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Abstract: Furfural is a versatile platform molecule for the synthesis of various chemicals and fuels,
and it can be produced by acid-catalyzed dehydration of xylose derived from renewable biomass
resources. A series of metal salts and ionic liquids were investigated to obtain the best combination
of catalyst and solvent for the conversion of xylose into furfural. A furfural yield of 71.1% was
obtained at high xylose loading (20 wt%) from the single-phasic reaction system whereby SnCl4
was used as catalyst and ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIMBr) was used as
reaction medium. Moreover, the combined catalyst consisting of 5 mol% SnCl4 and 5 mol% MgCl2
also produced a high furfural yield (68.8%), which was comparable to the furfural yield obtained
with 10 mol% SnCl4. The water–organic solvent biphasic systems could improve the furfural yield
compared with the single aqueous phase. Although these organic solvents could form biphasic
systems with ionic liquid EMIMBr, the furfural yield decreased remarkably compared with the single
EMIMBr phase. Besides, the EMIMBr/SnCl4 system with appropriate water was also efficient to
convert xylan and lignocellulosic biomass corn stalk into furfural, obtaining furfural yields as high as
57.3% and 54.5%, respectively.
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1. Introduction

With the depletion of fossil energy and the deterioration of ecological environments, modern
society needs to develop economical, energy-efficient, and environmentally friendly processes to
achieve sustainable production of fuels and chemicals [1]. In recent years, considerable attention has
been paid to utilizing renewable biomass resources to produce value-added chemicals to relieve the
resource and energy crisis [2–4]. Both chemical catalysis and biotechnology have been proposed to
depolymerize cellulose and hemicellulose into C5–C6 sugar monomers, such as glucose, xylose, and
arabinose [5–7]. C6 and C5 sugar can be further transformed into 5-hydroxymethylfurfural (HMF)
and furfural by chemical catalysis routes, respectively [8,9]. Both HMF and furfural could be used
as starting materials for the synthesis of important furan derivatives. However, the commercial
application of HMF is still not realized due to the high cost of HMF production [10–13]. In contrast,
the large-scale production and commercial application of furfural have already been achieved.
Moreover, the important furfural derivatives, such as furfural alcohol, tetrahydrofurfuryl alcohol,
furan, tetrahydrofuran (THF), dihydropyran, acetylfuran, furanamine, and furan acid have showed
great potential in industry [14–17]. Among these chemicals, furfural alcohol accounts for 62% of the
global furfural market. Furfural can also be converted into green fuels such as methyl furan, methyl
tetrahydrofuran, valerate, ethyl furan, and ethyltetrahydro furan ethers [18,19].
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Currently, furfural is industrially produced from pentosan-rich biomass via pentose
cyclodehydration by using mineral acids (H2SO4 or HCl) as catalyst at high temperature [14]. In this
process, C5 polysaccharides (primarily xylan) are first hydrolyzed into monosaccharides (primarily
xylose) by acid and then the formed monosaccharides are dehydrated to furfural. Subsequently,
furfural product is usually recovered from the liquid phase by steam stripping to avoid further
degradation and then purified by double distillation [20,21]. However, the commercial furfural
production process suffers from a number of drawbacks, including relative low furfural yield (around
45–55%), high energy consumption, equipment corrosion, impractical catalyst recovery, as well as
environmental hazards [13]. Therefore, it is very important to develop efficient, inexpensive, and
environmentally sustainable furfural production process.

The conversion of xylose into furfural usually involves the use of either homogeneous
acids [22–26] or heterogeneous solid acids [27–31] as catalysts in single-phasic [22,24,32] or biphasic
reaction systems [27,33]. Some metal chlorides with Lewis acidity (CrCl3, AlCl3, and FeCl3) exhibit
high catalytic activity in the water–organic solvent biphasic systems [23,31,34]. In these biphasic
systems, the produced furfural is extracted into the organic phase instantaneously, which inhibits
the side reaction of furfural and increases the final yield of furfural significantly [35–37]. However,
the realistic conversion efficiency is quite low in view of the low loading of sugar substrate and
harsh reaction conditions [38,39]. Moreover, these biphasic systems require a large amount of organic
solvents and electrolytes (such as NaCl) to improve the extraction efficiency, which leads to the increase
of cost and concomitant pollutions [40].

