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Abstract: Artemisia integrifolia L. (Compositae) is a medicinal and edible plant. To investigate its
antihyperlipidemic effect, a crude lipophilic extract and the composing compounds were isolated
and fractioned from the petroleum ether extract of aerial parts of A. integrifolia using column
chromatography on silica gel. The anti-hyperlipidemia effect was studied in a rat model of acute
hyperlipidemia, which was induced by triton WR-1339. A new compound, integrinol (4), together
with nine known compounds, namely chamazulene (1), acetylenes (E)-2 (2), acetylenes (E)-3 (3),
eugenol (5), palmitic acid (6), oleic acid (7), linoleic acid (8), linolenic acid (9) and 12,13-epoxylinolenic
acid were isolated from the crude lipophilic extract of A. integrifolia. The LD50 value of the
crude extract was more than 4 g/kg. In Triton WR-1339-induced acute hyperlipidemia model,
the crude lipophilic extract (200 mg/kg) significantly reduced total cholesterol (TC) by 70% (p ≤ 0.01)
and triglycerides (TGs) by 94% (p ≤ 0.001). The fractioned compounds, such as chamazulene
(1), acetylene-2 (2), and linolenic acid (9), used at 4 mg/kg dose, also significantly decreased the
concentrations of TC (32%, 33% and 64%, respectively) and TGs (48%, 33% and 93%, respectively).
These compounds (i.e., chamazulene, acetylenes (E)-2, and linolenic acid) were considered to be
responsible for the bioactive antihyperlipidemic effect. In conclusion, the crude lipid extract of
Artemisia integrifolia L. could be used as a potential treatment to avert hyperlipidemia. Further studies
to confirm these results in other models of hyperlipidemia (e.g., diet-induced obesity) are warranted.
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1. Introduction

Hyperlipidemia is defined as an increase in plasma lipids, which has been considered to be
an important factor in the occurrence and severity of atherosclerotic cardiovascular diseases [1–3].
Clinical trials have shown that the increase of TC and TG in plasma is related to the development
of atherosclerosis [4]. In the past few years, finding new drugs that can reduce and regulate the
levels of TC and TG in plasma had been a hot topic, leading to numerous reports on the significant
activity of natural drugs [5]. Herbal medicines have been proven to be powerful treatments for a
variety of human diseases, including cancer, atherosclerosis, ulcers, diabetes, kidney disease and liver
disease [6]. As an important component of national medicine, traditional Mongolian medicine is
a Chinese medicine system localized in Inner Mongolia, with a long history of use of plant-based
medicines in the treatment of cardiovascular diseases.

A. integrifolia (Composite) is widely distributed in Inner Mongolia where it is used as a medicinal
and edible plant [7,8]. Modern pharmacological studies have demonstrated that its ethanol extract
possesses very good superoxide, hydroxyl and nitric oxide free radical scavenging activities and can
inhibit lipid peroxidation [9].
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With regard to its chemical constituents, fatty acids, acetylenes, phenylpropanoids and terpenoids
were isolated from the ether extract of A. integrifolia in previous studies [10–12]. These compounds
exhibited many pharmacological activities [13,14]. For example, eugenol protects the liver from
damage by scavenging free radicals, increasing the activity of SOD, GSH-px and CAT, and reducing the
synthesis of MDA. Linolenic acid can increase the levels of EPA and DHA in platelets and erythrocytes,
and reduce the production of arachidonic acid. However, until recently, there are only very few reports
available on the antihyperlipidemic activity, identification and isolation of the lipophilic components
from A. integrifolia [10], all of which may have a significant impact on the development of novel
therapeutic options to treat hyperlipidemia, and related conditions.

2. Results and Discussion

2.1. Structure Elucidation of Compounds 1–10 from the Crude Lipophilic Components

For obtaining the most useful chemical information, column chromatography and nuclear
magnetic resonance spectroscopy were used to isolate and identify the crude lipophilic components
of A. integrifolia. A new compound, integrinol (4), was isolated and identified from crude lipophilic
components by chromatographic fractionation, together with nine known compounds, namely
chamazulene (1) [15], acetylenes (E)-2 (2) [16], acetylenes (E)-3 (3) [16], eugenol (5) [17], palmitic
acid (6) [17], oleic acid (7) [17], linoleic acid (8) [18], linolenic acid (9) [19] and 12,13-epoxylinolenic acid
(10) [19] (Figure 1). The purity of each compound was determined to be above 98% by normalization
of the peak areas detected by HPLC.
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Figure 1. Structure of compounds 1–10: chamazulene (1); acetylenes (E)-2 (2); acetylenes (E)-3 (3); 
integrinol (4); eugenol (5); palmitic acid (6); oleic acid (7); linoleic acid (8); linolenic acid (9); 
12,13-epoxylinolenic acid (10). 

