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Abstract: Pompia is a Sardinian citrus ecotype whose botanical classification is still being debated.
In the present study, the composition of Pompia peel essential oil (EO) is reported for the first time,
along with that of the leaf EO, as a phytochemical contribution to the classification of this ecotype.
The peel EO was tested for its antioxidant ability (with both the 2,2-diphenyl-1-picarylhydrazyl
(DPPH) and ferric reducing antioxidant power (FRAP) assays). Moreover, its antimicrobial
activities were tested for the first time on dermatophytes (Microsporum canis, Microsporum gypseum,
and Trichophyton mentagrophytes), on potentially toxigenic fungi (Fusarium solani, Aspergillus flavus,
and Aspergillus niger) as well on bacteria (Escherichia coli, Staphylococcus aureus, and Staphylococcus
pseudointermedius). The dominant abundance of limonene in the peel EO seems to distinguish Pompia
from the Citrus spp. to which it had previously been associated. It lacks γ-terpinene, relevant in
Citrus medica EO. Its relative content of α- and β-pinene is lower than 0.5%, in contrast to Citrus
limon peel EO. Pompia peel and leaf EOs did not show significant amounts of linalool and linalyl
acetate, which are typically found in Citrus aurantium. Pompia peel EO antioxidant activity was weak,
possibly because of its lack of γ-terpinene. Moreover, it did not exert any antimicrobial effects either
towards the tested bacteria strains, or to dermatophytes and environmental fungi.

Keywords: Citrus monstruosa; essential oil; Pompia; antifungal activity; antibacterial activity;
DPPH-scavenging activity; FRAP assay

1. Introduction

“Pompia” is the popular name of a peculiar Sardinian Citrus ecotype, whose main area of
cultivation is historically identified in the Baronia region, in the Middle-Eastern area of Sardinia island
(Italy) [1]. Nowadays, however, its production has spread all over the island [2]. Its very thick albedo
is used in the confectionery industry and consumed as both a candied dessert (“sa pompìa intrea”)
and the main ingredient of a traditional fruit-cake (“s’aranzata”) [3].

It is a medium-sized tree (its height is lower than 3 m) with a vigorous and upright habit, with
sparse branches bearing thorns and large leaves, ovate, with entire margin [4,5]. The flowers, either
alone or, more frequently, grouped in inflorescences, are large, exhibiting purple-white petals [2,4,5].
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The fruit represents the most peculiar morphological character of this plant: it is oblate, larger in
diameter than in length; it presents a wrinkled base with a small calyx, and the peduncle is resistant
to abscission [4,5]. The main features of the fruit are the exaggerated albedo (mesocarp) thickness,
coupled with the rough, bumpy and very irregular peel (exocarp) appearance [1]. The immature fruit
exhibits a green and hard peel, which turns yellow at full ripeness [2]. Its external irregularity has
been the reason for its previous (now rejected) botanical classification with the name Citrus medica
var. monstruosa: it has been hypothesized that the appearance of its peel might be due to Eriophyes
sheldoni Ewing, 1937, also known as “citrus bud mite”, reported as a worldwide pest of citrus fruit
production [6]. Camarda et al. [1] reported the absence of this mite in their samples, on which the
mite Panonychus citri Mc Gregor was detected, instead: for the latter, however, no published literature
hypothesizes a role in this fruit monstrosity.

