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Abstract: The aim of this study was to determine how the addition of gold and silver nanoparticles 

to culture media affects the composition of essential oils extracted from Lavandula angustifolia 

propagated on MS media with the addition of 10 and 50 mg·dm−3 of gold (24.2 ± 2.4 nm) and silver 

(27.5 ± 4.8 nm) nanocolloids. The oil extracted from the lavender tissues propagated on the medium 

with 10 mg·dm−3 AgNPs (silver nanoparticles) differed the most with respect to the control; oil-10 

compounds were not found at all, and 13 others were detected which were not present in the 

control oil. The addition of AuNPs (gold nanoparticles) and AgNPs to the media resulted in a 

decrease of lower molecular weight compounds (e.g., α- and β-pinene, camphene, δ-3-carene, 

p-cymene, 1,8-cineole, trans-pinocarveol, camphoriborneol), which were replaced by those of a 

higher molecular weight (τ- and α-cadinol 9-cedranone, cadalene, α-bisabolol, 

cis-14-nor-muurol-5-en-4-one, (E,E)-farnesol). 

Keywords: nanoparticles; secondary metabolites; shoot cultures; micropropagation; elicitor 

 

1. Introduction 

Nanotechnology has become one of the fastest growing interdisciplinary fields of science today. 

Nanoparticles, i.e., compounds or elements reduced to the size of less than 100 nanometers, differ in 

terms of their atomic structure compared to the material they are derived from, and also differ in 

terms of their physical, chemical, and biological properties. The most important advantage of 

nanoparticles is a high surface-to-volume ratio, which tends to increase with the reduction in their 

diameter, whereby nanoparticles demonstrate very high chemical activity [1]. Their highly 

developed active surface area significantly affects their adsorption properties, material reactivity, 

and antimicrobial properties [2]. 

The most widely used and known nanoparticles are those of precious metals: Gold and silver. 

They undergo various processes which are not observed in macroscopic environments. Nanosilver 

has antimicrobial (antifungal and antibacterial) properties. Gold in its nanoform offers therapeutic 

effects due to its ease to penetrate body cells where it strongly stimulates their regeneration [3,4]. 

Nanoparticles of precious metals form stable colloidal solutions, which can be applied to plant in 

vitro cultures [5]. 
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Nanoparticles are easily absorbed and accumulated by plants. The processes of 

nanopenetration into the cells of living organisms are still to be explored in detail. However, it has 

been confirmed they enter certain cells through endocytosis or through pass through surface pores 

in plant cell walls [6,7]. The selective properties of cell walls enable the transport of particles 

measuring from 5 to 20 nm, allowing nanoparticles to easily penetrate cells and spread throughout 

the entire organism, ultimately affecting biological processes occurring in the cells [8]. 

With their unique nanostructural properties, these materials are used in many key industries, 

such as pharmaceuticals, electronics, cosmetology, medicine, environmental protection, textiles, and 

packaging. They are also applied in biotechnology, and recently, in plant in vitro cultures [9]. 

Nanosilver is used in plant in vitro cultures at the culture initiation stage to prevent contaminations, 

offering a viable alternative to antibiotics used in plant micropropagation [10]. 

Ongoing studies are attempting to determine the suitability of nanoparticles as elicitors in the in 

vitro cultures. Currently used elicitors are either biotic agents derived from biological sources, such 

as components of fungal and bacterial cell wall structures (polysaccharides, glycoproteins, 

inactivated enzymes, curdlan, chitosan), or abiotic factors of chemical or physical origin (heavy 

metal salts, osmotic stress, mechanical damage, ultraviolet radiation) [11]. Nanometal particles have 

shown a high capacity for attaching to plant tissues and activate enzymatic pathways responsible for 

the production of secondary metabolites [12]. They also contribute to the peroxidation of cellular 

membranes in plant cells and influence the expression of genes responsible for the production of 

biologically active compounds [13]. 

So far, attempts to use gold and silver nanocolloids as elicitors in plant in vitro cultures have 

been limited. The addition of these substances increased the production of secondary metabolites in 

the cultures of Salvia miltiorrhiza [14], Artemisia annua [15], Brugmensia candida [16], Corylus avellana 

[17], Prunella vulgaris [18], and Aloe vera [13]. The influence of nanoparticles on plants depends on 

several factors, such as plant species, its age, growing conditions, culture medium, exposure time of 

the plant to nanomaterial, and administration method. 

Essential oils constitute mixtures of volatile compounds, sesquiterpenes, and primarily 

monoterpenes [19]. The main components of the essential oils isolated from L. angustifolia tissue are, 

among others, linalool, borneol, geraniol, and linalool acetate [20,21]. The composition of an 

essential oil depends mainly on the plant genotype, yet its composition may differ under the 

influence of developmental and environmental factors, i.e., sun exposure, plant age, seedling 

collection method or essential oil isolation method [22,23].  