Compound 4 was obtained as a white needles. UV (MeOH) λmax (nm) (log ε): 263 (3.21); IR 
(KBr) νmax (cm−1): 1685, 1653, 1585, 1481, 1308 and 1113 cm−1. The molecular formula was determined 
to be C15H18O4 by HR-ESI-MS (m/z 261.2920 [M − H]-; calcd. for 261.2931). The 1H-NMR spectrum 
(Figures S1–S6) of 4 (Table 1) showed two olefinic signals at δH 7.57 (1H, d, J = 15.5 Hz) and 6.42 (1H, 

Figure 1. Structure of compounds 1–10: chamazulene (1); acetylenes (E)-2 (2); acetylenes (E)-3
(3); integrinol (4); eugenol (5); palmitic acid (6); oleic acid (7); linoleic acid (8); linolenic acid (9);
12,13-epoxylinolenic acid (10).

Compound 4 was obtained as a white needles. UV (MeOH) λmax (nm) (log ε): 263 (3.21); IR (KBr)
νmax (cm−1): 1685, 1653, 1585, 1481, 1308 and 1113 cm−1. The molecular formula was determined to
be C15H18O4 by HR-ESI-MS (m/z 261.2920 [M − H]−; calcd. for 261.2931). The 1H-NMR spectrum
(Figures S1–S6) of 4 (Table 1) showed two olefinic signals at δH 7.57 (1H, d, J = 15.5 Hz) and 6.42 (1H, d,
J = 15.5 Hz), which suggested the presence of a trans olefinic group in compound 4. In addition, the
signals of three aromatic protons at δH 7.43 (1H, brd, J = 8.5 Hz), 6.77 (1H, d, J = 8.5 Hz), 7.39 (1H, brs)
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indicated the presence of an ABC system, which was confirmed by the HMBC correlations from δH

7.43 to δC 145.3 (C-7), 162.1 (C-4) and 125.2 (C-2), and 7.39 to δC 162.1 (C-4), 130.4 (C-6), 145.3 (C-7) and
31.6 (C-1′), and 6.77 to δC 126.9 (C-1) and 129.0 (C-3). The 1H-NMR of 4 also exhibited the presence of
methyl protons at δH 0.86 (3H, s) and methoxy protons at δH 3.69 (3H, s).

Table 1. 1H and 13C-NMR data (500 and 125 MHz, resp.; d6-DMSO) of integrinol (4).

Position δH (ppm), J (Hz) δC (ppm) HMBC

1 — 126.9
2 7.39 (brs, 1H) 125.2 C-4, C-6, C-7, C-1′

3 — 129.0
4 — 162.1
5 6.77 (d, 1H, J = 8.5 Hz) 109.5 C-1, C-3
6 7.43 (brd, 1H, J = 8.5 Hz) 130.4 C-2, C-4, C-7
7 7.57 (d, 1H, J = 15.5 Hz) 145.3 C-2, C-6, C-8, C-9
8 6.42 (d, 1H, J = 15.5 Hz) 114.5 C-1, C-9
9 — 167.5

1′ 3.17 (dd, 1H, J = 16.0, 9.0 Hz)
2.98 (dd, 1H, J = 16.0, 8.5 Hz) 31.6 C-2, C-4, C-2′, C-3′

2′ 4.77 (dd, 1H, J = 9.0, 4.5 Hz 85.7 C-3, C-4′, C-5′

3′ 1.95 (m, 1H) 40.7

4′ 3.51 (dd, 1H, J = 10.5, 5.0 Hz)
3.05 (dd, 1H, J = 10.5, 6.5 Hz) 62.8 C-2, C-4, C-2′, C-3′