As well as the reason for its deformities, Pompia botanical classification has been long debated
and, to this day, The Plant List (http://www.theplantlist.org) and The International Plant Names
Index (http://www.ipni.org) do not report any botanical name for this citrus, either as a synonym
or as an unresolved name. Although the citrus presence in Sardinia was reported as early as the fifth
century b.C., Pompia was first described as an individual and distinct species only in 1837, when Moris
reported it as Citrus medica monstruosa [7]. This first classification of this citrus as a citron (Citrus medica
L.) cultivar, though, has been rejected by Camarda et al. [1] on the basis of the evaluation of several
factors, i.e., phytochemical, genetic, and morphological analyses. This work lead to the development
of a new taxonomical entity defined as Citrus limon var. pompia Camarda var. nova, thus classifying it
as a lemon cultivar, rather than a citron one [1]. The proximity of Pompia to Citrus limon (L.) Osbeck
and Citrus medica L. was also reported by Mignani et al. [5]. This close relationship was evaluated on
the basis of genetic markers, which showed a significant similarity of Pompia to the ‘Zagara Bianca’
lemon and ‘Etrog’ citron genotypes [5]. Petretto et al. [8], instead, evaluated the headspace volatile
emissions of several citrus samples, classifying Pompia as closer to C. aurantium, C. myrtifolia, C. sinensis,
and C. paradisi. Lemon and citron, on the contrary, resulted as the farthest in terms of emitted volatile
organic compounds (VOCs) [8]. Curk and Luro [9] analysis of genetic Citrus markers classified Pompia
as an hybrid of Citrus medica L. and Citrus × aurantium L. [9]. In a recent work, Deiana et al. [10]
reported the VOCs emitted in the headspace of polar (ethanolic) extracts of the traditional Pompia
candied flavedo (“sa pompìa intrea”). The production process did not influence the volatile emission
of the peel, as limonene was found to be as abundant (over 70%) in the head space of this product as in
the untreated peels analyzed by Petretto et al. [8,10].

In terms of biological activity, Fancello et al. [11] tested the hydro-distilled essential oil of Pompia
leaves for its antioxidant and antimicrobial properties. Its radical scavenging ability was comparable to
those of other citrus EOs, and exerted its most relevant inhibition capacity as antimicrobial on Listeria
monocytogenes and Staphylococcus aureus, and on yeasts, in particular Saccharomyces cerevisiae and Candida
albicans, as antifungal [11]. Ethanolic extracts of the traditional candied flavedo exhibited relevant
contents of in vitro radical-scavenging phenols, such as neoeriocitrin, neohesperidin, and naringin [10].

Pompia was bestowed the Slow Food Presidium in 2004 [12]: as a peculiar and interesting ecotype,
important in the Sardinian economy for its preference among consumers, Pompia represents an
important biodiversity to preserve. The present study aims at aiding the botanical classification of
this species through the phytochemical evaluation of the essential oil of both peels and leaves of
Pompia, using a multi-organ approach. Moreover, it presents the Pompia peel essential oil antioxidant
properties and the activity in inhibiting molds and bacteria growth, all of which, to the best of our
knowledge, have never been investigated before.

http://www.theplantlist.org
http://www.ipni.org
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2. Results

2.1. Phytochemical Investigation

The complete composition of the essential oils (EOs, obtained by both hydro-distillation, HD,
and cold pressing, CP) of Pompia peels and leaves (extracted by hydro-distillation, HD), as well as
their hydro-distillation yields are reported in Table 1. Overall, 61 compounds were identified among
all the extracted EOs.

Table 1. Complete composition and hydro-distillation yield of the Citrus limon var. pompia Camarda
var. nova essential oils extracted from the peels (by hydro-distillation, HD, and cold pressing, CP) and
from the hydro-distilled leaves.

Constituents l.r.i. a Relative Abundance (%) ± SD

HD Peel EO CP Peel EO HD Leaf EO

1 α-thujene 931 Tr b - c -
2 α-pinene 941 0.43 ± 0.00 0.51 ± 0.04 tr
3 camphene 954 tr - -
4 sabinene 976 0.14 ± 0.00 0.07 ± 0.08 0.28 ± 0.01
5 β-pinene 982 tr - 0.19 ± 0.00
6 6-methyl-5-hepten-2-one 985 tr - tr
7 myrcene 993 2.12 ± 0.01 1.55 ± 0.04 0.91 ± 0.02
8 α-phellandrene 1005 tr tr tr
9 δ-3-carene 1011 tr - 0.90 ± 0.05