There have been no literature reports so far regarding the influence of nanoparticles on the 

production of essential oils by plants propagated in in vitro cultures. The studies by Hatami et al. 

[24] and Ghanati and Bakhtarian [25] show that the application of metal nanoparticles to plants 

growing under natural conditions results in a change in the essential oil content extracted from their 

tissues. The aim of this study was to verify how gold and silver nanocolloids influence the 

composition of essential oils in narrow-leaved lavender (Lavandula angustifolia) propagated in in 

vitro cultures. 

2. Results and Discussion 

Hydrodistillation of the dried leafy shoots of Lavandula angustifolia generated pale yellow 

liquids with a yield from 0.81% (10 mg·dm−3 AuNPs) to 1.27% (10 Ag mg·dm−3 NPs) (Table 1). 

Interestingly, the results of this study are comparable with those obtained from lavender flowers. 

Kara and Baydar [26] studied four lavender cultivars and indicated that the oil content varied from 

0.35 to 2.0%. Zheljazkov et al. [27] reported the content of volatile oil in dried flowers to range from 

0.71 to 1.30%. However, the content of volatile oil in the leaves of lavender cultivated in Northwest 

Iran (0.64%) was lower when compared with the results discussed herein [28]. 
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Table 1. Essential oil content in lavender plants as a function of medium used. 

Medium [mg·dm−3] Essential Oil Content (%w/w) 

0 - control 1.15 

50 Au 0.95 

10 Au 0.81 

50 Ag 0.82 

10 Ag 1.27 

The chemical composition of L. angustifolia essential oils is shown in Tables 2 and 3, where the 

percentage composition and retention indices of the constituents are given. A total of 97 different 

compounds representing 99.29–99.95% of the oils were identified. The main volatile constituents 

were: Borneol (12.14–16.46%), τ-cadinol (12.96–16.63%), caryophyllene oxide (8.79–12.23%), 

γ-cadinene (4.54–6.08%), and 1,8-cineole (2.80–4.58%). Other important constituents were: 

Cis-14-nor-muurol-5-en-4-one (2.68–4.45%), β-pinene (1.93–3.14%), camphor (2.05–2.79%), and 

α-santalene (1.42–2.64%). The extracted oils were the most abundant in oxygenated sesquiterpenes 

(36.34–43.36%), followed by oxygenated monoterpenes (27.77–38.23%), sesquiterpene hydrocarbons 

(10.27–14.35%), and monoterpene hydrocarbons (5.57–10.40%). 

Table 2. Statistical analysis of main compounds. 

Compound RI Control 
50 mg·dm−3 

Au 

10 mg·dm−3 

Au 

50 mg·dm−3 

Ag 

10 mg·dm−3 

Ag 

1 α-Pinene 933 1.46a 0.99b 1.03b 1.11b 0.64c 

2 β-Pinene 977 3.14a 2.56b 2.25b 2.53b 1.93b 

3 p-Cymene 1025 1.39a 1.18b 1.17b 0.91c 0.92c 

4 1,8-Cineole 1031 4.49a 4.58a 2.80b 2.95b 2.95b 

5 trans-Pinocarveol 1140 1.61a 1.65a 1.54b 1.42c 1.14d 

6 Camphor 1145 2.75a 2.79a 2.41b 2.06c 2.05c 

7 Pinocarvone 1164 1.32a 1.36a 1.32a 1.16b 0.90c 

8 Borneol 1170 16.00a 16.46a 12.78b 12.14b 12.99b 

9 Myrtenol 1198 2.25a 2.35a 1.94a 2.13a 1.85a 

10 Geranylacetate 1385 1.20a 1.38a 1.14a 0.59b 1.41a 

11 α-Santalene 1422 1.90bc 1.42d 2.16b 2.64a 1.74c 

12 γ-Cadinene 1518 4.97c 4.54d 5.09c 6.08a 5.36b 

13 Caryophylleneoxide 1589 9.12c 8.54c 11.06b 12.23a 8.79c 

14 τ-Cadinol 1648 12.96c 14.35b 13.65bc 14.17b 16.63a 

16 α-Cadinol 1662 1.33a 1.13b 1.35a 1.36a 1.08c 

17 Cadalene 1675 1.87d 1.58e 2.34b 2.53a 2.03c 

18 cis-14-nor-Muurol-5-en-4-one  1693 2.68c 3.72b 3.72b 3.37c 4.45a 

19 (E,E)-Farnesol 1720 1.20d 1.43b 1.32c 1.45b 1.57a 

20 Bisabolol oxide A 1750 1.97c 2.26b 2.23b 2.13b 2.60a 

compounds with a significantly lower content as compared with the control oil. 

compounds with a significantly higher content as compared with the control oil. 

a, b, c—values followed by the same letter are not significantly different at P ≤ 0.05 according to the 

LSD (least significant differences)Tukey test. 
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Table 3. Relative percentage composition of lavender essential oils depending on the medium ±SD (n = 3). 