5′ 0.86 (d, 3H, J = 7.0 Hz) 12.3 C-2′, C-3′, C-4′

-OCH3 3.69 (3H, s) 51.7 C-9

In the HMBC spectrum (Table 1), the methoxy protons (δH 3.69) were correlated with the carbon
signal at δC 167.5 (C-9), which revealed that the methoxy group was linked to C-9. Likewise, the
methyl protons (δH 0.86) were correlated with the carbon signals at δC 85.7 (C-2′), 40.7 (C-3′) and 62.8
(C-4′). In addition, the HMBC correlations from δH 7.57 (1H, d, J = 15.5 Hz, H-7) to C-2 (δC 125.2), C-6
(δC 130.4), C-8 (δC 114.5) and C-9 (δC 167.5), and 6.42 (1H, d, J = 15.5 Hz, H-8) to C-1 (δC 126.9) and
C-9 (δC 167.5), and 4.77 (1H, dd, J = 9.0, 4.5 Hz, H-2′) to C-1′ (δC 31.6), C-4′ (δC 62.8) and C-5′ (δC 12.3)
further confirmed the structure of 4. In the NMR spectrum, the coupling constant value, J2′ ,3′ = 4.5 Hz,
suggested a cis-diaxial coupling between H-2′ and H-3′. In the NOESY spectrum, the H-2′ showed a
strong correlation with H-3′, whereas the H-2′ showed no correlation with the proton at δH 1.01 (H-5′).
If H-2′ and H-3′ adopt an β-orientation, H-5′ should be in an α-orientation [20]. Thus, the structure of
compound 4 was elucidated and it was named integrinol.

2.2. Acute Toxicity

No mortality was observed in groups of rats treated with the crude lipophilic components. LD50

value for the crude lipophilic components was more than 4 g/kg.

2.3. Effects of Crude Lipophilic Components and Compounds 1,2,9 on Triton WR-1339-Induced Hyperlipidemia
in Rats

Hyperlipidemia is one of the main causes of serious harm to human health. The incidence of
hyperlipidemia in the general population was 20–40%, increasing at an estimated rate of ten thousand
people per day [21]. High levels of TC, TG and LDL-C are the major risk factors for vascular disease,
and high levels of HDL-C have a protective effect against its development. At present, although
synthetics hypolipidemic drugs dominate the market, the toxic components of these drugs cannot be
eliminated [22]. Herbal medicines are being studied and applied more to maintain our basic health
because of the adverse effects of synthetic drugs and chemicals [23]. Many Mongolian medicinal
plants, such as Choerospondias axillaries (Roxb.) Burtt et Hill [24], Syringa pinnatifolia Hemsl [25] and
Salvia miltiorrhiza Bge [26], have been used to treat cardiovascular diseases.
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The aim of this study was to investigate the hypolipidemic properties of the lipophilic components
and some compounds isolated from Artemisia integrifolia in a model of hyperlipidemia induced by
Triton WR-1339 in rats. Triton WR-1339 is a non-ionic detergent widely used to prevent the uptake
of lipoproteins from plasma by peripheral tissues resulting in an increase in the levels of circulating
lipid [27]. Triton-induced hyperlipidemia rat models are often used to screen natural or chemical
hypolipidemic drugs [28]. Several studies have shown that systemic administration of Triton WR-1339
can rapidly increase plasma lipid levels in rats and mice [29].

Repeated daily oral treatments of rats with simvastatin (4 mg/kg), the crude lipophilic
components (200 mg/kg) and compound 9 (4 mg/kg), consecutively, resulted in significant (p < 0.05)
and dose-dependent decreases in the average body weight when compared to the untreated normal
rats (Table 2). The TC, TGs, HDL-C and LDL-C levels in plasma of all groups 24 h after Triton WR-1339
injection are shown in Table 3.

Table 2. Effect of repeated daily oral treatments with simvastatin, the crude lipophilic components
and compounds in the average body weightof rats on day 1 and 15 before intraperitoneal injection of
triton WR-1339.

Groups Average Body Weight (g)

Day 1 Day 15

I 195.73 ± 9.77 250.15 ± 9.96
II 195.12 ± 11.73 249.63 ± 12.86
III 195.91 ± 11.07 233.75 ± 6.59 *
IV 198.06 ± 10.77 240.85 ± 4.55
V 196.7 ± 11.29 231.28 ± 9.89 *
VI 198.41 ± 10.86 242.67 ± 10.83
VII 199.35 ± 11.92 247.55 ± 10.50
VIII 198.93 ± 11.96 232.08 ± 11.71 *

* Represent significant decreases at p < 0.05, when compared to Group I values.