Ionic liquids show many advantages over water and organic solvent systems, including very
low volatility, good dissolving capacity, chemical and thermal stability, and improved reaction
efficiency [19]. Zhang et al. investigated the conversion of xylan into furfural in BMIMCl under
microwave irradiation by using metal chlorides as catalysts; AlCl3 resulted in the highest furfural yield
of 84.8% at 170 ◦C for 10 s [24]. However, the high furfural yield, to a large extent, was attributed to the
low substrate loading (the xylose loading was 1.9 wt%, relative to the mass of solvent) and microwave
heating. Peleteiro et al. investigated the conversion of xylose to furfural in ionic liquid (BMIMCl) in
the presence of CrCl3 with a relative high substrate loading of 10 wt%, obtaining a furfural yield of
50% operating at 120 ◦C for 30 min [41]. Although the furfural yield was not as high as that in the
biphasic system, this work indicated that the xylose conversion efficiency can be remarkably improved
by the use of ionic liquid. Furthermore, ionic liquids with strong Bronsted acidity (acidic ionic liquids)
can perform as both solvents and catalysts, enabling the direct conversion of sugars into furans [42,43].
The acidic ionic liquids BMIMHSO4 and BMIMMeSO3 have been employed to produce furfural from
Miscanthus, obtaining furfural yields of 33% and 13%, respectively (120 ◦C, 22 h) [44].

In the present work, furfural was produced from xylose, xylan, and corn stalk in the medium of
ionic liquid. A series of metal salts and ionic liquids were investigated to obtain the best combination
of catalyst and solvent. The effects of reaction condition, catalyst dosage, and substrate loading on
the yield of furfural were investigated to improve the furfural yield. Besides, the ionic liquid organic
solvent biphasic systems were also tested for the production of furfural from xylose.

2. Results and Discussion

2.1. Effect of Catalysts on the Dehydration of Xylose into Furfural

Metal chlorides (FeCl3, FeCl2, CrCl3, AlCl3, SnCl2, SnCl4, MgCl2) were compared as catalyst for
converting xylose into furfural in ionic liquid EMIMBr under the same reaction conditions. As shown
in Figure 1, among these metal chlorides, SnCl4 exhibited better catalytic performance than other tested
catalysts, obtaining a furfural yield as high as 71.1%. In contrast, the furfural yields over CrCl3, FeCl3,
and SnCl2 were 14.9, 9.6, and 9.2%, respectively. As for AlCl3, FeCl2, and MgCl2, the furfural yields
were less than 5%. It was observed that the reaction mixture became brown quickly in the thick-walled
glass vials, suggesting the formation of humins. The extremely low yields from CrCl3, AlCl3, and
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FeCl3 can be explained by the aggravation of strong side reactions. In addition, the catalytic effect of
metal sulfates, Fe2(SO4)3 and FeSO4, for the conversion of xylose into furfural were also investigated.
However, almost no furfural was detected when using these metal sulfates as catalyst, suggesting that
these two metal sulfates had no catalytic effect in the medium of EMIMBr.
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Figure 1. Effect of catalysts on the dehydration of xylose into furfural in EMIMBr. Reaction conditions:
200 mg of xylose was dissolved in 1000 mg of EMIMBr; molar ratio of catalyst:xylose = 1:10; 130 ◦C; 1 h.

The concentration of the acidic species in the reaction medium was determined by the catalyst
dosage [45,46]. Consequently, the catalyst dosage had a remarkable effect on the dehydration of xylose
into furfural. Figure 2 shows the effect of catalyst dosage on the dehydration of xylose into furfural.
When the catalyst dosage increased from 5 mol% to 10 mol%, the furfural yield increased from 52.4%
to 71.1%. As the catalyst dosage further increased, the furfural yield gradually decreased. Excessive
catalyst not only accelerated the formation of furfural from xylose but also promoted the side reactions,
thus leading to the reduced furfural yield [14].

It has been reported that the combined use of two metal chlorides may improve furfural
yield in 1-ethyl-3-methyl-imidazolium chloride (EMIMCl) or a water–organic solvent system [24,47].
For example, Zhang et al. found that the furfural yield from corncob catalyzed by combined catalysts
CrCl3/AlCl3 was higher than single CrCl3 or single AlCl3 [24]. The effect of the combination of SnCl4
and another chloride as paired catalysts on the yield of furfural was investigated by Wang et al [47].
They found that the combination of SnCl4 with monovalent chlorides, such as LiCl, KCl, and NaCl,
could improve the furfural yield. Among these monovalent chlorides, LiCl had the best promotion
effect. Moreover, similar results were obtained for the preparation of HMF. Su et al. found that a pair
of metal chlorides (CuCl2 and CrCl2) as catalyst was more conducive for the conversion of cellulose
into HMF than the single metal chloride [48]. Therefore, paired catalysts were tested for production
of furfural from xylose in ionic liquid EMIMBr. As shown in Figure 3, we chose nine kinds of metal
chlorides to pair with SnCl4 as catalyst, but the furfural yields from these paired catalysts were all
lower than that from SnCl4. When FeCl3, AlCl3, CuCl2, and CrCl3 were used as co-catalyst, the yield
was extremely low (10–20%), and there was a large number of insoluble humins generated during the
reaction. In contrast, a furfural yield of more than 60% was obtained by mixing SnCl4 and other metal
chlorides, which possess weak catalytic activity (MgCl2, FeCl2) or hardly no catalytic activity (NaCl,
LiCl). Although the furfural yield was not improved by the co-catalyst when the total loading of SnCl4
and metal chloride was kept at 10 mol%, the furfural yields (69.8% and 68.7%, respectively.) obtained
with SnCl4/MgCl2 and SnCl4/FeCl2 were almost comparable to that obtained with single SnCl4.
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Figure 3. Effect of different paired catalysts on the dehydration of xylose into furfural. Reaction
conditions: 200 mg xylose, 1000 mg of EMIMBr; molar ratio of catalyst:xylose = 1:10, SnCl4 and another
metal chloride molar ratio 4:1; 130 ◦C; 1 h.