No.  Compound RI Control 50 mg·dm−3 Au 10 mg·dm−3 Au 50 mg·dm−3 Ag 10 mg·dm−3 Ag 

1. MH α-Thujene 927 0.09 ±0.01 
        

2. MH α-Pinene 933 1.46 ±0.16 0.99 ±0.10 1.03 ±0.01 1.11 ±0.18 0.64 ±0.04 

3. MH Camphene 948 1.08 ±0.16 0.78 ±0.07 0.85 ±0.04 0.77 ±0.11 0.48 ±0.03 

4. MH Thuja-2,4(10)-diene 954 
  

0.09 ±0.01 
      

5. MH β-Thujene 971 0.33 ±0.02 0.24 ±0.01 0.28 ±0.01 0.20 ±0.00 0.21 ±0.01 

6. MH Sabinene 974 0.31 ±0.01 0.25 ±0.03 0.23 ±0.01 0.23 ±0.03 0.21 ±0.01 

7. MH β-Pinene 977 3.14 ±0.26 2.56 ±0.26 2.25 ±0.08 2.53 ±0.46 1.93 ±0.09 

8. MH δ-3-Carene 1010 0.93 ±0.08 0.72 ±0.06 0.77 ±0.03 0.78 ±0.10 0.59 ±0.03 

9. MH m-Cymene 1022 0.52 ±0.05 0.45 ±0.04 0.49 ±0.02 0.33 ±0.01 0.32b ±0.01 

10. MH p-Cymene 1025 1.39 ±0.13 1.18 ±0.10 1.17 ±0.07 0.91 ±0.06 0.92c ±0.04 

11. MH D-Limonene 1029 0.81 ±0.11 0.33 ±0.47 0.64 ±0.02 0.58 ±0.04 0.27a ±0.38 

12. OM 1,8-Cineole 1031 4.49 ±0.26 4.58 ±0.01 2.80 ±0.12 2.95 ±0.43 2.95b ±0.33 

13. MH γ-Terpinene 1060 0.10 ±0.01 0.08 ±0.01 
      

14. OM cis-Sabinenehydrate 1068 0.070 ±0.00 
      

0.09 ±0.00 

15. MH α-Terpinolene 1091 0.24 ±0.01 0.23 ±0.00 0.27 ±0.02 0.15 ±0.06 
  

16. OM Linalool 1101 0.65 ±0.03 0.77 ±0.05 0.55 ±0.04 0.30 ±0.06 0.51b ±0.01 

17. O α-Pineneoxide 1110 0.210 ±0.01 
        

18. OM Fenchol 1114 
  

0.21 ±0.01 0.26 ±0.01 0.16 ±0.01 0.19 ±0.00 

19. O 3-Octanol acetate 1122 0.15 ±0.00 0.15 ±0.01 0.20 ±0.01 0.13 ±0.01 
  

20. OM α-Campholenal 1127 0.23 ±0.00 0.22 ±0.01 0.24 ±0.01 0.21 ±0.01 0.20 ±0.01 

21. OM 1,2-Dihydrolinalool 1136 0.24 ±0.01 0.21 ±0.01 0.26 ±0.01 0.20 ±0.01 0.18 ±0.00 

22. OM trans-Pinocarveol 1140 1.61 ±0.04 1.65 ±0.10 1.54 ±0.08 1.42 ±0.05 1.14 ±0.02 

23. OM Camphor 1145 2.75 ±0.08 2.79 ±0.21 2.41 ±0.13 2.06 ±0.13 2.05 ±0.03 

24. OM Pinocarvone 1164 1.32 ±0.01 1.36 ±0.08 1.32 ±0.08 1.16 ±0.01 0.90 ±0.00 

25. OM Borneol 1170 16.00 ±0.58 16.46 ±1.51 12.78 ±0.44 12.14 ±1.20 12.99 ±0.16 

26. OM Terpinen-4-ol 1179 0.69 ±0.04 0.64 ±0.04 0.62 ±0.01 0.60 ±0.06 0.48 ±0.00 

27. OM p-Cymen-8-ol 1184 0.80 ±0.04 0.84 ±0.01 0.99 ±0.06 0.57 ±0.07 0.40 ±0.02 

28. OM Cryptone 1187 0.55 ±0.25 0.71 ±0.03 0.77 ±0.04 0.52 ±0.06 0.35 ±0.01 

29. OM α-Terpineol 1193 0.66 ±0.01 0.65 ±0.04 0.51 ±0.00 0.52 ±0.06 0.41 ±0.01 

30. OM Myrtenol 1198 2.25 ±0.06 2.35 ±0.11 1.94 ±0.06 2.13 ±0.22 1.85 ±0.03 

31. OM Verbenone 1210 0.78 ±0.06 0.69 ±0.08 0.61 ±0.02 0.51 ±0.07 0.45 ±0.01 

32. OM cis-Carveol 1221 0.18 ±0.01 0.18 ±0.00 0.24 ±0.01 0.08 ±0.11 
  

33. OM trans-Carveol 1224 0.20 ±0.00 0.23 ±0.01 0.23 ±0.00 0.09 ±0.12 
  

34. OM Bornylformate 1229 0.86 ±0.01 0.85 ±0.04 0.63 ±0.00 0.62 ±0.02 0.91 ±0.01 

35. OM D-Carvone 1247 0.24 ±0.00 0.24 ±0.01 0.32 ±0.01 0.10 ±0.14 0.20 ±0.02 

36. OM Geraniol 1254 0.46 ±0.01 0.43 ±0.01 0.40 ±0.01 0.33 ±0.02 0.31 ±0.01 

37. OM α-Citral 1272 0.12 ±0.01 0.12 ±0.00 0.11 ±0.01 
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38. OM Bornylacetate 1287 0.32 ±0.01 0.29 ±0.00 0.32 ±0.04 0.27 ±0.00 0.38 ±0.03 