Table 3. Effect of the crude lipophilic components and compounds 1, 2, 9 on plasma lipid levels in
Triton WR-1339-induced hyperlipemic rats after 24 h.

Parameters TGs (mmol/L) TC (mmol/L) HDL-C (mmol/L) LDL-C (mmol/L)

CG 0.68 ± 0.15 1.53 ± 0.18 1.17 ± 0.19 0.27 ± 0.07
HG 11.8 ± 1.32 ### 7.14 ± 1.73 ### 0.81 ± 0.10 ### 0.95 ± 0.21 ###

PCG (simvastatin, 4 mg/kg) 1.53 ± 1.04 ** 2.19 ± 0.64 ** 0.97 ± 0.25 0.65 ± 0.15 **
TG IV (crude lipophilic components, 100

mg/kg) 1.19 ± 0.56 *** 4.65 ± 1.40 * 1.15 ± 0.15 * 0.70 ± 0.23 *

TG V (crude lipophilic components, 200
mg/kg) 0.69 ± 0.16 *** 2.13 ± 0.50 ** 1.26 ± 0.26 ** 0.55 ± 0.19 **

TG VI (compound 1, 4 mg/kg) 6.13 ± 1.52 ** 4.80 ± 1.67 * 1.24 ± 0.34 ** 0.72 ± 0.20 *
TG VII (compound 2, 4 mg/kg) 7.93 ± 1.41 ** 4.77 ± 1.48 * 1.39 ± 0.52 ** 0.67 ± 0.17 **
TG VIII (compound 9, 4 mg/kg) 0.75 ± 0.22 *** 2.54 ± 0.75 *** 1.06 ± 0.12 * 0.58 ± 0.14 **

All values represent mean ± SEM for eight animals. ### (p ≤ 0.001) Values deviate very significantly from the CG
values. *** (p ≤ 0.001), ** (p ≤ 0.01) and *(p ≤ 0.05) Values deviate significantly from the HG values.

Compared to the CG (control group), Triton WR-1339 caused a significant increase the levels of
TC, TGs and LDL-C in plasma (p < 0.001) of the HG (hyperlipidemic group). In reality, the increase
of TC level in plasma of the HG was 367% after 24 h in comparison with the CG. The TGs level in
the HG was also elevated by 1640% after 24 h. Meanwhile, the LDL-C level in HG was increased by
252% after 24 h as compared to the CG, while a significant decrease (31%, p < 0.001) in the HDL-C was
shown 24 h after Triton WR-1339 injection. Compared to the HG, the crude lipophilic components
displayed a significant decrease in TC (35 and 70% at 100 and 200 mg/kg) and in TG (90 and 94% at
100 and 200 mg/kg); LDL-C level was reduced by 26 and 42% at 100 and 200 mg/kg, respectively; a
significant increase in HDL-C by 41 and 56% at 100 and 200 mg/kg, respectively, was also indicated.
Significantly elevated plasma TGs levels (by 87%, 48%, 33% and 93%) were exhibited in simvastatin-,
compound 1-, 2- and 9-treated rats, respectively, with respect to HG and in TC (69%, 32%, 33% and
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64% in simvastatin-, compound 1, 2 and 9-treated rats). LDL-C level was reduced by 32%, 24%, 29%
and 39% in simvastatin-, compound 1, 2- and 9-treated rats, respectively; a significant increase in
HDL-C by 20%, 53%, 72% and 31% in simvastatin-, compound 1, 2- and 9-treated rats, respectively,
was also observed.