Subsequently, we investigated the effect of different dosages of SnCl4 and MgCl2 on the
dehydration of xylose into furfural. As show in Table 1, an extremely low furfural yield of 4.5%
was obtained using single MgCl2 as catalyst (Entry 6). The furfural yield was 62.0% when 8 mol%
SnCl4 was used as catalyst. In contrast, when 2 mol% MgCl2 was added to the reaction system, the
furfural yield increased by 12.6% in comparison with the single 8 mol% SnCl4. When 5 mol% MgCl2
was combined with 5 mol% SnCl4 as catalyst, the furfural yield was still as high as 68.8%, which was
31.2% higher than that obtained with 5 mol% SnCl4 and comparable to that obtained with 10 mol%
SnCl4. These results showed that MgCl2 could improve the catalytic activity of EMIMBr/SnCl4
when relative low loading of SnCl4 was used. Since magnesium salt was cheaper and safer than tin
salts, it was more economical to use the SnCl4/MgCl2 as catalyst instead of single SnCl4. Although
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several studies have reported that the use of paired catalysts can improve the furfural yield, detailed
mechanisms involving the coordination of paired catalysts have not been well studied. We observed
that fewer humins were produced in the reaction system with paired catalysts consisting of 5 mol%
SnCl4 and 5 mol% MgCl2 than that with single 10 mol% SnCl4. The presence of a higher quantity of
Sn4+ provided abundant Lewis acidity for the isomerization of xylose to xylulose while encouraging
the polymerization of furfural with undesired side products [49]. Caes et al. have shown that
MgCl2 could promote the conversion of sugars into HMF catalyzed by ortho-carboxyl-substituted
phenylboronic acids [50]. Similarly, García-Sancho et al. found that the presence of CaCl2 in a biphasic
water–methyl isobutyl ketone (MIBK) system with γ-Al2O3 as catalyst notably improved the catalytic
performance [51]. They proposed that the interaction between Ca2+ and glucose molecules favors the
formation of α-d-glucopyranose, thus enhancing glucose conversion to HMF. Likewise, it was inferred
that the similar interaction between Mg2+ and xylose molecules may have promoted the conversion of
xylose to furfural, and then MgCl2 and SnCl4 contributed cooperatively to the dehydration process.

Table 1. Effect of different dosage of SnCl4 and MgCl2 on the dehydration of xylose into furfural.

Entry SnCl4 (mol%) MgCl2 (mol%) Furfural Yield (%)

1 10 0 71.1
2 8 2 69.8
3 8 0 62.0
4 5 5 68.8
5 5 0 52.4
6 0 10 4.5

Reaction conditions: 200 mg xylose, 1000 mg of EMIMBr; 130 ◦C; 1 h.

2.2. Effect of Solvents on the Dehydration of Xylose into Furfural

Figure 4 shows the effect of ionic liquids on the dehydration of xylose into furfural using SnCl4.
As shown in Figure 4, EMIMBr and 1-butyl-3-methylimidazolium bromide (BMIMBr) resulted in higher
furfural yields than other ionic liquids. The furfural yield (56.5%) obtained with BMIMBr was slightly
lower than that obtained with EMIMBr. When ionic liquid 1,3-dimethylimidazolium iodide (DMIMI)
was used as reaction medium, a furfural yield of 46.7% was obtained. The furfural yields from EMIMCl
(30.0%) and BMIMCl (33.8%) were much lower than from EMIMBr and BMIMBr. This observation
suggested that Br– containing ionic liquids are more efficient than Cl− containing ionic liquids for the
conversion of xylose into furfural catalyzed by SnCl4, which may be attributed to the differences in
size charge density, and electronegativity of Br− and Cl− [52]. When 1-ethyl-3-methylimidazolium
tetrafluoroborate (EMIMBF4) was used as reaction medium, the furfural yield was only 15.1%. The low
yield from EMIMBF4 could be due to their poor ability to dissolve sugar [53]. Besides, the formation of
massive brown residues in EMIMBF4 indicated the severe occurrence of side reactions.

