Marker test
1		Ilcheongungjaebaeji, Bonghwa-gun,	KION 12 01E01014(/E	36°48'01.9"N		
1		Gyeongsangbuk-do, Korea	KIOWI201501014665	128°57'47.2''E		0
2		Subi-myeon, Yeongyang-gun, Gyeongsangbuk-do, Korea	VIOM201701018707	36°47'39.8"N		0
Z			KIOWI201701018797	129°12'19.6"E		0
2		Subi-myeon, Yeongyang-gun,	VION201701018706	36°47'39.8"N		0
3		Gyeongsangbuk-do, Korea	KIOW201701018798	129°12'19.6"E		0
4		Yeongyang-eup, Yeongyang-gun,	VION201501014665	36°40'32.0"N		0
4		Gyeongsangbuk-do, Korea	KIO101201501014665	129°06'46.2''E		0
5		Yeongyang-eup, Yeongyang-gun,	KIOM200601000207 KIOM200601000208	36°40'32.0"N		0
5		Gyeongsangbuk-do, Korea		129°06'46.2''E		0
6		Yeongyang-eup, Yeongyang-gun,		36°40'32.0"N		0
0	I officinale	Gyeongsangbuk-do, Korea		129°06'46.2''E		0
7	L. Officinate	Subi-myeon, Yeongyang-gun,	KIOM201701018769	36°47'39.8"N	NICO207(0	2
/		Gyeongsangbuk-do, Korea		129°12'19.6"E	INC039760	0
8		Subi-myeon, Yeongyang-gun, Gyeongsangbuk-do, Korea	KIOM201701018770	36°47'39.8''N		0
0			KIOW201701018770	129°12'19.6"E		0
0		Subi-myeon, Yeongyang-gun,	VION201701019771	36°47'39.8"N		2
9		Gyeongsangbuk-do, Korea	KIOIM201701018771	129°12'19.6"E		0
10		Subi-myeon, Yeongyang-gun,	VION201701018705	36°47'39.8"N		0
10		Gyeongsangbuk-do, Korea	KIOWI201701018795	129°12'19.6"E		0
11		Subi-myeon, Yeongyang-gun,	VION201701018617	36°47'39.8"N		0
11		Gyeongsangbuk-do, Korea	KIOW201701018017	129°12'19.6"E		0
10		Subi-myeon, Yeongyang-gun,	VION 201201005868	36°47'39.8"N		2
12		Gyeongsangbuk-do, Korea	KIOWI201301003868	129°12'19.6"E		0
10		Waniy ci Canayan da Karaa	VION/201E0101 /664	37°20'17.6"N		2
15	1 molumonales	wonju-si, Gangwon-uo, Korea	KIOWIZ01301014004	128°02'27.5"E	MITI200703	0
14	А. рогутогрни	Seoha-myeon, Hamyang-gun,	VIOM201501015521	35°38'39.7"N		0
14		Gyeongsangnam-do, Korea	KIOWIZ01301013321	127°44'12.2''E		0

15	Yeonpung-myeon, Goesan-gun, Chungcheongbuk-do, Korea	KIOM201701020170	36°42'55.1"N 128°03'07.5"E	0
16	Changjuk-dong, Taebaek-si, Gangwon- do, Korea	KIOM201701020255	37°13'50.7"N 128°56'17.1"E	0
17	Wicheon-myeon, Geochang-gun, Gyeongsangnam-do, Korea	KIOM201501015376	35°42'53.8''N 127°47'45.7''E	0
18	Gohan-eup, Jeongseon-gun, Gangwon- do, Korea	KIOM201501015172	37°12'14.3"N 128°54'31.1"E	0
19	Dunnae-myeon, Hoengseong-gun, Gangwon-do, Korea	KIOM201001003015	37°29'28.6"N 128°14'52.1"E	о
20	Jinbu-myeon, Pyeongchang-gun, Gangwon-do, Korea	KIOM200901002083	37°47'58.0"N 128°32'35.2"E	о
21	Jinbu-myeon, Pyeongchang-gun, Gangwon-do, Korea	KIOM200901002084	37°47'58.0"N 128°32'35.2"E	О

Table S8: List of primers used for the validation of the CP genome sequence of A. polymorpha.				
Primer name	her name Primer sequence $(5' \rightarrow 3')$			
LIGLF	GGATCCTCGCGGACAGAAAA	LSC/IRa		
LIGLR	CGTGTCTGGTACTGCATGGT			
LIGISF	ACAATTCTAACTAGCCCTAATGGTC	IRa/SSC		
LIGISR	TCAAATCTGTAGGTAGTGGGCG			
LIGSIF	ACGCCTTTGAACACGCATAG	SSC/IRb		
LIGSIR	AGAGGTTGAACAGAAAATAGACCG			
LIGILF	GATCTGCAGGGTCCCAAATGA	IRb/LSC		
LIGILR	ACTTTGATCCAACGGAGCCC			

Order	Family	No.	Taxon	GenBank accession number
	Apiaceae	1	Angelica acutiloba	NC029391.1
		2	Angelica dahurica	NC029392.1
		3	Angelica decursiva	KT781591.1
		4	Angelica gigas	NC029393.1
		5	Angelica nitida	MF594405.1
		6	Arracacia xanthorrhiza	KY117235.1
		7	Glehnia littoralis	KT153022.1
		8	Ledebouriella seseloides	KT153021.1
		9	Peucedanum insolens	NC033344.1
		10	Seseli montanum	KM035851.1
		11	Ligusticum tenuissimum	NC029394.1
		12	Ligusticum officinale	NC039760.1
		13	Daucus carota	NC008325.1
		14	Anthriscus cerefolium	NC015113.1
Apiales		15	Tiedemannia filiformis subsp. greenmannii	HM596071.1
		16	Coriandrum sativum	NC029850.1
		17	Bupleurum latissimum	NC033346.1
		18	Bupleurum falcatum	NC027834.1
		20	Anethum graveolens	NC029470.1
		21	Petroselinum crispum	NC015821.1
		22	Foeniculum vulgare	NC029469.1
	Araliaceae	23	Eleutherococcus senticosus	JN637765.1
		24	Fatsia japonica	NC027685.1
		25	Kalopanax septemlobus	NC022814.1
		26	Metapanax delavayi	NC022812.1
		27	Schefflera delavayi	NC022813.1
		28	Aralia undulata	NC022810.1
		29	Panax ginseng	AY582139.1
		30	Panax notoginseng	NC026447.1
Dipsacales	Adoxaceae	31	Adoxa moschatellina	NC034792.1
		32	Tetradoxa omeiensis	NC034793.1