39. OM Lavandulylacetate 1292 0.20 ±0.00 0.16 ±0.00 0.21 ±0.01 0.19 ±0.01 0.18 ±0.01 

40. OM Piperitenone 1341 0.11 ±0.01 0.12 ±0.01 0.14 ±0.00 0.05 ±0.06 0.12 ±0.01 

41. OM Nerylacetate 1367 
  

0.10 ±0.01 
      

42. OM Geranylacetate 1385 1.20 ±0.06 1.38 ±0.07 1.14 ±0.06 0.59 ±0.28 1.41 ±0.27 

43. SH α-Cedrene 1416 0.40 ±0.06 0.39 ±0.04 0.45 ±0.04 0.47 ±0.01 0.45 ±0.04 

44. SH α-Santalene 1422 1.90 ±0.04 1.42 ±0.02 2.16 ±0.01 2.64 ±0.00 1.74 ±0.04 

45. SH α-Bergamotene 1438 0.28 ±0.01 0.25 ±0.01 0.33 ±0.01 0.38 ±0.02 0.29 ±0.00 

46. SH Aromadendrene 1448 0.11 ±0.01 0.08 ±0.00 0.14 ±0.00 0.14 ±0.01 0.12 ±0.01 

47. SH β-Santalene 1450 0.11 ±0.01 
  

0.12 ±0.01 0.15 ±0.01 0.10 ±0.00 

48. SH trans-β-Bergamotene 1460 0.15 ±0.01 0.09 ±0.04 
  

0.16 ±0.06 
  

49. SH β-Chamigrene 1463 0.11 ±0.01 0.09 ±0.00 0.11 ±0.00 0.14 ±0.01 0.12 ±0.00 

50. SH Di-epi-α-Cedrene 1470 0.13 ±0.00 0.14 ±0.01 0.15 ±0.00 0.15 ±0.01 0.15 ±0.01 

51. SH cis-β-Farnesene 1488 0.10 ±0.00 0.12 ±0.06 0.19 ±0.05 0.15 ±0.04 0.16 ±0.01 

52. SH β-Bisabolene 1511 
      

0.07 ±0.09 
  

53. SH γ-Cadinene 1518 4.97 ±0.06 4.54 ±0.11 5.09 ±0.03 6.08 ±0.03 5.36 ±0.05 

54. SH β-Sesquiphellandrene 1522 0.39 ±0.01 0.44 ±0.04 0.56 ±0.01 0.50 ±0.01 0.52 ±0.01 

55. SH δ-Cadinene 1526 0.45 ±0.01 0.42 ±0.03 0.49 ±0.01 0.54 ±0.01 0.50 ±0.02 

56. SH trans-Calamenene 1533 0.24 ±0.00 0.24 ±0.03 0.33 ±0.01 0.32 ±0.03 0.35 ±0.01 

57. SH Cadina-1,4-diene 1536 0.53 ±0.01 0.60 ±0.06 0.59 ±0.03 0.53 ±0.02 0.60 ±0.01 

58. SH α-Cadinene 1543 
      

0.19 ±0.01 0.13 ±0.18 

59. SH α-Calacorene 1547 0.36 ±0.01 0.52 ±0.06 0.51 ±0.03 0.45 ±0.05 0.48 ±0.01 

60. SH Germacrene B 1557 0.89 ±0.02 0.82 ±0.07 1.14 ±0.03 1.23 ±0.05 0.86 ±0.01 

61. SH β-Calacorene 1563 0.10 ±0.01 0.11 ±0.03 
  

0.06 ±0.08 0.13 ±0.01 

62. OS Nerolidol 1569 0.51 ±0.01 0.64 ±0.07 0.62 ±0.02 0.60 ±0.02 0.66 ±0.01 

63. O (Z)-3-Hexenyl benzoate 1579 0.63 ±0.01 0.76 ±0.08 0.74 ±0.04 0.73 ±0.01 0.76 ±0.01 

64. OS Caryophylleneoxide 1589 9.12 ±0.16 8.54 ±0.31 11.06 ±0.13 12.23 ±0.21 8.79 ±0.07 

65. O Hexadecane 1600 0.26 ±0.01 0.30 ±0.05 0.32 ±0.01 0.29 ±0.01 0.36 ±0.01 

66. OS Humuleneepoxide 1605 0.21 ±0.00 0.22 ±0.04 0.30 ±0.01 0.28 ±0.01 0.26 ±0.01 

67. OS Humuleneepoxide II 1613 0.65 ±0.02 0.69 ±0.06 0.87 ±0.01 0.89 ±0.04 0.80 ±0.01 