Furfural yield can be improved by extracting the produced furfural immediately to inhibit its
further degradation [33]. The biphasic systems consisting of water and organic solvents, such as
THF [54], toluene [9], MIBK [55], and dimethyl carbonate (DMC) [56] have been widely employed
for improving both HMF and furfural yield. In addition, the biphasic systems consisting of ionic
liquids and organic solvents have also been demonstrated to successfully improve HMF production
efficiency [45]. Therefore, in this study, we examined the effect of these organic solvents on the
conversion of xylose to furfural in water and EMIMBr. As expected, toluene, DMC, and MIBK could
form two phases with water and partially extract the produced furfural from water to the organic
phase during the reaction process. For the water–organic solvent biphasic systems, the use of toluene
and MIBK as extracting agents could increase the furfural yield noticeably. The furfural yield (45.7%)
from the H2O–MIBK system was remarkably higher than that obtained from the single water phase
with the same sugar loading (20 wt%). In contrast, the furfural yield slightly decreased when DMC
was used as extracting agent. In the EMIMBr–organic solvent biphasic systems, THF, toluene, and
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DMC exhibited high furfural extracting ability from ionic liquid, while ethylene glycol dimethyl
ether (EGDE) and MIBK showed poor extracting ability (Table 2). However, the EMIMBr–organic
solvent biphasic systems resulted in an obvious decrease of the furfural yield, compared with the
single EMIMBr phase system. These results suggested that the adverse effect of organic solvent on
the conversion of xylose into furfural in ionic liquid was more predominant than their inhibition to
furfural degradation.
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Figure 4. Effect of solvents on the dehydration of xylose into furfural. Reaction conditions: 200 mg of
xylose was dissolved in 1000 mg of ionic liquid; molar ratio of SnCl4:xylose = 1:10; 130 ◦C; 1 h.

Table 2. Effect of biphasic system on the conversion of xylose into furfural a.

Entry Reaction Phase Extraction Phase
Furfural Yield (%)

Extraction Phase Reaction Phase Total

1 b water / / 27.3 27.3
2 c water toluene 6.7 25.6 32.3
3 c water DMC 7.0 19.1 26.1
4 c water MIBK 5.9 39.8 45.7
5 d EMIMBr THF 18.2 1.0 19.2
6 d EMIMBr toluene 15.3 7.0 22.3
7 d EMIMBr DMC 8.0 0.3 8.3
8 d EMIMBr EGDE 7.2 4.6 11.8
9 d EMIMBr MIBK 0 4.7 4.7

a Reaction conditions: molar ratio of SnCl4:xylose = 1:10; 130 ◦C, 1 h. b 100 mg xylose; 500 mg water. c 100 mg
xylose; 500 mg water, 2 mL organic solvent. d 100 mg xylose; 500 mg EMIMBr, 2 mL organic solvent.

According to previous reports, fructose could be converted into HMF (92%) almost quantitatively
by EMIMBr without utilizing any other catalyst [49]. To determine the role of EMIMBr in the conversion
of xylose to furfural, the xylose conversion in EMIMBr without catalyst was also studied. As shown
in Figure 2, almost no furfural was produced when no catalyst was added into the reaction system.
This result suggested that EMIMBr could not directly induce the formation of furfural from xylose.
Wrigstedt et al. reported that in the preparation of HMF from glucose, bromine ions could promote the
fructose dehydration step in the aqueous phase [57]. The isomer of glucose, fructose, was considered
as a predominant intermediate in the process of conversion of glucose to HMF. The reaction pathway
for conversion of xylose to furfural is analogous to the reaction pathway of the conversion of glucose
to HMF [58]. Accordingly, bromine ions probably could also promote the dehydration of the isomer



Molecules 2019, 24, 594 7 of 18

of xylose, xylulose, into furfural. Based on the above analysis, we speculated that bromide anions
were able to catalyze the dehydration of ketose (xylulose) to furans, but not the aldose (xylose). In the
presence of Lewis acid, xylose was first isomerized into xylulose, and then the formed xylulose was
further dehydrated to furfural by EMIMBr.

It is generally accepted that the conversion of xylose catalyzed by Lewis acid involves two steps:
the isomerization of xylose into xylulose and the dehydration of xylulose into furfural [22]. As an
isomer of xylose, the dehydration of xylulose to furfural is much easier than the direct conversion
of xylose to furfural [39]. In the medium of water, little xylulose or fructose was observed since the
hydrolysis of SnCl4 produced sufficient Bronsted acidity to catalyze the dehydration of the ketose
carbohydrates at a rate superior to the isomerization of the aldose carbohydrates [33]. Since the use of
ionic liquids could further accelerate the dehydration of ketoses, quantifiable fructose was also not
detected in the EMIMBr/SnCl4 system [30,45] even though the reduced reaction temperature and
higher furfural selectivity suggest that the EMIMBr/SnCl4 system prefers the isomerization pathways
rather than the direct dehydration pathways.

