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Abstract: Near-infrared spectroscopy is a known technique for assessing the quality of compounds
found in food products. However, it is still not widely used for predicting physical properties of meat
using the online system. This study aims to assess the possibility of application of a NIR equipped
with fiber optic system as an online measurement system to predict Warner–Bratzler shear force
(WBSF) value, cooking loss (CL), and color of longissimus lumborum muscle, depending on aging time.
The prediction model satisfactorily estimated the WBSF on day 1 and day 7 of aging as well as a*
color parameter on day one and CL on day 21. This could be explained by the fact that during beef
aging, the physicochemical structure of meat becomes more uniform and less differentiation of raw
data is observed. There is still a challenge to obtain a verifiable model for the prediction of physical
properties, using NIR, by utilizing more varied raw data.
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1. Introduction

Consumers’ perceptions of meat quality, especially beef, have been a focus of much of previous
works [1–4]. Beef quality attributes, which are important for consumers, can be divided into two
groups: intrinsic and extrinsic [5]. The color, marbling, overall appearance, tenderness, juiciness,
and palatability, as well as nutritional value and its change during the aging process, and other
attributes that cannot be altered without altering the product’s nature, are intrinsic characteristics.
Meanwhile, extrinsic attributes are features related to the product that are linked to “external” factors
such as production and processing practices [2,6]. It is worth noting that the importance of individual
quality indicators of beef has been changing over recent years as a result of increased consumer
awareness [7,8], but tenderness remains a major attribute in determining overall meat quality; it is
often considered as the crucial quality attribute of meat [9].

Beef tenderness changes during a muscle’s conversion into a meat product as a result of the
proteolysis process. The post-slaughter protein degradation progress in meat is strongly related
to aging process conditions. Therefore, monitoring of changes in beef tenderness during aging is
necessary [10].
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For this reason, the aging process for obtaining appropriate beef tenderness is required, which
has been well-documented [10–13]. However, for how long this process should be carried out remains
unknown. Beef tenderness also depends on the amount of intramuscular fat [14,15]. A high content of
intramuscular fat results in more tender meat, because fat has a softer structure than muscle tissue.
Additionally, the intramuscular fat content contributes to juiciness and improves palatability [16,17].

Despite the fact that beef tenderness is the primary consideration for consumer satisfaction,
tenderness is not a factor directly incorporated into the quality grading process. To improve beef
tenderness and overall quality, identification of tough carcasses must be a top priority for the beef
industry. To preserve the current market and acquire new ones, the meat industry needs to produce
consistent and high-quality beef. For this purpose, appropriate tools that are already available in the
technological line are required to assess the quality of meat. There are many methods for measuring
quality attributes (tenderness, color, flavor, water holding capacity (WHC), etc.) of culinary beef
cuts, but only after leaving the meat slaughterhouse and under laboratory conditions. However,
measurements to indicate the final quality of beef are not well developed yet. Time-consuming
traditional methods are not appropriate for online assessment of different levels of beef quality.
Therefore, a quick, accurate, and non-destructive method appropriate for online application [18,19]
must be developed for modern processing plants. Near-infrared spectroscopy (NIRS) can offer this
functionality due to the speed and ease of use and the ability to evaluate multiple quality parameters
in one measurement. Near-infrared (NIR) technology provides complete information about the
molecular bonds and chemical constituents in a scanned sample, so it is a convenient tool not only
for characterizing foods, but also for quality measurements and process control [20]. Optical devices
coupled to computers offer potentially high-speed data acquisition that may permit decision-making on
meat quality, albeit from a selected small surface area only [21]. The meat industry has successfully used
this technique for the prediction of chemical composition parameters such as fat, water, and protein
content [22–24]. There are many publications related to the possibilities of using NIRS in testing the
physical properties of meat [25,26]. On the basis of the NIR spectra of compounds found in the product,
many researchers studied the prediction of meat tenderness [27,28]. However, few publications
describe the use of near-infrared techniques to assess the quality of beef depending on aging time
and their results are not clear. Therefore, this study aims to assess the potential of NIRS equipped
with a fiber optic system (FOS) as an online measurement system to predict the Warner–Bratzler shear
force (WBSF) value, cooking loss (CL), and color of longissimus lumborum (LL) muscle depending on
aging time.