68. OS epi-Cubenol 1619 1.55 ±0.04 1.73 ±0.12 1.70 ±0.04 1.77 ±0.08 2.01 ±0.01 

69. OS γ-Eudesmol 1628 0.25 ±0.01 0.28 ±0.04 0.32 ±0.03 0.29 ±0.01 0.20 ±0.02 

70. OS Isospathulenol 1638 
  

0.17 ±0.04 0.24 ±0.02 0.25 ±0.03 0.18 ±0.01 

71. OS Caryophylla-4(12),8(13)-dien-5β-ol 1642 0.30 ±0.00 0.47 ±0.04 0.26 ±0.37 0.62 ±0.12 
  

72. OS τ-Cadinol 1648 12.96 ±0.69 14.35 ±0.64 13.65 ±0.14 14.17 ±0.69 16.63 ±0.06 

73. OS α-Muurolol 1655 0.44 ±0.02 0.47 ±0.06 0.54 ±0.01 0.53 ±0.00 0.59 ±0.00 

74. OS α-Eudesmol 1659 0.46 ±0.03 0.51 ±0.06 0.55 ±0.01 0.53 ±0.07 0.69 ±0.01 

75. OS α-Cadinol 1662 1.33 ±0.04 1.13 ±0.06 1.35 ±0.06 1.36 ±0.02 1.08 ±0.04 

76. OS 9-Cedranone 1667 1.13 ±0.04 1.29 ±0.16 1.33 ±0.01 1.37 ±0.06 1.41 ±0.07 

77. O Cadalene 1675 1.87 ±0.05 1.58 ±0.16 2.34 ±0.04 2.53 ±0.18 2.03 ±0.01 

78. OS α-Bisabolol 1681 0.77 ±0.04 0.87 ±0.09 0.96 ±0.03 0.92 ±0.04 0.91 ±0.00 
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79. OS epi-α-Bisabolol 1691 0.69 ±0.03 
    

0.38 ±0.53 
  

80. OS cis-14-nor-Muurol-5-en-4-one 1693 2.68 ±0.08 3.72 ±0.22 3.72 ±0.05 3.37 ±0.7 4.45 ±0.03 

81. O Heptadecane 1703 
  

0.28 ±0.05 0.30 ±0.01 0.13 ±0.18 0.31 ±0.00 

82. O 5-Ethyl-5-methylpentadecane 1709 0.27 ±0.01 0.31 ±0.06 0.38 ±0.01 0.33 ±0.03 0.41 ±0.01 

83. O Pentadecanal 1714 0.46 ±0.04 0.53 ±0.07 0.57 ±0.01 0.52 ±0.01 0.68 ±0.01 

84. OS (E,E)-Farnesol 1720 1.20 ±0.07 1.43 ±0.14 1.32 ±0.04 1.45 ±0.04 1.57 ±0.02 

85. O 5-Phenyldodecane 1733 0.50 ±0.05 0.55 ±0.13 0.68 ±0.02 0.62 ±0.03 0.81 ±0.01 

86. OS Bisabolol oxide A 1750 1.97 ±0.12 2.26 ±0.27 2.23 ±0.03 2.13 ±0.12 2.60 ±0.03 

87. OS (E)-α-Atlantone 1777 0.12 ±0.02 0.19 ±0.03 0.19 ±0.00 0.22 ±0.03 0.23 ±0.05 

88. O Octadecane 1805 
  

0.13 ±0.02 0.20 ±0.03 
  

0.27 ±0.02 

89. DT Phytane 1811 
        

0.21 ±0.00 

90. O Diisobutylphthalate 1872 
    

0.24 ±0.01 0.25 ±0.08 0.33 ±0.01 

91. DT m-Camphorene 1957 
    

0.14 ±0.01 
  

0.26 ±0.02 

92. O Eicosane 2003 
        

0.12 ±0.08 

93. O Octadecanal 2021 
        

0.20 ±0.03 

94. O 1-Octadecanol 2088 
    

0.29 ±0.03 
  

0.66 ±0.08 

95. O 1-Tricosene 2296 
        

0.31 ±0.16 

96. O Tricosane 2300 
      

0.25 ±0.13 0.44 ±0.09 

97. O 2-Heneicosanone 2307 
    

0.66 ±0.20 0.84 ±0.21 2.22 ±0.35 

  Total identified [No.] 
 

