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Abstract: Calcium-boron systems have excellent properties of hardness, strength, and chemical
stability, and we studied a series of CaBn clusters to investigate their structures and relative stability.
The results showed the most stable structures of CaBn clusters are not planar. The B atoms tend to
get together and form the planar ring to stabilize the structure, and the Ca atoms are coordinated
to the periphery of the formations. The average binding energy (Eb), fragmentation energy (EF),
second-order energy difference (∆2E), adiabatic detachment energy (ADE), and adiabatic electron
affinity (AEA) of the CaBn clusters were calculated to investigate the relative stability and the ability
of removing or obtaining an electron. As shown by the results, EF and ∆2E values had obvious
odd-even alteration as n increased, which indicated that the formations CaB4, CaB6, and CaB8 were
more stable. The ADE values for CaBn clusters with even values of n were higher than those with
odd values of n, which indicated CaBn clusters with even values of n had difficultly removing an
electron. The AEA values of CaB3 and CaB7 were larger than the others, which meant CaB3 and CaB7

easily obtained an electron. These results provide a useful reference for understanding the formation
mechanism and stability of the alkaline earth metal boride as well as guidance for synthesizing the
CaBn clusters.
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1. Introduction

The boride compounds display excellent properties of hardness, strength, and chemical stability
because of their structural characteristics. Due to the discovery of the superconductivity of MgB2 [1],
the alkaline earth metal borides have been of great concern [1–5]. As an important member of
the alkaline earth metal boride, the calcium boron systems are mentioned by many scientists [2–6].
Tian et al. [2] successfully synthesized CaB4 crystals under high-temperature high-pressure (HPHT)
conditions and pointed out a potential synthesis method for the CaB2 crystal. Tian et al. [3] also
prepared the CaB6 polycrystalline samples by solid phase sintering. At the same time, Zhang et al. [4,5]
prepared the different composition CaB6 films by direct current (DC) magnetron sputtering. Due to
the excellent properties of the alkaline earth metal boride systems, theoretical scientists have also
shown interest in them [7–11]. Li et al. [7–9] studied the series of MB5

+ (M = Be, Mg, Ca, Sr) and MB6

(M = Be, Mg, Ca, and Sr). Ju et al. [10] studied the geometric structures, stabilities, and electronic
properties of MgB±m

n (n = 1–7 and m = 0, 1). Last year, our group studied the structures and stabilities
of BeBn

+ (n = 1–8) clusters [11]. There have also been many theoretical works reported on the structures
and stabilities of small-metal-atom-doped boron clusters [12–20]. However, until now, no systematic
investigation for the CaBn cluster had been performed to see the effect of the Ca atom doping on boron
clusters. In this context, we investigated the stable configurations of the small clusters CaBn (n = 1–8)
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formed by adding one Ca heteroatom into the corresponding Bn cluster. The stable configurations
CaBn were analyzed and compared with MgBn clusters [10]. We also calculated the average binding
energy (Eb), fragmentation energy (EF), second-order energy difference (∆2E), adiabatic detachment
energy (ADE), and adiabatic electron affinity (AEA) in order to evaluate the stability and ability of
CaBn (n = 1–8) clusters to obtain and remove an electron.

2. Computational Details

In this paper, all calculations were performed with the Gaussian 03 [21] program package. The
geometries of CaBn clusters were fully optimized by using the B3LYP [22,23] method with 6-311+G(d)
basis set and were characterized as energy minima by frequency calculations at the same level. The
zero-point energies (ZPE) were also obtained at this level. In order to get more reliable electronic energy,
the single point energy calculations for all the local minima were obtained at the MP2 [24]/6-311+G(d)
level based on the geometry optimized at the B3LYP/6-311+G(d) level. All the lower-lying isomer
energies were obtained at the MP2/6-311+G(d) level with zero point energy correction from the
B3LYP/6-311+G(d) level. In each group of isomers, the reference energy was taken as that of the lowest
geometry. The Eb, EF, ∆2E, ADE, and AEA of the CaBn clusters were calculated to investigate the
relative stability and the ability of removing or obtaining an electron at the same level of theory. The
following formulas were used:

Eb(n) = [nE(B) + E(Ca)− E(CaBn)]/n + 1
EF(n) = E(B) + E(CaBn−1)− E(CaBn)

∆2E(n) = E(CaBn+1) + E(CaBn−1)− 2E(CaBn)

where E(B), E(CaBn), E(CaBn+1), and E(CaBn-1) are the energies of the most stable structures of B, CaBn,
CaBn+1, and CaBn-1, respectively.

ADE =E(CaBn
+)− E(CaBn)

AEA =E(CaBn)− E(CaBn
−)

where E is the energy of the optimized structures of CaBn
+, CaBn

−, and CaBn, each in its vibrational
ground state.

3. Results and Discussions

3.1. Stable Geometric Structures

The optimized structures, symmetry point groups, and relative energies of the CaBn (n = 1–8)
clusters are displayed in Figures 1–6 and Table 1. These structures included the lowest-energy structures
and their low-lying isomers, and they were ordered from the lowest to highest energy. All of them had
no imaginary frequency, and the relative energies were given in eV based on the most stable ones. All
of the structures of CaBn (n = 1–8) clusters were singlet state (where n is even number) or doublet state
(where is odd number).