2.3. Effect of Reaction Temperature on the Dehydration of Xylose into Furfural

Figure 5 shows the effect of reaction temperature on the dehydration of xylose into furfural.
It was observed that the rates of xylose conversion and furfural production increased with reaction
temperature. The furfural yield first increased and then decreased with the increase of reaction
temperature. The maximum furfural yields at 120, 130, and 140 ◦C were 66.5, 71.1, and 70.2%, obtained
at 1.5, 1.0, and 0.5 h, respectively. These results indicated that both the xylose conversion rate and
the furfural degradation rate increased with the increasing reaction temperature. This was consistent
with previous reports. For example, Wang et al. found that the residence time required to reach
the maximum furfural yield decreased with increasing temperature when xylose was converted in
water–GVL at 120–150 ◦C using AlCl3 as catalyst [59]. When the temperature was above 130 ◦C, the
degradation was enhanced because of the stronger molecular thermal motion [60,61]. The xylose
conversion, furfural yield, and furfural selectivity in the EMIMBr/SnCl4 system are shown in Figure 6.
The xylose conversion rate reached 95% in 0.5 h. As the reaction time increased from 0.5 h to 1 h, the
xylose conversion increased from 95.3% to 98.9% and the furfural selectivity increased from 62.1% to
71.9%.
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Figure 6. The xylose conversion, furfural yield, and furfural selectivity at 130 ◦C in the EMIMBr/
SnCl4. Reaction conditions: 200 mg of xylose was dissolved in 1000 mg of EMIMBr; molar ratio of
SnCl4:xylose = 1:10.

2.4. Effect of Initial Xylose Loading on the Dehydration of Xylose into Furfural

The production of furfural from xylose at a high substrate loading is very important for large
scale application [62]. Therefore, the effect of initial xylose loading on the dehydration of xylose into
furfural was investigated. As shown in Figure 7, furfural yield was markedly affected by the initial
xylose loading. When the xylose loading increased from 10 wt% to 20 wt%, the corresponding furfural
yield increased from 60.0% to 71.1%. However, the furfural yield decreased with the further increase
of xylose loading. A moderate furfural yield of 54.2% was obtained when the xylose loading was
40 wt%. The furfural yield decreased obviously when the initial xylose loading increased from 40 wt%
to 80 wt%. When the initial xylose loading was increased to 80 wt%, only 12.6% furfural yield was
obtained. It was also observed that the amount of insoluble humins in the reaction bottle increased
with the increase of xylose loading. The decrease in furfural yield at high xylose loading may be related
to the increase of the viscosity of reaction mixture. The increased viscosity of the mixture may result in
unevenly heating in the oil bath reactor [63] and also inhibit the mass transfer between catalyst and
reaction substrate [61]. Moreover, the higher xylose concentration may increase the probability of the
condensation between furfural and reaction intermediates, leading to the formation of humins [64].
This is consistent with the trend of conversion of xylose in aqueous acidic solutions [63] and ionic
liquid EMIMCl [24].

The catalytic performance of the EMIMBr/SnCl4 system developed in this work was compared
with other representative reaction systems reported recently. As shown in Table 3, unrealistic reaction
conditions, including relative high reaction temperature, low xylose loading (lower than 10%), and
large amount of organic solvents and electrolytes (such as NaCl) are indispensable to obtain relative
high furfural yield from the water–organic solvent biphasic systems [34,65,66]. The furfural yield in
the present work was higher than or comparable to previous reports even when the xylose loading
(20 wt%, with respect to the mass of reaction medium) was considerably higher than other previous
reported catalytic systems. Moreover, the furfural yield still reached 54.2% even at a sugar loading
as high as 40 wt%. For the reaction system using SnCl4 as catalyst, the furfural yield from EMIMBr
was higher than that using other single-phasic reaction media, such as water–DMSO [47] or water [33].
Although the furfural yield up to 69.4% was obtained when using high-pressure CO2 as a catalyst
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in the water/THF system, the xylose loading was only 1.3% [67]. Therefore, EMIMBr/SnCl4 is an
efficient system for converting carbohydrates to furfural.
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Table 3. Comparisons of catalytic performance of the EMIMBr/SnCl4 system with representative
catalytic systems for conversion of xylose to furfural.

Catalyst Solvent T/◦C t/h Loading (wt%) Con. (%) Yield (%) Sel. (%) Ref.