82 
 

81 
 

81 
 

83  83  

  Total identified [%] 
 

99.29  99.95 
 

99.95 
 

99.69  99.72  

  
Monoterpene hydrocarbnons 

(MH)  
10.40  7.90 

 
7.98 

 
7.59  5.57  

  Oxygenated monoterpenes (OM) 
 

37.19  38.23 
 

31.34 
 

27.77  28.65  

  Sesquiterpene hydrocarbons (SH) 
 

11.22 
 

10.27 
 

12.36 
 

14.35  12.06  

  Oxygenated sesquiterpenes (OS) 
 

36.34 
 

38.96 
 

41.21 
 

43.36  43.06  

  Diterpenes (DT) 
 

- 
 

- 
 

0.14 
 

-  0.47  

  Other (O) 
 

4.14 
 

4.59 
 

6.92 
 

6.62  9.91  

RI: Retention indices relative to n-alkanes (C7-C40) on HP-5MS capillary column; -: Not detected.
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The growing medium applied affected the percentage composition of each essential oil 

constituent. The highest concentrations of borneol (16.46%) and 1,8-cineole (4.58%) were noticed in 

the volatile oil isolated from plants cultivated on the medium supplemented with gold nanoparticles 

(50 mg·dm−3 AuNPs). Addition of silver nanoparticles (50 mg·dm−3 AgNPs) to the growing medium 

increased the content of γ-cadinene (6.08%) and caryophyllene oxide (12.23%) in the oil (Figure 1).  

 

Figure 1. Plants of Lavandula angustifolia Mill. propagated on medium with 50 mg·dm−3 AuNPs. 

However, the percentage content of camphor was lower in the plants cultivated on the medium 

supplemented with AgNPs (10 and 50 mg·dm−3). Moreover, volatile oil derived from lavender 

cultivated on MS medium was richer in β-pinene (3.14%), α-pinene (1.46%), p-cymene (1.39%), 

camphene (1.08%), and δ-3-carene (0.93%). 

Phytochemical studies revealed that linalool (9.3–68.8%) and linalyl acetates (1.2–59.4%) were 

the main components of the aerial parts and flowers of Lavandula angustifolia [29,30]. However, the 

essential oil obtained from plants cultivated in North Africa [31] had 1,8-cineole (29.4%) and 

camphor (24.6%) as the major constituents. 1,8-cineole (65.4%) and borneol (11.5%) dominated in the 

essential oils isolated from the leaves of L. angustifolia collected near Isfahan, Iran [32]. Borneol was 

the main compound in the essential oils isolated from leafy stems of three lavender cultivars 

propagated in in vitro cultures: ‘Blue River’ (25.75%), ‘Elegance Purple’ (32.17%), and Munstead 

(13.38%) [33]. 

The percentage contents of linalool (0.30–0.77%), 1,8-cineole (2.80–4.58%), and camphor 

(2.05–2.79%) found in volatile oils in this study were much lower than the results reported in the 

referenced literature. Essential oils isolated from plants grown on control medium and 50 mg·dm−3 

AuNPs medium were the only ones with higher borneol content (16.00–16.46%) compared with the 

results obtained by Andrys and Kulpa [29]. Linalool, lavandulol, and their esters (linalyl acetate and 

lavandulyl acetate) are responsible for the fresh and floral smell of lavender oil. Moreover, the 

quality of oil depends on both a high content of linalool and linalyl acetate and their mutual 

proportions (preferably higher than 1) [34]. 

Contrary to the results obtained by other researches, lavandulol and linalyl acetate were not 

detected in the oils in this study, and the content of lavandulyl acetate did not exceed 0.21%. The 

data reported in the literature indicated that many terpenoids are biologically active and are used 

medicinally [35]. Camphor, with its specific camphoraceous odor, is used commercially as a moth 

repellent and as a preservative in pharmaceuticals and cosmetics [36]. Borneol, a widely-used food 

and cosmetic additive, possesses analgesic, anti-inflammatory, and antibacterial properties [37,38]. It 
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is well known that 1,8-cineole and camphor are responsible for the insecticidal activity of the plants 

from Lavandula genus [39]. Based on these facts, it can be stated that the volatile oils extracted from 

leafy shoots of L. angustifolia may have commercial applications. 