The data in this study showed that the plasma TC, TGs and LDL-C levels were significantly
decreased and the plasma HDL-C level was significantly increased at the 24 h of injection of Triton
WR-1339 after the treatment with the crude lipophilic components in a dose-dependent manner for
15 d. The hypolipidemic action of the crude lipophilic components was obviously higher for TG
than for TC. The results showed that oral dose of 4 mg/kg of chamazulene (1), acetylene (E)-2 (2)
and linolenic acid (9) had antihyperlipidemic effect, because they could inhibit the elevation of TC,
LDL-C and TG levels in Triton WR-1339-induced hyperlipidemia rat model. Compounds 1, 2 and
9- had similar hypolipidemic effects with crude lipophilic components, and their effects on TG were
higher than those of TC. These results can be explained by understanding that the significant increase
in plasma TC and TG levels after Triton WR-1339 administration is mainly due to the increased
secretion of very low density lipoprotein (VLDL) by the liver. The proportion of TG in VLDL is several
times that of cholesterol and decreases sharply with the decomposition and metabolism of VLDL and
LDL [30]. After administration of Triton WR-133924 h, the level of HDL-C increased significantly
with compounds 1, 2 and 9, which may have anti-atherosclerotic effects [31]. HDL enhanced the
mobilization of TG and TC from plasma to liver and made them decompose and secrete in the form of
bile acids [32].

In conclusion, the crude lipophilic components and compounds 1, 2 and 9 could ameliorate
the lipid profile in Triton-induced hyperlipidemic rats. The results of this study show a promising
application prospect, but more studies are needed to understand the exact mechanism of these novel
compounds as antihyperlipidemic agents and to clarify their structure-activity relationships.

3. Experimental Section

3.1. General Information

A Shimadzu UV-2201 spectrometer (Shimadzu, kyoto, Japan) was used to record the he UV spectra.
The IR spectra were recorded in KBr discs on a Thermo Nicolet 200 double beam spectrophotometer
(Shimadzu). A Waters Xevo G2-S QT (Waters, Milford, MA, USA) was used to measure the HR-ESI-MS
spectra. NMR spectra were measured on a Bruker AV–500 spectrometer (Bruker, Karlsruhe, Germany)
with tetramethylsilane (TMS) as the internal reference, and chemical shifts are expressed in ä (ppm).
Column chromatography was performed by using silica gel (200–300 mesh, Marine Chemical Factory,
Qingdao, China). Fractions were monitored by TLC (silica gel GF25410–40µm, Marine Chemical
Factory, Qingdao, China), and spots were visualized by heating silica gel plates sprayed with 10%
H2SO4 in EtOH.

3.2. Plant Material and the Crude Lipophilic Components from A. integrifolia

Aerial parts of A. integrifolia were collected in Humeng, Inner Mongolia (China), in June 2016.
The plant materials were identified by Prof. Wuxiangjie (Inner Mongolia University for Nationalities)
and voucher specimens (no. 20160628) were stored in the Mongolian Medicine Research Center, Inner
Mongolia University for Nationalities. The powdered air dried aerial parts of A. integrifolia (5 kg) were
extracted twice with petroleum (20 L) under reflux and concentrated under vacuum. The petroleum
ether extract was fractionated by column chromatography on silica gel with hexane and hexane–ethyl
acetate (v:v, 40:1). The hexane-ethyl acetate (v:v, 40:1) fraction was vacuum evaporated to recover the
solvent giving the crude lipophilic components (900 g). The crude lipophilic components were stored
in a refrigerator (0–4 ◦C) for further use.
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3.3. Isolation of the Crude Lipophilic Components

The crude lipophilic components (50.0 g) was isolated by column chromatography on silica gel
using a gradient of cyclohexane–ethyl acetate (80:1 to 10:1) to give 5 fractions (Fr. C1–5). Fr. C1 [(225 mg,
cyclohexane–ethyl acetate (80:1) eluate] was chromatographed on silica gel column eluting with
cyclohexane to give 1 (38 mg). Fr. C2 [(880 mg, cyclohexane–ethyl acetate (60:1) eluate] was subjected
to silica gel column chromatography using cyclohexane–ethyl acetate with increasing polarity (80:1;
60:1; 40:1) to give 2 (49 mg), 3 (15 mg) and 4 (19 mg). Fr. C3 [(650 mg, cyclohexane–ethyl acetate (50:1)
eluate] was separated by thin-layer chromatography (TLC) (cyclohexane–ethyl acetate, 20:1) yielding 5
(21 mg) and 6 (28 mg). Fr. C4 [(475 mg, cyclohexane–ethyl acetate (40:1) eluate] was separated by TLC
(cyclohexane–ethyl acetate, 15:1) yielding 7 (19 mg) and 8 (25 mg). Fr. C5 [(320 mg, cyclohexane–ethyl
acetate (20:1) eluate] was separated by TLC (cyclohexane–ethyl acetate, 10:1) yielding 9 (41 mg) and 10
(18 mg).