As seen in Figure 1, for n = 1, the most stable structure was the linear geometry with the Ca-B
bond length of 2.705 Å and point group C∞v. For n = 2, the most stable structure was triangle (CaB2,
C2v), and none of the chain isomers of CaB2 were stable—that is, they were different from the MgB2

cluster structures [10]. The Ca-B bond length of CaB2 structure was 2.444 Å, remarkably longer than
the Mg-B bond length of isomer MgB2 (2.265 Å) [10]. In the case of n = 3, the most stable geometry
(CaB3-1, C2v) was the triangle boron ring with Ca connecting to one B atom in the B3 clusters, which
was similar to the MgB3 cluster. The second stable one (CaB3-2, C2v) was the planar four-member ring
including a triangle boron ring. The B-B bond length (1.655 Å) in CaB3-2 was longer than the B-B bond
(1.555 Å and 1.522 Å) in CaB3-1, thus the energy of CaB3-2 was higher (0.12 eV) than that of CaB3-1.
The third stable one (CaB3-3, C3v) was the trigonal pyramid structure with the Ca-B bond length of
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2.789 Å. There was only a linear structure (CaB3-4) with the Ca atom at the middle of the chain. Above,
the most stable structures of CaBn (n = 1–3) were similar to MgBn (n = 1–3).Molecules 2019, 24, x FOR PEER REVIEW 3 of 11 
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B3LYP/6-311+G(d). The bond length unit is Å.

As shown in Figure 2, the lowest-energy structure (CaB4-1, Cs) was the planar five-member ring
including a four-member boron ring, which was different from the MgB4 cluster. The second stable one
(CaB4-2, C2v) was the four-member boron ring with the Ca connecting to one B atom in the B4 clusters,
which had an energy higher (0.13 eV) than that of the most stable one. The third stable one (CaB4-3,
C3v) was the tetrahedron, which was 2.14 eV higher than the most stable one. In this structure, the B-B
bond lengths were 1.960 Å and 1.567 Å, and the Ca-B bond length was 2.494 Å. From the consideration
of Figures 1 and 2, we found B atoms tended to get together and make more stable structures.
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Table 1. The energies, the average binding energy (Eb), the fragmentation energy (EF),
second-order difference of total energy (∆2E), adiabatic detachment energy (ADE), and adiabatic
electron affinity (AEA) of the CaBn clusters of the most stable structures of CaBn at the
MP2/6-311+G(d)//B3LYP/6-311+G(d) level.

CaBn Energies/a.u. Eb/eV EF/eV ∆2E/eV ADE/eV AEA/eV

CaB −701.5209 0.1196 — — 5.5593 −0.0595
CaB2 −726.2515 1.5378 4.3741 −0.7567 6.0984 1.4198
CaB3 −751.0098 2.4361 5.1308 −0.5352 5.0175 2.4738
CaB4 −775.7879 3.0820 5.6660 0.4833 6.6577 1.1190
CaB5 −800.5481 3.4321 5.1826 −0.7357 5.5863 1.1684
CaB6 −825.3354 3.7873 5.9184 −0.2340 7.0507 1.4423
CaB7 −850.1314 4.0829 6.1523 −1.2530 6.2788 2.3017
CaB8 −874.9733 4.4521 7.4053 — 7.5131 1.9359

For n = 5, as shown in Figure 3, the most stable one (CaB5-1, Cs) was the five-member boron ring
with the Ca atom connected to the B atom of B5 clusters, which was similar to the most stable one of
the MgB5 cluster [10]. The second lowest-energy structure (CaB5-2, Cs) was the pentagonal pyramid
including a five-member boron ring that was 0.42 eV higher in energy than CaB5-1 with Cs symmetry.
The third most stable one (CaB5-3, C1) was the six-member ring including a five-member boron ring.
The fourth lowest-energy structure was the quadrangular bipyramid with C4v symmetry, which was
1.13 eV larger in energy than CaB5-1. As depicted in Figure 3, the B atoms of all the structures tended
to get together and form the planar or quasi-planar boron clusters that were the same characters as in
MgBn and BeBn

+ [10,11].
At n = 6, as shown in Figure 4, the lowest-energy structure (CaB6-1, C2v) for the CaB6 cluster

was the hexagonal pyramid, which was different from MgB6 [10]. The second stable one (CaB6-2, Cs)
was the planar six-member ring with a B atom in the middle, which was similar to the most stable
MgB6 structure. The third stable one (CaB6-3, Cs) was the pentagonal bipyramid, which was 0.65 eV
higher in energy than the most stable one. The fourth stable one (CaB6-4, C5v) was the pentagonal
pyramid B6 with connected Ca atom. As is evident in Figure 4, the B atoms also tended to form
planar or quasi-planar boron clusters and keep the structures more stable. This is because the planar
or quasi-planar boron cluster stability is greatly defined by the aromaticity caused by the p- and
d-delocalization [25], which requires a cyclic configuration consisting of at least three boron atoms.
Thus, the clusters with cyclic boron configuration of CaBn clusters are more stable than others.