10 α-terpinene 1018 tr - -
11 p-cymene 1027 - - tr
12 limonene 1032 77.44 ± 0.58 95.77 ± 0.30 28.64 ± 1.24
13 cis-β-ocimene 1042 - - 0.46 ± 0.04
14 trans-β-ocimene 1052 0.99 ± 0.01 0.50 ± 0.13 10.50 ± 0.12
15 isoterpinolene 1087 - - tr
16 terpinolene 1088 tr - 0.16 ± 0.02
17 linalool 1101 1.13 ± 0.06 tr 0.56 ± 0.02
18 trans-p-mentha-2,8-dien-1-ol 1121 tr - -
19 trans-limonene oxide 1141 tr - tr
20 camphor 1143 tr - -
21 citronellal 1155 0.33 ± 0.00 - 1.27 ± 0.16
22 isoneral 1171 tr - 0.37 ± 0.14
23 4-terpineol 1178 tr - -
24 isogeranial 1184 0.14 ± 0.01 - 0.44 ± 0.04
25 α-terpineol 1189 0.35 ± 0.01 - 0.14 ± 0.02
26 decanal 1204 - - tr
27 trans-carveol 1218 tr - -
28 nerol 1230 1.24 ± 0.04 - 1.49 ± 0.09
29 neral 1240 4.43 ± 0.14 tr 18.84 ± 0.36
30 geraniol 1257 1.46 ± 0.01 - 0.57 ± 0.02
31 geranial 1271 6.16 ± 0.13 tr 24.44 ± 1.59
32 methyl geranate 1325 tr - -
33 citronellyl acetate 1350 tr - tr
34 neryl acetate 1366 0.61 ± 0.03 tr 1.48 ± 0.05
35 geranyl acetate 1385 0.62 ± 0.02 - 3.94 ± 0.18
36 cis-α-bergamotene 1416 tr tr -
37 β-caryophyllene 1420 0.42 ± 0.01 0.34 ± 0.04 0.76 ± 0.03
38 β-copaene 1429 tr - -
39 trans-α-bergamotene 1438 0.59 ± 0.04 0.55 ± 0.06 tr
40 α-humulene 1456 tr tr 0.11 ± 0.01
41 trans-β-farnesene 1460 0.16 ± 0.01 - -
42 9-epi-trans-caryophyllene 1467 - tr -
43 germacrene D 1478 tr - -
44 γ-curcumene 1480 tr - -
45 valencene 1492 0.13 ± 0.01 - tr
46 bicyclogermacrene 1495 0.27 ± 0.02 0.26 ± 0.01 0.45 ± 0.01
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Table 1. Cont.

Constituents l.r.i. a Relative Abundance (%) ± SD

HD Peel EO CP Peel EO HD Leaf EO

47 cis-α-bisabolene 1504 tr tr -
48 β-bisabolene 1509 0.89 ± 0.06 0.48 ± 0.11 0.13 ± 0.01
49 δ-cadinene 1524 tr - tr
50 trans-α-bisabolene 1531 tr - -
51 trans-nerolidol 1565 tr - 0.40 ± 0.02
52 germacrene D-4-ol 1575 tr - tr
53 spathulenol 1576 - - 1.22 ± 0.11
54 caryophyllene oxide 1581 - - 0.73 ± 0.02
55 β-oplopenone 1606 - - tr
56 epoxy-alloaromadendrene 1639 - - tr
57 epi-α-cadinol 1640 - - 0.21 ± 0.06
58 α-cadinol 1654 - - 0.39 ± 0.01
59 valerianol 1656 tr - -
60 β-bisabolol 1672 - - 0.10 ± 0.14
61 epi-α-bisabolol 1686 tr - tr

Monoterpene
hydrocarbons 81.12 ± 0.59 98.38 ± 0.00 42.01 ± 1.49

Oxygenated
monoterpenes 16.44 ± 0.44 tr 53.50 ± 1.45

Sesquiterpene
hydrocarbons 2.45 ± 0.15 1.62 ± 0.00 1.44 ± 0.04

Oxygenated
sesquiterpenes tr - 3.04 ± 0.07

Non-terpene derivatives tr - tr
Total identified (%) 100.00 ± 0.00 100.00 ± 0.00 99.98 ± 0.01

Extraction yield (% w/w) 0.3 n.a. <0.1%
a Linear retention indices on a DB5 column; b Traces, <0.1%; c Not detected.

Monoterpene hydrocarbons accounted for over 80% in both the peel EOs. For the CP peels, they
represented 98.38% of the EO composition, with limonene exhibiting a relative abundance of as much
as 95.77%. The latter was the most abundant compound in the HD peel EO, as well, where its relative
content was over 75%. Among monoterpene hydrocarbons, myrcene was the second most abundant
compound, accounting for 2.12% and 1.55% in the HD and CP peel EOs, respectively. Monoterpene
hydrocarbons were also abundant (42.01%) in the HD leaf EO, where limonene (28.64%) was the most
abundant component in the EO, as well. In the latter sample, however, trans-β-ocimene showed a
relevant presence (10.50%), whilst it was under 1% in both the HD and CP peel EOs.

