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Abstract: Unconstrained amides that undergo fast hydrolysis under mild conditions are valuable
sources of information about how amide bonds may be activated in enzymatic transformations.
We report a compound possessing an unconstrained amide bond surrounded by an amino and a
carboxyl group, each mounted in close proximity on a bicyclic scaffold. Fast amide hydrolysis of this
model compound was found to depend on the presence of both the amino and carboxyl functions,
and to involve a proton transfer in the rate-limiting step. Possible mechanisms for the hydrolytic
cleavage and their relevance to peptide bond cleavage catalyzed by natural enzymes are discussed.
Experimental observations suggest that the most probable mechanisms of the model compound
hydrolysis might include a twisted amide intermediate and a rate-determining proton transfer.
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1. Introduction

Hydrolysis of the 1-azatricyclo[3.3.1.13,7]decan-2-one (1), which contains an ultimately twisted
and N-pyramidalized amide bond, was reported to be very fast and accompanied by the formation
of the “dimer” (compound 2) and higher oligomers [1]. The use of a half equivalent of water under
certain conditions led almost exclusively to formation of 2 (Scheme 1). Apparently, the product of
the initial hydrolysis of 1—the amino acid 3—was immediately N-acylated by unreacted 1, which
possesses an extremely electrophilic carbonyl group. In contrast to the twisted and therefore highly
reactive amide 1, the dimer 2 has an essentially unconstrained amide bond: yet we found that it reacted
with excess of water at a comparable rate, also giving the amino acid 3 (Scheme 1) [1]. Such a fast
amide hydrolysis is unusual; therefore, we decided to study the compound 2 in more detail.
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1. Introduction 

Hydrolysis of the 1-azatricyclo[3.3.1.13,7]decan-2-one (1), which contains an ultimately twisted 
and N-pyramidalized amide bond, was reported to be very fast and accompanied by the formation 
of the “dimer” (compound 2) and higher oligomers [1]. The use of a half equivalent of water under 
certain conditions led almost exclusively to formation of 2 (Scheme 1). Apparently, the product of the 
initial hydrolysis of 1—the amino acid 3—was immediately N-acylated by unreacted 1, which 
possesses an extremely electrophilic carbonyl group. In contrast to the twisted and therefore highly 
reactive amide 1, the dimer 2 has an essentially unconstrained amide bond: yet we found that it 
reacted with excess of water at a comparable rate, also giving the amino acid 3 (Scheme 1) [1]. Such a 
fast amide hydrolysis is unusual; therefore, we decided to study the compound 2 in more detail. 

N O NH2

H

N
H

O
O

-O

+
1/2 equiv.
    H2O

THF, RT
    70%

excess H2O

RT

NH2

H

O

O

+
-

1
2

3

 
Scheme 1. Formation and hydrolysis of amide 2.
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Examples of amides hydrolysable under mild conditions are rare, but not unknown. Apart from 1
and other similar systems featuring highly deformed amide bonds (see the reviews [2–4]), there are
compounds where fast amide bond hydrolysis was suggested to be facilitated by neighboring group
assistance (Figure 1 lists some representative examples, [5–13]).
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Figure 1. Selected compounds reported to undergo unusually fast amide bond hydrolysis in buffered 
water under mild conditions (indicated in brackets). Values of the half-life, calculated using the 
measured pseudo-first order rate constants kobs are listed for each compound. 

Compounds like 1 and 4–12 should not be regarded simply as chemical curiosities. In fact, most 
of them were deliberately designed and synthesized to obtain valuable information on the 
fundamental properties of the amide bond, and to use this information in unraveling the mechanisms 
of biologically relevant processes involving amide formation and cleavage: particularly mechanisms 
of protein cleavage catalyzed by proteolytic enzymes. Perhaps most studied in this regard are 
molecules mimicking the function of the side-chain carboxyl groups in the active sites of aspartic 
proteases. The first systematic studies with such molecules, later named enzyme models [14], were 
undertaken back in the 1950s [5,15]. In the following decades many more similar models were 
discovered. It was demonstrated that one or two carboxyl groups in close proximity to the amide 
function (as in compounds 4–6, 8–10, 12) catalyzed the amide bond hydrolysis with rates comparable 
to those of the corresponding enzymatic transformations. Similar work was also published on models 
of metalloproteases (exemplified here by compound 7), and serine/cysteine proteases (e.g. compound 