3.4. Characterization Data of Known Compounds

Chamazulene (1): Dark blue oil. 1H-NMR (CDCl3, 500 MHz) δH: 8.17 (s, H-4, 1H), 7.64 (d, J = 3.0 Hz,
H-2, 1H), 7.40 (d, J = 9.0 Hz, H-6, 1H,), 7.25 (d, J = 3.0 Hz, H-1, 1H), 7.03 (d, J = 9.0 Hz, H-7, 1H), 2.89 (q,
J = 7.0 Hz, H-12, 2H), 2.83 (s, H-14, 3H), 2.66 (s, H-11, 3H), 1.39 (d, J = 7.0 Hz, H-13, 3H); 13C-NMR
(CDCl3, 125 MHz) δC: 144.4 (C-9), 136.6 (C-6), 136.0 (C-2), 135.6 (C-5), 134.5 (C-4), 127.1 (C-8), 125.5
(C-10), 125.3 (C-3), 124.8 (C-7), 112.5 (C-1), 33.6 (C-12), 24.4 (C-14), 12.6 (C-11), 17.7 (C-13).

Acetylene-2 (2): Yellowish oil. 1H-NMR (CDCl3, 500 MHz) δH: 6.69 (d, J = 6.5 Hz, H-8, 1H), 6.22 (dd, J
= 6.5, 2.0 Hz, H-9, 1H), 4.96 (s, H-6, 1H), 4.13–3.85 (m, H-13, 2H), 2.08–1.64 (m, H-11, 12, 4H), 1.95 (s,
H-1, 3H); 13C-NMR (CDCl3, 125 MHz) δC: 168.2 (C-7), 136.5 (C-9), 124.9 (C-8), 119.9 (C-10), 79.8 (C-6),
79.4 (C-2), 76.6 (C-4), 71.3 (C-5), 69.3 (C-13), 65.5 (C-3), 35.9 (C-11), 24.1 (C-12), 4.64 (C-1).

Acetylene-3 (3): Yellowish oil. 1H-NMR (CDCl3, 500 MHz) δH: 6.67 (d, J = 6.5 Hz, H-8, 1H,), 6.25 (dd, J
= 6.5, 1.0 Hz, H-9, 1H), 4.91 (s, H-6, 1H), 4.01 (td, J = 11.0, 3.0 Hz, Ha-14, 1H), 3.85 (1H, dd, J = 11.5, 4.0
Hz, Hb-14), 2.01 (s, H-1, 3H,), 1.87–1.59 (m, H-11, 12, 13, 6H); 13C-NMR (CDCl3, 125 MHz) δC: 169.3
(C-7), 138.1 (C-9), 125.4 (C-8), 112.2 (C-10), 79.7 (C-2), 79.2 (C-6), 76.5 (C-4), 71.7 (C-5), 65.1 (C-3), 64.1
(C-14), 32.3 (C-11), 24.6 (C-12), 19.5 (C-13),4.70 (C-1).

Eugenol (5): Colourless oil. 1H-NMR (CDCl3, 500 MHz) δH: 6.88 (d, J = 8.0 Hz, H-5, 1H), 6.73 (d, J =
8.0 Hz, H-6, 1H), 6.69 (s, H-2, 1H), 5.96–5.93 (m, H-8, 1H), 5.13–5.10 (m, Ha-9, 1H), 5.05–5.03 (m, Hb-9,
1H), 3.88 (s, 3H), 3.37 (d, J = 8.0 Hz, H-7, 2H); 13C-NMR (CDCl3, 125 MHz) δC: 131.9 (C-1), 111.1 (C-2),
146.4 (C-3), 144.2 (C-4), 114.2 (C-5), 121.2 (C-6), 39.9 (C-7), 137.8 (C-8), 115.5 (C-9), -OCH3 (55.9).