The oil extracted from the tissues of lavender propagated on the culture medium which was 

supplemented with 10 mg·dm−3 of AgNPs differed the most with respect to the control culture 

(plants propagated on the culture medium with no nanoparticles) in terms of the number of 

compounds: While 10 compounds were not found in it at all, 13 others were detected which were not 

observed in the control oil. The addition of AuNPs and AgNPs to the media resulted in a decrease in 

compounds with lower molecular weight (e.g., α- and β-pinene, camphene, δ-3-carene, p-cymene, 

1,8-cineole (eucalyptol), trans-pinocarveol, camphor, and borneol), which were replaced by those of 

higher molecular weight (τ- and α-cadinol 9-cedranone, cadalene, α-bisabolol, 

cis-14-nor-Muurol-5-en-4-one, (E,E)-farnesol). 

Heavy metal nanocolloids that have been recently used in plant in vitro cultures, as elicitors 

provoke the production of secondary metabolites. There are research reports confirming that these 

particles are capable of eliciting responses in plants consistent with those generated when typical 

elicitors are used [40,41]. It is commonly believed that the production of secondary metabolites in 

plants is significantly affected by environmental stress. Biotic and abiotic stresses delay cellular 

differentiation through the production of reactive oxygen species (ROS), which directly destroy cells 

by producing secondary metabolites [42,43]. The researchers suggest that oxidative stress induced 

by nanoparticles is correlated with the production of secondary metabolites in plants. Due to their 

small size, nanocolloids can easily attach to plant cell walls, destroy them, change their permeability, 

and thus significantly affect cellular metabolism [13]. Zhang et al. [14] confirmed the effectiveness of 

silver as an elicitor using silver ions in the production of diterpenoids in the cultures of root hairs of 

Salvia miltiorrhiza genus. The addition of silver to the culture media of root hairs resulted in an 

increase in the production of reactive oxygen species. Activation of ROS-based mechanisms 

following exposure of plants from Calendula officinalis L. genus to nanoparticles was also confirmed 

by Ghanati and Bakhtiarian [20] in the production of secondary metabolites. Fazal et al. [18] 

demonstrated that a callus of Prunella vulgaris genus treated with silver and gold nanocolloids 

produced significant quantities of antioxidant enzymes, such as POD and SOD, as well as phenolic 

and flavonoid compounds that are directly related to the protection of plants against environmental 

stress. Silver nanocolloids were used to produce capsaicin from Capsicum sp. and resulted in a 

significant increase in the production of this compound [44]. Hemm et al. [45] and Liu et al. [46] 

showed that growth regulators combined with elicitors resulted in a larger organogenic potential of 

plants and increased the production of primary and secondary metabolites.  

The study showed that the addition of gold and silver nanocolloids to the culture media 

significantly affected the composition of essential oil derived from narrow-leaved lavender 

cultivated in in vitro cultures. In the oils extracted from plants propagated in vitro on culture media 

with the addition of nanoparticles, a variety of compounds were identified that were not present in 

the oil derived from plants grown on the control medium. The above suggests that gold and silver 

nanoparticles can be successfully used to obtain essential oils of different composition which may 

result in different properties: Fragrance and, above all, antioxidant and antimicrobial activity, but 

the latter requires further studies. It is also necessary to determine the toxicity of nanoparticles in 

relation to plant tissues. 

3. Material and Methods 

3.1. Nanoparticles 

Aqueous suspensions of gold and silver nanoparticles were synthesized using Turkevich et al. 

[47] and Liu et al.’s [48] methods with modified synthesis conditions and a two-stage 

microwave-convection heating method. For this purpose, aqueous mixtures of 0.903 g·dm−3 of 

sodium citrate with 2.378 g·dm−3 of tetrachloroauric acid (HAuCl4), and 1.189 g·dm−3 of silver nitrate 

(AgNO3), respectively, were prepared. After their purification with a small (0.2 µm) pore 
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antibacterial filter (Sartorius, Goettingen, Germany), they were placed in a microwave (MX 245), 

where they were stirred and heated to 100 °C at 800 W, which allowed for reaching a heating rate of 

approx. 1.6 °C/s. Once the preset temperature was reached, the mixture was kept in the microwave 

for an additional 20 s, and then placed in HBR 4 digital IKAMAG heating bath (IKA, Staufen, 

Germany), where it was stirred with a magnetic stirrer and incubated at 95 °C for an additional 15 

min. It was then gradually cooled to room temperature (0.8 °C/min). To obtain a similar distribution 

of nanoparticle diameters, the resulting mixtures were homogenized in a centrifugal force field in 

Beckmann JA-20 centrifuge to obtain similar nanoparticle concentrations in both mixtures. Once 

their spectra were plotted with UV-VIS EPOCH microplate spectrophotometer (BioTek, Bad 

Friedrichshall, Germany), the optical density of the fractions obtained was adjusted to a common 

DEV value, using the following spectra absorbance maxima λmax = 520 nm and λmax = 445 nm for gold 

and silver colloids, respectively (Figure 2). The similarities in morphology, shape, and size of the 

synthesized and prepared gold (24.2 ± 2.4 nm) and silver (27.5 ± 4.8 nm) nanoparticles were assessed 

after their application to the surface of a nylon membrane (Supelco, Park Bellefonte, PA, USA) and 

through an analysis of images from a scanning electron microscope (SEM, FEI Quanta 200 FEG 

model) (FEI Company, Tokyo, Japan, Figure 3). 