CrCl3 + HCl water 145 1 1 39 [65]
CrCl3 + HCl water–toluene 145 2 0.5 95.8 76.3 79.6 [65]

BMIMCl–AlCl3 water–GVL 140 2 3 99.7 79.8 80 [59]
FeCl3 water–2-MTHF 140 2 3.2 71 [34]

terephthalic acid water–toluene 190 3 3.7 91.8 70.9 77.2 [66]
SnCl4 + LiCl water–DMSO 130 3 10 63 [47]

HCl water 140 3 11.3 30 [68]
SnCl4 water 140 5 11.3 55 32 58 [33]
SnCl4 water–n-butanol 140 5 4.3 90 77 85 [33]

CO2–H2O water–THF 180 1 1.3 82.9 69.4 83.7 [67]
SnCl4 EMIMBr 130 1 20 98.9 71.1 71.9 This work
SnCl4 EMIMBr 130 1 40 54.2 This work

2.5. Effect of Water Content on the Dehydration of Xylose into Furfural

When xylose is completely dehydrated to furfural, every equivalent of xylose releases three
equivalents of water [69]. Previous works indicated that water had a negative effect on the dehydration
of xylose into furfural [65,69,70]. The effect of water content on xylose dehydration in EMIMBr/SnCl4
system was studied. As shown in Figure 8, the adverse effect of water on the furfural yield was limited
when the water content in the system was less than 10 wt%. However, the furfural yield decreased to
52.7% and 42.1% when the water content increased to 15% and 20%, respectively. When ionic liquids
were completely replaced with water, the furfural yield was only 22.1%. It was also observed that the
amount of insoluble humins also increased with the increase of water content in the system. It was
reported that water could lead to undesirable condensation side products and the rehydration of
furfural [60,71]. When there was water in the system, the intermediate products would be more active,
which may have led to the accumulation of by-products [65,72]. A similar phenomenon was also
observed for the dehydration of glucose to HMF in EMIMCl [73].
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2.6. Conversion of Xylan into Furfural

Xylan, a polymer of xylose, is the predominant component in hemicellulose. In consequence,
the conversion of xylan is critical for utilization of realistic biomass feedstocks [22,24]. Zhang et al.
proposed that the (AlCln)(n−3)− complexes formed from the BMIMCl/AlCl3 system could weaken
the glycosidic bonds and then facilitate the hydrolysis of xylan to xylose, which would be further
dehydrated into furfural [24]. Likewise, Zhang and Zhao proposed that CrCl3 in BMIMCl could
weaken the glycosidic bonds through binding with a glycosidic oxygen atom in a similar manner to
protic acid, leading to the hydrolysis of xylan to xylose [74].

We attempted to convert xylan into xylose in the EMIMBr/SnCl4 system at 130 ◦C. As shown in
Figure 9, the furfural yield was 41.7% after 30 min reaction. The maximum furfural yield of 50.1% was
obtained at 1 h. When the reaction time was prolonged to 4 h, the furfural yield declined to 33.0%. Our
results showed that the optimized reaction conditions for xylose were also suitable for the conversion
of xylan. Binder et al. investigated the conversion of xylan using CrCl2 in DMA–LiCl into furfural
under identical reaction conditions (at 100 ◦C) with xylose [22]. However, only trace yields of furfural
were obtained, suggesting that these conditions were too mild to accomplish the depolymerization of
xylan into xylose. The furfural yield increased to 7–8% when the reaction temperature increased to
140 ◦C.

The hydrolysis of xylan to xylose requires the participation of some water (1 mol water/mol xylose
unit in xylan) [19]. When there is not enough water in the reaction medium, dehydration of xylose into
furfural is favored but the depolymerization of xylan will be suppressed [75]. Conversely, polymeric
carbohydrates will no longer be soluble in ionic liquids and xylose dehydration will be inhibited when
water content exceeds a certain level [76]. The effect of water amount on the conversion of xylan into
furfural was investigated to improve the catalytic effect of the reaction system. As expected, the yield
of furfural increased initially, then decreased gradually with increasing water amount (Figure 10).
The furfural yield reached a maximum of 57.3% when 25 µL water was added to the reaction system.
Compared with the reaction systems without additional water, an increase in the furfural yield was
observed with water amounts increasing from 15 to 100 µL. When the water amount increased to
150 µL, the furfural yield was lower than that of the reaction system without water. The decreased
furfural yield indicated excessive water was adverse to the production of furfural.
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SnCl4:xylan = 1:10; 130 ◦C.

Binder et al. found that although CrCl2 and CrCl3 could afford furfural yields between 30–41%, the
furfural yields from xylan were less than 8% in these reaction systems [22]. The highest furfural yield of
18% was obtained when adding HCl to the reaction mixture as a co-catalyst for xylan saccharification
and using EMIMCl as the solvent. We attempted to use acid as a co-catalyst for xylan saccharification to
improve furfural synthesis. In this study, when 50 µL 0.1mol/L HCl was added to the EMIMBr/SnCl4
system the furfural yield (54.6%) was almost equal to the furfural yield (54.5%) where 50 µL pure
water was used. These results indicated that there was no need to employ additional Bronsted
acid to promote the depolymerization of xylan, as was consistent with previous studies. Yu et al.
reported that SnCl4 could generate Bronsted acidity in water to catalyze the hydrolysis of starch into



Molecules 2019, 24, 594 12 of 18

glucose [77]. Enslow et al. demonstrated that the hydrolysis of SnCl4 provided sufficient Bronsted
acidity to catalyze the dehydration of the ketose carbohydrates at a rate higher than the isomerization
of the aldose carbohydrates [33]. Although SnCl4 may hydrolyze in water, leading to the formation of
complex Sn species, its catalytic performance can be readily recovered by replenishing appropriate HCl.