Figure 1. Selected compounds reported to undergo unusually fast amide bond hydrolysis in buffered
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Compounds like 1 and 4–12 should not be regarded simply as chemical curiosities. In fact,
most of them were deliberately designed and synthesized to obtain valuable information on the
fundamental properties of the amide bond, and to use this information in unraveling the mechanisms
of biologically relevant processes involving amide formation and cleavage: particularly mechanisms of
protein cleavage catalyzed by proteolytic enzymes. Perhaps most studied in this regard are molecules
mimicking the function of the side-chain carboxyl groups in the active sites of aspartic proteases.
The first systematic studies with such molecules, later named enzyme models [14], were undertaken
back in the 1950s [5,15]. In the following decades many more similar models were discovered.
It was demonstrated that one or two carboxyl groups in close proximity to the amide function (as in
compounds 4–6, 8–10, 12) catalyzed the amide bond hydrolysis with rates comparable to those
of the corresponding enzymatic transformations. Similar work was also published on models of
metalloproteases (exemplified here by compound 7), and serine/cysteine proteases (e.g., compound
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11). Although the validity of the enzyme models and their relevance to the natural enzyme mechanisms
has been extensively criticized and re-examined (see, for example, [10,11,16,17], there is no doubt that
they made important contributions to our understanding of the natural catalytic systems, and will do
so in the future.

Moreover, reactive model amides like compounds 1 and 4–12, together with natural systems,
inspired many chemists to design selective and efficient non-enzymatic transformations of the amide
bond, not limited to hydrolysis. For example, twisting around the N−C bond, as a general concept for
amide bond activation was ingeniously utilized for the diverse and unprecedented functionalization
of amides. Such twisting can be easily achieved either by formation of bridgehead lactams [18],
or even by modifying acyclic amides [19] without resorting to polycyclic scaffolds. Notable are the
metal-catalyzed N−C cross-coupling reactions of the twisted amides, impossible for unconstrained
compounds (see recent reviews on this subject, [2,20–22]. Activation by neighboring groups was also
used for developing selective amide group cleavage [23] and amine group protection strategies [24,25].
There has also been significant progress towards selective biomimetic metal-ion promoted amide
bond cleavage, mimicking metalloproteases and amidohydrolases [23,26–30]. It should be noted,
however, that efficient artificial catalytic (in particular, organocatalytic) amide bond transformations
characteristic of proteases presents a challenge so far unachieved [31].

In view of the above, compound 2 might be regarded as a promising model compound, where
the observed fast amide bond hydrolysis under mild conditions could provide new information about
the intrinsic reactivity of the amide linkage and its possible catalytic cleavage.

One might hypothesize that the observed fast hydrolysis of 2 is facilitated by both carboxyl and
secondary amine groups flanking the amide bond. In this paper, we report experimental evidence for
this hypothesis, and also discuss the hidden potential of this model system in the study of biochemical
transformations and the design of artificial catalytic systems.

2. Results

We first wanted to know if the presence of only one functional group, either the amino group
or the carboxylate in the structural context of the amide 2 is sufficient for the fast hydrolysis of the
amide bond. The literature data (e.g., on 5 [6], 9 [10], as well as on the compound described in [32])
clearly demonstrated that a single carboxyl group, if properly placed, can catalyze very fast amide
bond hydrolysis intramolecularly, presumably through the proton transfer to the amide bond oxygen
and subsequent nucleophilic attack at the N-CO bond carbon [6]. Involvement of the basic nitrogen of
a neighboring pyrimidine substituent in the hydrolytic cleavage of the amide bond has also been well
documented [33].

We synthesized two isostructural analogues of 2, compounds 13 and 14, one lacking the secondary
amino group (bearing the –CH2– fragment instead), and the other possessing no carboxyl group (with
–CH2– in place of –CH(COOH)–).