2. Results and Discussion

2.1. Characterization of Raw Material—Beef LL

Table 1 shows the descriptive data of pH and basic composition of LL muscle at 48 h post-mortem.
The observed results indicate that the raw meat was of normal quality (without defects) according to
Adzitey and Nurul [29]; thus, the obtained beef muscles were the subjects of the study.

Table 1. Mean ± standard deviation of pH and the basic meat composition of beef longissimus lumborum
(LL) muscle (N = 178 for each aging time).

Aging Time

D1 D7 D14 D21

pH 5.51 ± 0.15 5.55 ± 0.09 5.64 ± 0.11 5.68 ± 0.06
Water, % 74.51 ± 1.08 74.01 ± 1.05 73.11 ± 0.88 73.15 ± 0.79

Fat, % 2.44 ± 0.66 2.51 ± 0.46 2.58 ± 0.32 2.57 ± 0.48
Protein, % 22.41 ± 0.47 22.65 ± 0.87 23.24 ± 0.64 23.35 ± 1.01

Total connective
tissue, % 1.47 ± 0.27 1.51 ± 0.38 1.62 ± 0.41 1.64 ± 0.35
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With the extension of aging time, a decrease in water content in the meat is observed, which is
correlated with the amount of drip loss. The amount of drip loss is due to the post-mortem proteolysis
of cytoskeletal proteins [30,31]. Consequently, these processes have a significant impact on increasing
the percentage share of other nutritional components, such as protein, fat, connective tissue, and ash.

2.2. Reference Data

The mentioned reference values of beef LL muscle WBSF, color, and CL according to the aging
day are summarised in Table 2. WBSF, color, and CL analysis suggest that LL steaks were generally
more tender (lower WBSF), slightly lighter (higher L*), redder (higher a*), more yellowish (higher b*),
and with higher CL as aging time increased. The reduction of WBSF and the increment of CL are due
to the degradation of proteins in the aging process [10]. The increased beef color values after aging are
related to the influence limited by the enzymatic activity during vacuum aging, which resulted in a
deeper O2Mb layer that is created in the presence of air oxygen, and blooming process occurs faster
and more intensively [32]. Moreover, a higher lightness L*, after aging, can be explained by the protein
degradation process during aging, leading to weakening of the protein structures, which results in
higher light dispersion, thus increasing the lightness of the meat [10,33].

The highest coefficient of variation (CV) was reported for WBSF (>23%). However, the largest CV
for WBSF was obtained for LL samples in D7 and D21 (27.8% and 27.54%, respectively). The lowest
CV was L* lightness (<8%), irrespective of aging time. However, in the case of redness a*, yellowness
b*, and CL muscle in each day of aging, CV ranges were 11.38–15.44, 12.44–14.76, and 13.02–16.41
respectively. The value of the CV indicates that the data can guarantee significant calibration [34].
According to Andrés, [35], the acceptable CV level should be no less than 20%, while De Marchi [25]
claims that a range of CV 6%–19% for color index indicates the existence of exploitable variability in
developing calibration models.

Table 2. Reference values of Warner–Bratzler shear force (WBSF), color (L*, a*, b*), and cooking loss
(CL) of beef LL muscle measured by traditional methods (N = 178 for each aging day).

Aging Day Mean SD
Range

CV, %
min max

WBSF [N]

D1 44.60 11.97 22.01 77.64 26.85
D7 38.04 10.57 20.65 66.73 27.80

D14 33.27 7.78 15.69 59.81 23.37
D21 30.95 8.53 13.06 57.98 27.54

L* [%]

D1 37.49 2.75 30.43 45.19 7.33
D7 38.97 2.99 31.89 46.67 7.67

D14 39.97 3.14 32.06 47.37 7.86
D21 39.50 2.77 32.85 45.89 7.02

a*

D1 18.97 2.52 13.36 25.13 13.28
D7 21.49 2.45 15.47 26.21 11.38

D14 21.98 2.65 15.87 28.21 12.06
D21 21.72 3.35 16.11 26.01 15.44

b*

D1 8.92 1.18 5.06 11.74 13.29
D7 10.07 1.46 5.61 13.00 14.54

D14 10.39 1.53 5.45 13.38 14.76
D21 9.57 1.19 5.57 12.72 12.44

CL [%]