2.7. Conversion of Corn Stalk into Furfural

The catalytic performance of the EIMIM/SnCl4 system was also evaluated using corn stalk as
representative biomass materials as substrate. The corn stalk used in this study contained 17.9 wt%
xylan, and the furfural yield was calculated based on this data. Figure 11 illustrates that a high furfural
yield of 54.5% from real raw biomass was obtained at 130 ◦C after 3 h when a relative low substrate
loading (5 wt%) was used. In addition, compared to xylose and xylan, when corn stalk was used as
substrate, a longer reaction time was needed to obtain the maximal furfural yield. When the substrate
loading increased to 10 wt% and 20 wt%, the furfural yields decreased to 46.4% and 34.7%, respectively,
and were lower than that obtained from pure xylose or xylan. This may be due to the complexity and
recalcitrance of lignocellulose [78].Molecules 2019, 24, x 14 of 20 
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The catalytic performance of the EMIMBr/SnCl4 system developed in this work was compared
with other representative homogeneous reaction systems. As shown in Table 4, higher furfural
yield could be obtained from the system EMIMBr/SnCl4 than other systems under mild conditions.
Zhang et al. investigated the conversion of lignocellulosic biomass into furfural in system
BMIMCl/AlCl3 under microwave irradiation. The furfural yields from untreated corncob, grass,
and pine wood were 19.1%, 31.4%, and 33.6%, respectively, at a low substrate loading of 2.5 wt% [24].
Morais proposed a two-stage furfural production process, where wheat straw was subjected to a
high-pressure CO2–H2O treatment to yield a hemicellulose hydrolysate that was then used as feed
in the CO2-catalysed dehydration step in a multiphasic CO2/water/THF system with MIBK as the
extracting solvent [79]. Through this process, a furfural yield of 43 mol% with a selectivity of 44 mol%
was obtained with 50 bar of initial CO2 pressure at 180 ◦C, 60 min. Compared with previous reports,
the EMIMBr/SnCl4 was more efficient for the production of furfural from raw biomass.
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Table 4. Comparisons of catalytic performance of the EMIMBr/SnCl4 system with representative
catalytic systems for conversion of lignocellulosic biomass to furfural.

Substrate Catalyst Solvent T/◦C t/h Loading/wt% Yield/% Ref.

corn stalk CrCl2 + HCl EMIMCl 140 1 22 [22]
corncob AlCl3 BMIMCl 160 0.05 2.5 19.1 [24]

grass AlCl3 BMIMCl 160 2 2.5 31.4 [24]
pine wood AlCl3 BMIMCl 160 2 2.5 33.6 [24]
corn stalk BMIMCl–AlCl3 water–GVL 140 4 3 48.0 [59]

wheat straw BMIMHSO4 BMIMHSO4 160 2.5 10 36.2 [80]
wheat straw CO2–H2O water–THF/MIBK 180 1 44 [79]

SnCl4 SnCl4 EMIMBr 130 3 5 54.5 This work
SnCl4 SnCl4 EMIMBr 130 3 10 46.4 This work

To the best of our knowledge, the EMIMBr/SnCl4 system is the most efficient reaction system
for the conversion of high concentration (20 wt%) xylose, and xylan and lignocellulosic biomass.
However, more work is necessary to further improve this system in order to achieve large scale
application. On the one hand, the use of expensive imidazolium-based ionic liquids as reaction
media results in the high cost of converting xylose into furfural. Recently, some concerns have been
pointed out regarding the environmental implications and the “greenness” of processes based in
ionic liquids [81–83]. Therefore, it is very necessary to search for alternative solvents to alleviate the
disadvantages of ionic liquids, such as biomass derived ionic liquids and eutectic solvents (DESs).
On the other hand, environmentally friendly and efficient extracting agents should be developed
to improve the product separation and purification processes, as well as to reduce the associated
environmental pollution. Besides, it is also very important to provide more evidence to confirm the
proposed reaction pathway, which may promote the development of a more efficient reaction system.