The HD peel EO showed a larger variety of compounds, compared to the CP one: oxygenated
monoterpenes, indeed, were detected in a relevant amount (16.44%), whereas they were only in traces
in the CP peel EO. The HD leaf EO, instead, showed oxygenated monoterpenes as the most abundant
chemical class of compounds, as they accounted for up to 53.50%. Whilst only detected in traces in
the CP peel EO, geranial and neral exhibited a relevant presence in both the peel (6.16% and 4.43%,
respectively) and leaf (24.44% and 18.84%, respectively) HD EOs. Geranyl and neryl acetates, only
detectable in trace in the CP peel EO, accounted for circa 0.6% in the HD peel EO, and for 3.94% and
1.48%, respectively, in the HD leaf EO. Their related alcohols, instead, were lower than 1.5% in both
the peel and leaf HD EOs, whilst they were not found in the CP peel EO.

Oxygenated sesquiterpenes, under 0.1% in the HD peel EO and completely absent in the CP peel
EO, accounted for 3.04% in the HD leaf EO: among them, spathulenol was the most abundant (1.22%).

2.2. Antioxidant Activity

The antioxidant activity of the EO extracted by hydrodistillation from Pompia peels was
determined by two different test systems: 2,2-diphenyl-1-picarylhydrazyl (DPPH) and ferric reducing
antioxidant power (FRAP) assays. In the DPPH assay, the ability of the samples of interest to act as
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hydrogen atoms or electrons donors in the transformation of DPPH• into its reduced form DPPH—-H
was investigated (Figure 1). Pompia peel EO sample presented IC50 values of 39.33 ± 6.1 mg/L, while
ascorbic acid (used as positive control standard) had IC50 values of 4.70 ± 0.86 mg/L. (26.6 µM)). Some
authors reported the IC50 for ascorbic acid in the range of 11.8–56 µM [13].
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The Ferric reducing antioxidant power (FRAP) was also determined to evaluate the ability
of the EO to reduce FeIII through electron transfer: the activity of Pompia peel EO resulted in
1.87 ± 0.41 mg/L, while for ascorbic acid it has a value of 3364.91 ± 107.98 mg/L FeII equivalent.

2.3. Antifungal Activity

The EOs did not yield any antifungal activity at the tested concentrations, and an abundant
mycotic growth was noticed in all the wells.

2.4. Antibacterial Activity

No EO activity was observed against the three selected bacterial isolates.

3. Discussion

The CP peels EO was dominated by limonene, which represented over 98% of the total
composition. A very similar profile was reported by Camarda et al. [1] and Petretto et al. [8]: both these
studies evidenced a dominant presence of limonene in the composition of the headspace emission
of Pompia fruits [1,8]. The candied peel volatile emission, as well, exhibited limonene as the most
abundant compound in the headspace profile [10]. No comparison can be performed with other HD
peels EOs from other accessions as, to the best of our knowledge, the present work is the first report
of Pompia peel hydro-distilled EO. The composition of the EO hydro-distilled from the leaves of the
present study is very similar to that reported by Fancello et al.: they reported limonene as the main
compound, followed by geranial, neral and trans-β-ocimene [11].

The rebuttal of the classification of Pompia as a citron variety seems to be confirmed by the present
work, based on the significant compositional differences of the peel EO between the two species, which
exhibit noteworthy qualitative differences. Several studies report the composition of Citrus medica
L. peel EOs, extracted from specimens of different provenience and belonging to diverse genotypes:
all these EOs showed a consistent limonene/γ-terpinene composition, with relevant contents of α- and
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β-pinene, as well [14–16]. Accounting for over 75% of the total composition, limonene was, instead,
the defining-compound for the Pompia peels EO.

On the other hand, the proximity of Pompia to lemon proposed by Mignani et al. [5], as well as
its classification as a lemon cultivar proposed by Camarda et al. [1], are only slightly more plausible.
Indeed, compared to the published compositions of lemon peel EO, Pompia differed for its α- and
β-pinene content: whilst these compounds were only detected in relative abundances lower than 0.5%
in the analyzed Pompia peel EO, they are reported as accounting for over 1.5% and 9.0% in Citrus lemon
(L.) Osbeck peel EOs, respectively [8,17].