In the case of n = 7, as shown in Figure 5, the most stable (CaB7-1, C2v) of the CaB7 cluster was the
hexagonal bipyramid geometry. The second lowest-energy structure (CaB7-2, Cs) was the hexagonal
pyramid of B7 with a connected Ca atom, which was similar to the most stable structure of MgB7.
The third lowest-energy structure (CaB7-3, Cs) was the planar seven-member ring, which was 1.80
eV higher than the most stable one. Figure 5 displays that most of the CaB7 clusters were not planar,
which was different from that of the MgB7 clusters. As with the bond characteristics, the B atoms
tended to get together and form the triangle boron ring, and the Ca atom was at the periphery.

For n = 8, as shown in Figure 6, the lowest-energy structure (CaB8-1, Cs) was the six-member
ring of B7 with the Ca atom above the boron ring, which was the same with the most stable of the
BeB8

+ cluster [11]. The second lowest-energy structure (CaB8-2, C2v) was the seven-member ring with
two B atoms above the ring, which had an energy 2.67 eV higher than that of the most stable one.
The third lowest-energy structure (CaB8-3, Cs) was the eight-member boron ring with the Ca atom
connected, which was 3.56 eV higher than the most stable one. The fourth stable one (CaB8-4, C2v) was
the eight-member boron ring with the Ca atom above the ring. The fifth stable one (CaB8-5, Cs) was
the nine-member boron ring with a Ca atom at the periphery. Figure 6 shows the B atoms also tended
to get together to form the triangle boron ring to keep the structure more stable for the CaB8 clusters.
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3.2. Relative Stability

To evaluate the relative stability of CaBn clusters, Table 1 shows the Eb, EF, and ∆2E at the
MP2/6-311+G(d) level. These parameters were obtained by the following formula and plotted as the
function of the cluster size n in Figures 7–9.
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In Figure 7, the energy Eb versus size n at the MP2/6-311+G(d) level is shown. All average
binding energies Eb of the lowest-energy clusters increased as the size n increased, but after n = 3, the
increase became smaller and stable. This was due to the bond tendency to saturate with the increase in
the number of atoms. Eb increased as the number of B atoms increased. If the number of Ca atoms did
not change, the system could form a stable, large-sized CaBn cluster.

As shown in Figure 8 by the MP2 result for all the clusters, the global minimum of fragmentation
energy appeared at n = 2. The energy followed obvious odd-even alterations as the size n increased
from n = 3. However, it was noted that the fragmentation energy had its local-maximum when n
was even, which indicated the CaB4, CaB6, and CaB8 were more stable. These results opposed those
obtained for MgBn and BeBn

+. Among all the CaBn (n = 1–8) clusters, the CaB8 cluster was the
most stable.

The second-order difference in total energy is considered a very useful quantity that can reflect
the relative cluster stability in the field of cluster physics [26]. From the MP2 result, the second-order
difference energy followed a clear “odd-even oscillation” phenomenon for n = 3–7, as shown in
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Figure 9. When n was even, the value was at the peak, which indicated the higher stability of these
clusters. The results were consistent with the information revealed in Figure 8. When n = 4, the
second-order difference energy was the largest, which meant the CaB4 was the most stable among
CaBn (n = 3–7).
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3.3. The Ability of Obtaining or Removing an Electron

The ADE and AEA of the CaBn clusters were calculated to investigate the ability of the most
stable CaBn clusters to remove or obtain an electron. A larger value of ADE meant that it was difficult
for the cluster to remove an electron, and a larger value of AEA meant that it was easy to gain an
electron. The results are shown in Figure 10 and Table 1. The ADE values for CaBn clusters with even
values of n were higher than those with odd values of n. This indicated that CaBn clusters with even
values of n had more difficulty removing an electron than those with odd values of n. The AEA values
first increased and then decreased over the range of n = 1–4, and they subsequently increased and then
decreased for n = 4–8. The larger AEA values for n = 3 and n = 7 revealed that obtaining an electron
was easy.
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4. Conclusions

The geometries, stabilities, and electronic properties of CaBn clusters up to n = 8 were
systematically investigated using the B3LYP and MP2 method. It was found that the most stable
structures of CaBn clusters as n increased were not the planar configurations. The B atoms tended
to form the planar ring to keep the structure more stable, and the Ca atoms were coordinated to the
structure periphery. For the most stable structures, the average binding energy, the fragmentation
energy, and second-order difference of total energies were widely used to evaluate the relative stability
of clusters. The results showed they had obvious odd-even alterations as the size n increased. When n
was even, it had its local-maximum, which indicated the CaB4, CaB6, and CaB8 were more stable. The
ADE and AEA of the CaBn clusters were calculated to investigate the ability of removing or obtaining
an electron. The results showed the ADE values for CaBn clusters with even values of n were higher
than those with odd values of n, which indicated CaBn clusters with even values of n had difficultly
removing an electron, and the AEA values of CaB3 and CaB7 were larger than the others, which meant
CaB3 and CaB7 easily obtained an electron.
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