3. Materials and Methods

3.1. Materials

Furfural (99%) was purchased from Tianjin Heowns Biochem LLC (Tianjin, China). Xylose (99%),
AlCl3·6H2O, and EMIMBr were purchased from Shanghai Macklin Biochemical Co., Ltd (Shanghai,
China). SnCl4·5H2O, FeCl2·4H2O, FeCl3·6H2O, SnCl2·2H2O MgCl2·6H2O, CrCl3·6H2O, and THF
(99%) were purchased from Tianjin Fengchuan Reagent Technologies Co., Ltd (Tianjin, China). EGDE
(99%) and DMC (99%) were purchased from Tianjin Guangfu Fine Chemical Research Institute (Tianjin,
China). MIBK (99%) was purchased from Adamas Reagent Co., Ltd (Shanghai, China). Toluene (99%)
was purchased from Tianjin Chemical Reagent Supply and Marketing Company (Tianjin, China).
BMIMBr, BMIMCl, EMIMBF4, and DMIMI were purchased from Shanghai Chengjie Chemical Reagent
Co., Ltd. (Shanghai, China). EMIMCl was purchased from Lanzhou Institute of Chemical Physics,
Chinese Academy of Sciences (Lanzhou, China). Xylan (from corncob, 95%) was purchased from
Shanghai Meryer Chemical Technology Co., Ltd (Shanghai, China). Fe2(SO4)3 and FeSO4 were
purchased from Tianjin Bodi Chemical Co., Ltd (Tianjin, China). HCl (36%) was purchased from
Tianjin No. 5 Chemical Reagent Factory (Tianjin, China). All chemical reagents were commercially
available and used without further purification.

3.2. Conversion of Xylose and Xylan into Furfural

Catalytic reactions were typically performed in a thick-walled glass vial (15 mL) using 10 mol%
catalyst (with respect to monosaccharide), a certain amount of substrate, and 1000 mg of ionic liquid
at 120–140 ◦C. The glass vial was sealed with a polytetrafluoroethylene plug and then heated in an
oil bath, and the magnetic stirring rate was maintained at 600 rpm [42]. After the reaction, the glass
vial was quenched in a cold-water bath to terminate the reaction instantly. The reaction mixture was
diluted with a known mass of deionized water (for pure IL). For the biphasic system, the reaction
mixture was diluted with methanol, and then the extraction phase and reaction phase were separated
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using a syringe and needle to evaluate the partition of furfural between the extraction phase and the
reaction phase. The sample was filtered with a 0.45 µm polytetrafluoroethylene filter membrane prior
to high-performance liquid chromatography (HPLC) analysis. Each experiment was performed at least
three times, and the reproducibility of xylose conversion, furfural yield, and selectivity was within 3%
standard deviation. The corn stalk used in this study was collected from Lianyungang, China.

All reaction products were analyzed by high performance liquid chromatography (HPLC) and
quantified using calibration curves. Furfural was determined at 275 nm and 35 ◦C by an HPLC system
equipped with a diode array detector (DAD) using a methanol/water (v:v = 70%:30%) mobile phase at
a flow rate of 1.0 mL/min. Xylose was analyzed by HPLC system equipped with a refractive index
detector (refractomax 521 Model) and a Shodex Sugar SH1011 analytical column (8.0 mm × 300 mm).
A 5 mM H2SO4 solution was used as the mobile phase at a flow rate of 1.0 mL/min at 65 ◦C. The
catalytic performance of the reaction system was evaluated by xylose conversion, furfural yield, and
selectivity. The xylose conversion, furfural yield, and selectivity were calculated as follows:

Xylose conversion (from xylose) =
moles of xylose reacted
moles of initial xylose

×100% (1)

Furfural selectivity (from xylose) =
moles of xylose produced

moles of xylose reacted
×100% (2)

Furfural yield (from xylose) =
moles of furfural produced

moles of initial xylose
×100% (3)

Furfural yield (from xylan) =
moles of furfural produced

moles of initial xylan
×100% (4)

Furfural yield (from corn stalk) =
moles of furfural produced

moles of initial xylan in corn stalk
×100% (5)

4. Conclusions

This study investigated the catalytic performance of metal chlorides in different solvents for xylose
dehydration into furfural. The EMIMBr/SnCl4 system was screened as the most effective reaction
system, obtaining a furfural yield as high as 71.1% when the reaction was carried out at 130 ◦C for 1 h.
In addition, the furfural yield still reached 68.8% when 10 mol% SnCl4 was replaced by the combined
catalyst consisting of 5 mol% MgCl2 and 5 mol% SnCl4. Since the reaction was conducted at relative
conditions using high xylose loading (20 wt%), the conversion efficiency of the EMIMBr/SnCl4 was
considerably higher than other catalytic systems. Furthermore, the EMIMBr/SnCl4 system was also
efficient to directly catalyze the conversion of xylan into furfural without the assistance of additional
Bronsted acid. The addition of a certain amount of water could promote the conversion of xylan in the
EMIMBr/SnCl4 system, obtaining a furfural yield up to 57.3%. Finally, 54.5% furfural yield from corn
stalk could be obtained from the EMIMBr/SnCl4 reaction system.
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