The significant content of linalool in the EOs extracted from the peels of Pompia other parent,
Citrus × aurantium L., represents the main compositional difference between these two species [8,18].

The antioxidant activity of Pompia peel EOs was determined for the first time, and weak activities
were found in both the DPPH and FRAP assays. In the literature, only the antioxidant activity of
Pompia leaf EO was evaluated [8]: it showed a weak activity in relation to the reference compounds
(ascorbic acid or Trolox). Citrus EOs antioxidant activities have been reported for other species, such
as the peel EOs from Citrus maxima and Citrus sinensis, with IC50 values of 8.84 and 9.45 µL/mL,
respectively [19]. On the other hand, Choi et al. [20] evidenced a more relevant radical-scavenging
ability of Citrus EOs rich in γ-terpinene and terpinolene, but in the present work γ-terpinene was
not detected in Pompia peel EO, and terpinolene was only found in traces. Moreover, Choi et al. [20]
concluded that limonene, although dominant in the EO compositions, had no significant role in their
antioxidant activity [20].

The results dealing with the antifungal activity cannot be compared with other published data,
because the effectiveness of this EO has never been checked against molds. However previous studies
showed a poor activity of Citrus limon against the zoophilic dermatophyte M. canis [21]. Furthermore
some Citrus spp yielded MIC values ranging from 2.5% to more than 5% against A. fumigatus [22].

Pompia peel EO inactivity towards the Gram negative E. coli is consistent with the results obtained
with Pompia leaf EO by Fancello et al. [11], as well as other published studies, in which citrus EOs
exhibited a stronger antibacterial activity on Gram positive strains [11,23,24]. The results of the present
work also confirm the findings of Chubukov et al. [25]: E. coli resistance to limonene is due to its
ability to lower the toxicity of limonene hydroperoxide through an alkyl hydroperoxide detoxifying
enzyme, whose coding is a fitting advantage induced by an ahpC gene mutation [25]. Moreover, the
peel EO showed a lower amount of oxygenated monoterpenes, which seem to be linked to the EOs
antimicrobial properties [11,26].

4. Materials and Methods

4.1. Plant Material

The Pompia fruits and leaves were produced and collected by “Azienda Scuola Agraria di
Siniscola—I.P.S.A.S.R.”, Località San Narciso, Siniscola (NU, Sardinia, Italy). Identification and
collection were performed by Piercarlo Ferraris and Peppino Piquereddu of the agronomy school
(I.P.S.A.S.R.) in Località Ghiliorro, Siniscola (NU, Sardinia, Italy) in November 2018.

4.2. Essential Oils Extraction

The fruit fresh peels (flavedo) were manually squeezed to obtain a cold pressed essential oil (EO):
this volatile fraction was captured in a glass vial; HPLC grade n-hexane was added prior to GC–MS
injection. The flavedo was also separated from the albedo and hydro-distilled in a Clevenger-type
apparatus for 2 h: the obtained EO was diluted to 0.5% in HPLC grade n-hexane. The fresh leaves
were roughly cut and hydro-distilled in the same apparatus and diluted in the same ratio prior to
GC–MS injection.
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4.3. Gas Chromatography–Mass Spectrometry Analyses and Peaks Identification

As reported in Ascrizzi et al. [17], the GC/EI-MS analyses were performed with a Varian CP-3800
gas chromatograph (Agilent Technologies Inc., Santa Clara, CA, USA) equipped with a non-polar
DB-5 (Agilent Technologies Inc., Santa Clara, CA, USA) capillary column (length: 30 m; 0.25 mm
internal diameter; film thickness 0.25 µm) and a Varian Saturn 2000 ion-trap mass detector (Agilent
Technologies Inc., Santa Clara, CA, USA. The oven temperature program was set to rise from 60 ◦C to
240 ◦C at 3 ◦C/min. The set temperatures were as follows: injector temperature, 220 ◦C; transfer-line
temperature, 240 ◦C. The carrier gas was He, at 1 mL/min flow. The injection volume was set at
1 µL. The acquisition was performed with the following parameters: full scan, with a scan range of
35–300 m/z; scan time: 1.0 s; threshold: 1 count. The identification of the constituents was based on the
comparison of their retention times (tR) with those of pure reference samples and their linear retention
indices (LRIs), which were determined relatively to the tR of a series of n-alkanes. The detected mass
spectra were compared with those listed in the commercial libraries NIST 14 and ADAMS, as well as
in a homemade mass-spectral library, built up from pure substances and components of known oils,
and in MS literature data [27–32].