Palmitic Acid (6): White solid. 1H-NMR (CDCl3, 500 MHz) δH: 2.39 (t, J = 7.5 Hz, H-2, 2H), 1.69–1.65
(m, H-3, 2H), 1.38–1.36 (m, H-15, 2H), 1.35–1.29 (m, H-4~13, 16H), 1.27–1.25 (m, H-14, 2H), 0.90 (t, J =
6.5 Hz, H-16, 3H). 13C-NMR (CDCl3, 125 MHz) δC: 178.9 (C-1), 34.1 (C-2), 32.1 (C-14), 29.7 (C-6, 7, 8, 9,
10, 11), 29.4 (C-5, 12), 28.9 (C-4, 13), 24.6 (C-3), 22.3 (C-15), 14.4 (C-16).

Oleic Acid (7) White solid. 1H-NMR (CDCl3, 500 MHz) δH: 5.39 (d, J = 6.0 Hz, H-9, 1H), 5.29 (d, J =
6.0 Hz, H-9, 1H), 2.39 (t, J = 7.5 Hz, H-2, 2H), 2.05 (t, J = 7.5 Hz, H-8, 11, 4H), 1.66–1.63 (m, H-3, 2H),
1.35–1.33 (m, H-17, 2H), 1.32–1.28 (m, H-4~7, 12~15, 16H), 1.27–1.25 (m, H-16, 2H), 0.93 (t, J = 6.5 Hz,
H-18, 3H). 13C-NMR (CDCl3, 125 MHz) δC: 179.3 (C-1), 130.2 (C-10), 127.9 (C-9), 33.5 (C-2), 31.7 (C-16),
29.8 (C-5, 6, 13,14), 29.2 (C-7, 12), 29.0 (C-4, 15), 27.3 (C-8), 27.2 (C-11), 24.6 (C-3), 22.5 (C-17), 14.0
(C-18).

Linoleic Acid (8): White solid. 1H-NMR (CDCl3, 500 MHz) δH: 5.45–5.31 (m, H-9, 10, 12, 13, 4H), 2.79
(t, J = 6.5 Hz, H-11, 2H), 2.41 (t, J = 7.5 Hz, H-2, 2H), 2.11 (t, J = 7.5 Hz, H-8, 14, 4H), 1.67–1.65 (m, H-3,
2H), 1.35–1.33 (m, H-17, 2H), 1.31–1.28 (m, H-4~7, 15, 10H), 1.26–1.24 (m, H-16, 2H), 0.92 (t, J = 6.5 Hz,
H-18, 3H). 13C-NMR (CDCl3, 125 MHz) δC: 179.6 (C-1), 130.3 (C-10), 129.9 (C-13), 128.3 (C-9), 127.7
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(C-12), 34.3 (C-2), 31.6 (C-16), 29.6 (C-7), 29.4 (C-15), 29.2 (C-5), 29.1 (C-6), 29.0 (C-4), 27.5 (C-8), 27.2
(C-14), 25.8 (C-11), 24.6 (C-3), 22.5 (C-17), 14.1 (C-18).

Linolenic Acid (9): White solid. 1H-NMR (CDCl3, 500 MHz) δH: 5.45–5.33 (m, H-9, 10, 12, 13, 15.16,
6H), 2.85 (t, J = 6.5 Hz, H-11, 14, 4H), 2.37 (t, J = 7.5 Hz, H-2, 2H), 2.09 (q, J = 7.5 Hz, H-17, 2H), 2.06–2.04
(m, H-8, 2H), 1.63–1.60 (m, H-3, 2H), 1.35–1.31 (m, H-4~7, 8H), 0.96 (t, J = 7.5 Hz, H-18, 3H). 13C-NMR
(CDCl3, 125 MHz) δC: 131.9 (C-16), 130.5 (C-9), 128.1 (C-12), 128.4 (C-13), 127.9 (C-10), 127.1 (C-15),
80.5 (C-1), 34.1 (C-2), 29.6 (C-6), 29.3 (C-5), 29.1 (C-4, 7), 27.7 (C-8), 25.7 (C-11), 25.5 (C-14), 24.7 (C-3),
20.5 (C-17), 14.1 (C-18).