D1 28.34 3.69 21.74 37.22 13.02
D7 29.22 3.85 22.91 35.54 13.18

D14 31.13 4.52 21.82 36.23 14.52
D21 31.75 5.21 20.33 35.11 16.41

SD—standard deviation; CV—coefficient of variation; D1, D7, D14, D21—LL samples aged 1, 7, 14, 21
days, respectively.
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2.3. Chemometric Data Analysis

The mean raw spectrum [log (1/R)], corresponding to the complete sample set for each aging time
(89 LL samples), is represented in Figure 1. The first derivatives Savitzky–Golay (I DGS) pre-treatment
spectra of the meat samples are dominated by the water absorbance because there are two broad peaks
around 1460 and 1920 nm due to different forms of vibration of O–H bonds (1st and 2nd overtone,
respectively). Additionally, the minor NIR absorption bands in fat are a CH2 second overtone around
1200 nm, CH2 first overtones at around 1730 and 1770 nm, and CN bonds in the range of 2050–2100
nm [36]. There are no remarkable absorption bands in the region of 2000–2500 nm, probably because
these are obscured by the water signal [37].

In general, the average spectral signatures of 1d, 7d, 14d, and 21d samples had similar forms.
However, they were only different in the magnitude of absorbances (log(1/R)). The average log(1/R)
values of 1d aged samples were slightly higher than the 7d, 14d, and 21d aged samples throughout the
spectral range. Similar spectral dependences of tender and tough samples were reported previously in
predicting beef tenderness, using spectroscopy [38]. The meat aged 1d had a higher absorption rate
than the meat aged 7d, 14d, and 21d at most wavelengths, particularly for the wavelengths between
1150 and 1300 nm and between 1600 and 1800 nm. These are the absorption bands in the fat regions,
indicating changes in fat content. The changes in the fat content may result mainly from higher drip
loss during longer meat aging as shown in Table 1.
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Figure 1. Average first derivatives Savitzky–Golay (I DGS) pre-treatment spectra (log(1/R)) of
longissimus lumborum samples aged for 1 (d1), 7 (d7), 14 (d14) and 21 (d21) days.

2.4. Prediction of Instrumental WBSF, Color, and CL

Many different methods for beef tenderness prediction have been developed, such as computer
vision [39], hyperspectral imaging [40], and also spectroscopy in near-infrared (NIR) regions of the
electromagnetic spectrum [41]. Table 3 summarizes the results of prediction models for WBSF, color
(L*, a*, b*), and CL of LL muscle aged D1, D7, D14, and D21 in calibration and validation sets based on
spectra after using different pre-treatments: SNV, MSC, I DSG or II DSG. Preliminary analysis indicated
that the calibration models without any pre-treatment had a higher number of latent variables (Lv)
and lower coefficient of determination R2

c.
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Table 3. NIRS calibration and prediction statistics for WBSF, color (L*, a*, b*) and CL of LL muscle.

Spectral
Pretreatment Model No. of Lv R2

c SEC R2
p SEP RPD Bias

WBSF
[N]

D1 SNV PLS 3 0.65 4.22 0.62 4.83 2.48 0.15
D7 I DSG PLS 5 0.71 4.81 0.67 4.85 2.18 −0.12
D14 SNV PLS 5 0.54 4.89 0.49 5.02 1.55 −0.72
D21 SNV PLS 3 0.22 5.12 0.31 6.58 1.30 −0.96

L* [%]

D1 MSC PLS 3 0.46 2.4 0.33 2.79 0.98 −1.06
D7 MSC PCR 7 0.84 1.87 0.87 1.52 1.97 −0.27
D14 SNV PCR 5 0.34 2.91 0.35 2.89 1.09 0.88
D21 MSC PLS 8 0.12 1.74 0.23 1.85 1.50 0.43

a*

D1 I DSG PLS 6 0.60 1.08 0.57 1.17 2.15 0.14
D7 I DSG PLS 4 0.22 2.18 0.35 2.01 1.22 −0.75
D14 I DSG PLS 6 0.15 2.63 0.21 2.61 1.02 −0.83
D21 SNV PLS 5 0.21 4.45 0.46 2.16 1.55 −0.97

b*

D1 I DSG PLS 4 0.61 0.95 0.61 0.97 1.22 0.72
D7 MSC PCR 3 0.44 1.25 0.42 1.26 1.16 −0.95
D14 I DSG PCR 3 0.34 1.44 0.34 1.12 1.37 1.01
D21 II DSG PLS 2 0.25 0.98 0.29 1.11 1.07 0.75