4.4. Antiradical Activity by Diphenyl-1-Picarylhydrazyl (DPPH) Assay

A modified version [33] of the method proposed by Petretto and al. [8] was used to perform the
radical scavenging activity. Different concentrations of EOs, in a range from 0.01 up to a maximum of
0.1 mg, were added to a solution of DPPH (100 µM in ethyl acetate), until a final volume of 1 mL was
reached. The mixtures were shaken and incubated at 25 ◦C in the dark for 30 min. The measurement
of the absorbance of the solution at 517 nm using a 1 cm quartz cuvette on a Shimadzu UV–1800
spectrophotometer was used to determine the reduction of the DPPH radical. The ascorbic calibration
curve in the range 0.5–10µg/mL was used as standard control. The percent inhibition of the DPPH radical
by the samples was calculated according to the formula: % inhibition = (Ablank − Asample/Ablank) × 100,
where Ablank is the absorbance of the DPPH radical without the antioxidant and Asample is the absorbance
of the samples. Plotting a graph of the inhibition percentage against extract concentration was performed
to calculate the concentration (µg/mL) of the extract providing 50% of antioxidant activities (IC50).
All determinations were performed in triplicate.

4.5. Ferric Reducing Antioxidant Power (FRAP) Assay

Minor modifications [34] to the ferric reducing antioxidant power (FRAP) method were used
to assess a second determination of the antioxidant power of Pompia peel EO. The freshly prepared
working solution always contained 7.5 mM acetate buffer, pH 3.6, 0.1 mM tripyridyltriazine (TPTZ),
and 0.05 mM FeCl3·6H2O. At low pH, the tripyridyltriazine (FeIII-TPTZ) complex is reduced to the
ferrous form (FeII): the reduced complex (FeII-TPTZ) exhibits an intensive blue color that can be
monitored spectrophotometrically at 593 nm. Aqueous solution of known FeII concentration was used
for calibration (in a range of 100–1000 µmol/L) as external standard reference.

4.6. Antifungal Activity

Antifungal activity of the EOs was checked against both dermatophytes and potentially toxigenic
fungi. In detail, a clinical isolate of M. canis, M. gypseum, T. mentagrophytes (from feline source),
respectively, and F. solani, A. flavus and A. niger isolated from the environment were used for antifungal
testing. The determination was carried out by a microdilution test, performed as recommended by
the Clinical and Laboratory Standards Institute (CLSI) M38-A2 for molds (2008) [35], with slight
modification, starting from a 5% dilution. Five percent, 2.5%, 2%, 1.5% and 1% dilutions in semisolid
medium were achieved. All the assays were performed in triplicate.
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4.7. Antibacterial Activity

To verify the antibacterial activity, the EOs were tested against Gram negative and Gram positive
bacteria. In particular, the analyses were carried out employing Escherichia coli, Staphylococcus aureus,
and Staphylococcus pseudointermedius strains, previously isolated from clinical canine specimens.

Minimum inhibitory concentration (MIC) was determined for all EOs with the broth microdilution
method, starting from a dilution of 10% (v/v) and following the guidelines of the Clinical and
Laboratory Standards Institute (CLSI) (1990) [36], with some modifications as previously reported [37].
All the assays were performed in triplicate.

5. Conclusions

From a phytochemical point of view, Pompia showed peculiar EO compositions for both its peel
and leaves, which seem to indicate its individuality as a species of its own, rather than its classification
as a genotype or variety of lemon, citron, or sour orange.

The Pompia peel EO exhibited a weak antioxidant activity, on both the DPPH and the FRAP
assays. Moreover, it exerted no antimicrobial activity, either on the tested Gram positive and negative
bacteria strains, or on the evaluated dermatophytes and environmental fungi.
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