12,13-Epoxylinolenic Acid (10): White solid. 1H-NMR (CDCl3, 500 MHz) δH: 5.39–5.34 (m, H-9, 10,
12, 13, 15,16, 6H), 4.31–4.29 (m, H-7, 1H), 4.27–4.26 (m, H-6, 1H), 2.34 (t, J = 7.5 Hz, H-2, 2H), 2.79 (t, J
= 6.5 Hz, H-11, 14, 4H), 2.09–2.07 (m, H-8, 2H), 2.05 (q, J = 7.5 Hz, H-17, 2H), 2.03–2.01 (m, H-5, 2H),
1.63–1.61 (m, H-3, 2H), 1.35–1.33 (m, H-4, 2H), 0.90 (t, J = 7.5 Hz, H-18, 3H). 13C-NMR (CDCl3, 125
MHz,) δC: 173.5 (C-1), 131.7 (C-16), 130.2 (C-9), 128.5 (C-13), 128.2 (C-12), 127.9 (C-10), 127.3 (C-15),
68.8 (C-7), 62.2 (C-6), 34.1 (C-2), 29.3 (C-4), 27.4 (C-5), 25.8 (C-11, 14), 25.5 (C-8), 24.8 (C-3), 20.3 (C-17),
14.1 (C-18).

3.5. Experimental Animals

Male Wistar rats weighing 180–200 g were provided by Changchun Yisheng Laboratory Animal
Technology Co., Ltd. (Changchun, China). The rats were kept in polypropylene cages under standard
animal feeding conditions (25 ± 5 ◦C, 40–70% RH, 12 h light/dark cycle). Standard pellet feeds [Sterile
pellet feeds for rats, product executive standard: GB14924–2001, license: SCXK-(-JI-) 2010-0001] and
water were obtained with free access.

3.6. Acute Toxicity

For the evaluation of acute toxicity, male Wistar rats weighing 180–200 g were divided into groups
of 10 animals. The crude lipophilic components were given by intra-gastric administration at the
doses of 1, 2 and 4 g/kg from first to third groups, respectively [33]. The control group received an
intra-gastric administration of corn oil (5 mL/kg). The mortality rate within 72 h period was observed
and the LD50 was estimated on the basis of the method described by Silva et al. [34].

3.7. Triton WR-1339-Induced Hyperlipidemic in Rats

Overnight fasted rats (64) were randomly divided into eight groups each consisting of eight
animals. The rats were also treated with daily oral treatment for 15 d before treatments with
intraperitoneal injection of triton WR-1339 (200 mg/kg) once as follows: Group I served as control
group (CG) receiving an intraperitoneal injection of normal saline and an intra-gastric administration
of corn oil. Group II served as hyperlipidemic group (HG) receiving Triton WR-1339 (i.p.) dissolved in
normal saline and an intra-gastric administration of corn oil. Group III (positive control group, PCG)
was treated Triton WR-1339 (i.p.) and an intra-gastric administration of simvastatin (4 mg/kg). Group
IV–VIII (test groups, TG IV–VIII) received Triton WR-1339 (i.p.) and intra-gastric administration of the
crude lipophilic components (100 and 200 mg/kg) and compounds 1, 2 and 9 (4 mg/kg) dissolved
in corn oil, respectively. In the course of the 15 d oral treatment, body weights of rats were regularly
taken from 1st to 15th day, respectively. Blood samples were collected from abdominal aorta after 24 h
of injection of Triton WR-1339 in ethylenediaminetetraacetic acid (EDTA) containing tubes; plasma
was separated and stored at −18 ◦C until determination [35].

3.8. Biochemical Analysis

TC, TGs, Low-density lipoprotein cholesterol (LDL-C) and High-density lipoprotein cholesterol
(HDL-C) levels in the plasma were estimated by an enzymatic method with an automatic analyzer
(Model XL-300, Erba, Mannheim, Germany) [36].
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3.9. Statistical Analysis

The results were expressed as mean ± SD. Data obtained were analyzed using variance analysis
and differences with p < 0.05 were considered statistically significant.

4. Conclusions

In summary, the observed characteristics clearly confirm the medicinal use of the plant in
preventing hyperlipidemia. The lipophilic components and compounds 1, 2 and 9 from Artemisia
integrifolia have positive effects on plasma lipoprotein profiles, suggesting that they have good
therapeutic potential in improving hyperlipidemia.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/4/725/s1.
Figures S1–S6: 1D (1H NMR and 13C NMR) and 2D-NMR (COSY, HSQC HMBC and NOESY) spectra of integrinol
(4).
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