 

Figure 2. UV-VIS spectral spectra of the fraction of 4-5000 x g of gold and colloidal silver. 
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Figure 3. View of nanoparticles of gold colloids (a) and silver (b) after fractionation and placement 

on a nylon diaphragm (Supelco, Park Bellefonte, PA, USA) made with a help of FEI Quanta 200 FEG 

scanning electron microscope. The magnification applied to the observed colloidal gold and silver 

50,000 (a) and 150,000 (b) times, respectively. 

3.2. In Vitro Cultures 

The materials examined in this study were plants of narrow-leaved lavender (Lavendula 

angustifolia), ‘Munstead’ cultivar. Single-node shoot fragments with a length of 1–1.5 cm were put in 

glass jars with a capacity of 300 mL, filled with 30 mL of the medium. The media, with a mineral 

composition developed by Murashige and Skoog [49] (MS media), were supplemented with 2 

mg·dm−3 kinetin (KIN) and 0.2 mg·dm−3 indole-3-acetic acid (IAA) [50] with the addition of gold 

(AuNPs) with a diameter of 24.2 ± 2.4 nm and silver (AgNPs) with a diameter of 27.5 ± 4.8 nm 

nanocolloids with the concentrations of: 10 and 50 mg·dm−3, respectively. Furthermore, the media 

were supplemented with: 30 g·dm−3 of sucrose, 100 mg·dm−3 of inositol, and solidified with agar at 7 

g·dm−3. Medium pH was set at 5.7 using 0.1 M solutions of HCl and NaOH. The jars were sterilized 

at 121 °C for 20 min. The jars with cultures were placed in a phytotron, with a humidity of 70–80% 

and temperature of 24 °C. The cultures were illuminated for 16 h a day, and the illuminance was 

kept at 35 µEM−2s−1 PAR. 

3.3. Extraction of Essential Oils 

Fifteen grams of the entire dried aerial parts of lavender were placed in 1000 mL 

round-bottomed flasks along with 400 mL of distilled water and subjected to hydrodistillation (3 

replicates) for two hours using a Clevenger apparatus as recommended by the European 

Pharmacopoeia 5.0 [51]. The essential oil extracts were dried over anhydrous sodium sulfate, 

filtered, weighed and stored in dark sealed vials at 4 °C until gas chromatography/mass 

spectrometry (GC-MS) analysis was performed. Essential oil percentage was calculated based on the 

dry weight of plant material and expressed as (% w/w) in Table 1. 

3.4. Gas Chromatography/Mass Spectrometry (GC-MS) Analyses of Essential Oils 

The qualitative GC-MS analysis of the extracted essential oils was carried out using HP 6890 gas 

chromatograph coupled with HP 5973 Mass Selective Detector (Agilent Technologies, Foster City, 

CA, USA) operating in 70 eV mode. Samples of 2 µL (40 mg of oil dissolved in 1.5 mL of 

dichloromethane) were injected in a split mode at a ratio of 5:1. The compounds were separated on a 

30 m long capillary column (HP-5MS), 0.25 mm in diameter and with 0.25 µm thick stationary phase 

film ((5% phenyl)-methylpolysiloxane). 

b) a) 
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The flow rate of helium through the column was kept at 1.2 mL·min−1. The initial temperature of 

the column was 45 °C, then it was increased to 200 °C at a rate of 5 °C·min−1 (kept constant for 10 

min), and then heated up to a final temperature of 250 °C at a rate of 5 °C min−1. The oven was kept at 

this temperature for 20 min. The injector temperature was 250 °C, the transfer line temperature was 

280 °C, and the ion source temperature was 230 °C. The solvent delay was 4 min. The scan range of 

the MSD was set at 40 to 550 m/z. The total running time for a sample was about 71 min. The relative 

percentage of the essential oil constituents was evaluated from the total peak area (TIC) by 

apparatus software [52,53]. Essential oil constituents were identified by comparison of their mass 

spectra with those stored in the Wiley NBS75K.L and NIST/EPA/NIH (2002 version, National 

Institute of Standards and Technology, Gaithersburg, MD, USA) mass spectral libraries using 

various search engines (PBM, Nist02). The identity of compounds was also confirmed by 

comparison of their calculated retention indices with those reported in NIST Chemistry WebBook 

(http://webbook.nist.gov/chemistry/). For retention indices (RI) calculation [54,55], a mixture of 

homologus series of n-alkanes C7-C40 (Supelco, Bellefonte, PA, USA) was used, under the same 

chromatographic conditions which were applied for the analysis of the lavender essential oils. 
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