CL

D1 I DSG PLS 3 0.64 3.49 0.47 3.64 1.01 0.83
D7 MSC PCR 5 0.13 6.03 0.07 6.12 0.63 1.23
D14 SNV PLS 4 0.23 3.94 0.27 3.9 1.16 −0.87
D21 SNV PLS 4 0.72 2.54 0.66 1.89 2.05 −0.11

D1, D7, D14, D21—LL samples aged 1, 7, 14, 21 days, respectively; SVN—standard normal variate;
MSC—multiplicative scatter correction; I DSG, II DSD first or second derivatives Savitzky–Golay, respectively;
PLS—partial least squares regression; PCR—principal component regression.

Partial least squares (PLS) models to predict WBSF were optimal for samples after each aging
day. WBSF models’ prediction had the highest R2

c (0.71), and R2
p (0.67) at the lowest standard

error of calibration (SEC) (4.81 N) and standard error of prediction (SEP) (4.85 N) were obtained for
samples aged 7d, using I DSG spectral pre-treatment routine, which resulted in a residual prediction
deviation (RPD) of 2.18. Bias was negative and close to zero (0.15), indicating that the predictive
model slightly overestimated WBSF values. The larger RPD of WBSF (2.48) was obtained for 1d LL
samples, although R2

c and R2
p were smaller (0.65 and 0.62, respectively), which was due to the larger

SD and slightly lower SEP than 7d aged samples. The predictive model underestimated WBSF values
slightly (Bias = 0.15). A similar tendency was noted by Liu et al. (26). However, results obtained in
this study were higher compared to results reported by Cluff et al. [42], who obtained the correlation
coefficient for calibration and validation at about 0.67 for striploin, but lower than those reported by
Saadatian et al. [40] for different beef muscles (top blade, tenderloin, rib eye, and top sirloin). The
higher value of R2

c, reported by Saadatian et al. [40], was probably related to higher wavelengths in
NIR (900–1700 nm) compared to NIR spectra of 400–1000 nm, which could have been more effective
in sensing chemical constituents such as protein, water, and fat. Also, the differences in correlation
coefficient value may result from the use of different muscles.

Of the color coordinates, the best prediction results were characterized by redness. Moreover,
only the model for samples aged 1d had RPD > 2 (2.15), with moderate values of R2

c (0.60) and R2
p

(0.57). This model was also the best when using the PLS and I DSG spectral pretreatment regression
and caused a slight underestimation of a* values (bias = 0.14). When the MSC pretreatment was used
for the PCR models to predict the L*, the R2

c, R2
p, and RPD were highest for the LL samples aged 7d,

although RPD was less than two, which, according to Prieto [43], indicates the low predictive utility of
this model. The low RPD is because of the variability of the results for samples on day one of aging,
which was higher than the variability of results in the later days of aging. This is due to the chemical
changes, occurring over time. This corresponds, for example, with the decreasing water content as
a function of time, and thus chemical changes take place more slowly [44]. However, Liu et al. [26]
received quite high R2 for predicting a* and b* values and was relatively low for the model predicting
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the L* value, which are the opposite results of our study. Adjustment of the meat color prediction
model is closely related to myoglobin content and its form due to the different molecular environment
of heme vibrations. Low prediction coefficients may be due to the small variability of the basic LL
muscle composition, and thus the obtained spectra, which in effect reduced the range of calibration
and effectiveness of prediction.

In the case of CL, the highest R2
c and R2

p values (0.72 and 0.66, respectively) and RPD (2.05), with
limiting SEC (2.54), SEP (1.89), Lv (4) and bias (−0.11) by using LL samples aged 21d, were observed.
These results are similar to those found by De Marchi [25] and are higher compared to Prieto et al. [45].

3. Materials and Methods

3.1. Raw Material and Preparation

The muscle longissimus lumborum (LL) was extracted at a local slaughterhouse from the left and
right sides of 89 beef carcasses from Holstein Friesian, with 62 bulls (average cold carcass weight =
323 kg ± 16 kg) and 27 heifers (average cold carcass weight = 245 kg ± 11 kg), which were 16–26
months of age. The animals were slaughtered in accordance with internal regulations and under Polish
General Veterinary Inspectorate inspection. Carcasses were classified using the SEUROP classification
scale for conformation (S—superior; E—excellent; U—very good; R—good; O—fair; P—poor). The fat
cover classification consists of a 1–5 scale: 1—low, 2—slight, 3—average, 4—high, 5—very high. Cold
carcasses were graded as R to O-, conformation with fat cover of 1+ to 3+. For each carcass, the LL
muscle was removed (freed of external fat and visible connective tissue) 48 h postmortem, chilled
to 3 ◦C and cut into 5–6 steaks 2.5 cm thick from each LL muscle (left and right, respectively), with
a sample weight of 240 g ± 22 g. These were randomly assigned (for left and right side of carcass
seperately) to the next stages of experiments. Each steak (N = 178 per individual aging time) was
placed individually in PA/PE bags and vacuum packaged, using a Vac-20 SL2A packaging machine
(Edesa Hostelera S.A., Barcelona, Spain). The steaks were then wet-aged at 2 ± 1 ◦C for 1 d, 7 d, 14 d,
and 21 d. At each aging time, steaks were removed from the vacuum package and were bloomed while
protecting from light for 30 min at 2 ± 1 ◦C on plastic trays, and NIR scanning and instrumental color
measurement were done. The steaks were then re-packaged with vacuum and blast frozen (−25 ◦C)
for subsequent cooking for WBSF and CL.

3.2. NIR Spectroscopy Technology

Whole meat samples were scanned after 30 min of bloom, using a NIRFlex N-500 FT-NIR
spectrometer with Fiber-Optic Solids (FOS) probe equipped with the software NIRWare (Büchi
Labortechnik AG, Flawil, Switzerland). A FOS probe (2 m length, 4 mm outer diameter optical
fibers, and 560 optical fibers in bundle) was used to transmit reflected light from the sample surface to
extended range InGaAs detector (temperature controlled) and polarization interferometer with TeO2

wedges. A 20-W tungsten halogen was used as the light source. Each steak was placed on a flat surface
and scanned at the top of the muscle in six different locations by holding the probe on the muscle fiber
in a perpendicular orientation (n = 6). Thirty-two scans were averaged for every spectrum for one
location. These six measurements/spectrum were then averaged to obtain the spectral data for the meat
samples. Samples were scanned in reflectance mode from 10,000 to 4000 cm−1 at 8 cm−1 resolution.
A ceramic tile or internal reference panel was used as a white reference between each sample.

3.3. Spectrometric Quantification of Basic Meat Composition

Beef composition (water, fat, protein, and total connective tissue content) was determined using a
near-infrared spectrometer NIRFlex N-500 (Büchi) (Flawil, Switzerland). Measurements were taken
using a NIRFlex Solids module of spectral range 12,500–4000 cm−1 in reflectant mode. Meat portions
of 100 g were homogenized and placed in a petri dish, covering the surface with a 0.5 cm layer. Three
measurements of each sample (n = 3) were taken at a 32 scanning rate (23).
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3.4. pH Value Evaluation

The pH value of muscles was measured in LL muscle according to the PN-ISO 917:2001/Ap1:2002
standard. pH-metric results were obtained by using a Testo 205 series pH-meter (Pruszków, Poland)
equipped with an insertion glass electrode, which was placed directly into the samples (2 cm deep into
the steaks). Each measurement was performed in three repetitions (n = 3), taking the mean value as
the result. The temperature of the samples during measurements was 2 ± 1 ◦C.

3.5. Instrumental Color Measurement in CIE L* a* b* System

Instrumental color analysis of beef was determined, using a Minolta CR-400 chromometer
calibrated against a white plate (L* = 98.45, a* = −0.10, b* = −0.13), using an 8 mm aperture, illuminate
D65 (6500 K color temperature) at a standard observation of 2◦. L* (lightness ranged from 0 to 100), a*
(color axis ranged from greenness (−a*) to redness (+a*)), and b* (color axis ranged from blueness (−b*)
to yellowness (+b*)). Color measurements of the steak were taken from five locations, including every
quarter and the centers of the surfaces, and the mean value was taken by taking the average of five
measurements (n = 5) [46]. Data were collected within a 30 min blooming period under refrigerated
conditions (2 ± 1 ◦C).

3.6. Warner–Bratzler Shear Force Determination

After aging, meat samples were prepared for shear force analysis according to Wyrwisz et al. [32].
The steaks (100 ± 10 g) were cooked individually in closed PA/PE bags immersed in a water
bath (Memmert, WNE 14, Schwabach, Germany) at 80 ◦C, to achieve a final internal temperature
of 71 ◦C. They were subsequently cooled down in cold water and stored overnight at 3 ± 1 ◦C.
Instrumental measurement of WBSF was conducted using a universal testing machine, Instron (Model
5965, Norwood, MA, USA), with a Warner–Bratzler shear attachment, consisting of a V-notch blade,
according to Wyrwisz et al. [29]. Six cores (1.27 cm in diameter and 2.5 ± 0.2 cm in length) were
obtained from each steak, parallel to the muscle fiber’s orientation. A 500 N load cell was used, and the
crosshead speed was set at 200 mm/min.

3.7. Cooking Loss

The percentage of CL was determined through measurement of sample mass before (Mi) and after
heat treatment and after cooling to ambient temperature (Mf) (n = 3). Heat treatment was performed
as in Section 3.6. CL was calculated according to the Equation (1)

CL =

(
1 − Mf

Mi

)
·100%, (1)

3.8. Statistical Analysis Data Analysis

The chemometric software NIRCal 5.5.3000 (Büchi Labortechnik AG, Flawil, Switzerland) was
used to create the quantitative calibration and validation models. Two thirds of the spectra was used
as calibration set and 1/3 as validation set. The spectral data points obtained from the spectrometers
were processed, using multivariate data analysis with the purpose of developing calibration models for
predicting the reference information from the WBSF, L*, a*, b*, and CL. Predictions based on spectral
information were performed with partial least squares regression PLSR (after centering of the data) or
principal component regression (PCR) with optimal number latent variables (Lv) by describing the
maximum covariance between the spectral information and references. Spectral pre-treatments data,
such as standard normal variate (SNV), multiplicative scatter correction (MSC) and first or second
derivatives Savitzky-Golay (I DSG and II DSG, respectively), were applied to the spectra with the
purpose of reducing noise and scattering effects and, thus, to obtain the optimal calibration model [47].
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In the internal full cross-validation process, the prediction capability of the model was evaluated,
using the coefficient of determination in calibration (R2

c), standard error of calibration (SEC), coefficient
of determination in prediction (R2

p), and standard error of prediction (SEP). Moreover, the prediction
models were evaluated using the residual prediction deviation (RPD = SD/SEP) [34]. An RPD value
above 3 is considered adequate for routine analysis, between 2 to 3 represents a good prediction,
and less than 1.5 indicates incorrect prediction and the model cannot be used for prediction [43]. The
best model was selected with respect to the highest R2

p and RPD, the lowest SEP, and limitation of the
number of latent variables (<10) [43]. Moreover, the accuracy of the correlation (bias), calculated as the
systematic difference between the predicted values (yi) and the measured values (xi), was determined
(Equation (2)). The value of the bias should be close to zero for accurate calibration models.

Bias = ∑n
i=1(xi − yi), (2)

4. Conclusions

This study was conducted to assess the possibility of using Fourier transform near-infrared
spectroscopy (FT-NIR) with a fiber optic probe to predict WBSF value, CL, and color of longissimus
lumborum muscle, depending on aging time. To accomplish this, partial least squares (PLS) regression
at optimal wavelengths was conducted. The results showed that FT-NIR has potential as an online
and non-destructive tool for beef tenderness prediction. However, there is still a need to improve the
predictive model’s accuracy. This could be rationalized by the fact that only on some days of aging,
the values of RPD were above 2.

Even though the PLS model is not fully satisfactory for it to be implemented in the beef industry
to predict tenderness, redness, and CL, improvement of this model could be applied for measuring
WBSF, a*, and CL with high accuracy using non-destructive NIR measurement regardless of the aging
day. Thanks to this, multi-parametric, non-destructive, and quick assessment of beef quality will be
possible, indicating the minimum aging time determining the proper aging degree of beef, greater
meat tenderness and more attractive color.
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