Compound 13 was prepared via the bicyclic carboxylic acid 20, synthesized by the method first
published in [34] and further refined by us [35]. The acid 20 was converted to the corresponding acid
chloride and coupled under the Schotten–Baumann reaction conditions with amino acid 3 (Scheme 2).

The key intermediate in our synthesis of 14 was the bicyclic amine 25, which was obtained
following the steps described in [36,37] (Scheme 3). N-Cbz-protected amino acid 21 was prepared
from 3 (we observed also formation of the side-product 22 during the protection) and coupled with 25
using a standard peptide coupling protocol. Cleavage of the Cbz-protecting group by hydrogenolysis
afforded compound 14.
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Scheme 3. Synthesis of model compound lacking the carboxyl group.

The structure of the amide 14 was confirmed by comprehensive analysis of its 2D-NMR spectra.
The key NOESY correlations, which prove the structure of 14 in solution are shown in Figure 2 (see also
the Supporting Information).

Compound 13 gave single crystals suitable for X-ray structure determination, which showed
that the carboxyl group is indeed in close proximity to the amide bond (Figure 3) and might facilitate
hydrolysis: as for example, in the known compound 9 [10]. However, neither 13 nor 14 was hydrolyzed
at a measurable rate under the conditions used in [1] (0.084M in acetonitrile-d3 solution in the presence
of five equivalents of water), in which compound 2 was reported to be hydrolyzed within days.
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We noted only very slow changes in the solutions of 14 in the presence of a large excess of water
(on standing in a CD3CN-D2O mixture, 1:1 v\v at 25 ◦C): where formation of insoluble, presumably
polymeric material was observed within several weeks. These results are also in agreement with the
reported fact [1] that if the carboxyl group in compound 2 is reduced to CH2OH, the resulting amino
alcohol also withstands hydrolysis even during prolonged treatment with excess water. Therefore,
one might conclude that the amino and carboxyl groups act together to facilitate the hydrolysis of amide 2.Molecules 2018, 23, x 5 of 20 
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In order to elucidate possible mechanisms for the intramolecular catalysis of the amide bond
in 2, we decided to obtain this compound as a hydrochloride by a route different from that
shown in Scheme 1 in order to study the rates of its reaction with water in buffers at different
pH. We reasoned that the hydrochloride salt would be more stable than the zwitterionic form of 2
obtained directly from 1, enabling us to purify the compound. The synthetic approach was based on
our observation (above) that treatment of the amino acid 3 with CbzCl gave not only the expected
protected compound 21, but also the dimer 22 as a side-product (Scheme 3, in parentheses). Using
Me3SiCH2CH2OCOCl as protecting reagent and varying the reaction conditions, we obtained the
dimer 27 in a reasonable yield. Most probably, formation of 27 proceeded through the activated
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intermediate 28, which reacted with the starting amino acid (Scheme 4). Alternatively, compound
27 could be formed through the twisted amide 1, formed upon activation of the carboxyl group.
The twisted amide could acylate unreacted 3 (as shown in Scheme 1), and the dimer 2 produced could
then be trapped by the N-protecting reagent. Treatment of 27 with dry HCl in dioxane afforded the
hydrochloride 2·HCl.
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Scheme 4. Alternative synthesis of amide 2 (hydrochloride).

Compound 2·HCl indeed turned out to be quite stable and crystallized from the reaction mixture
after the deprotection of 27 upon addition of diethyl ether. The purity of the obtained 2·HCl was
sufficient to study its hydrolysis in different D2O buffers (acetate, pD 3.81 and 4.85; phosphate, pD
6.68 and 7.95; carbonate, pD 9.45 and 10.68). Progress of the hydrolysis was monitored by 1H-NMR
using unambiguously assigned peaks for the starting compound and its hydrolysis product.

In the acidic acetate buffers (pD 3.81 and 4.85) and in phosphate buffer at pD 6.68, the 2·HCl
hydrolysis product—the amino acid 3—appeared slowly in the 1H- and 13C-NMR spectra while the
starting amide peaks disappeared. A typical 1H-NMR data set for the hydrolysis in an acetate buffer is
illustrated in Figure 4. The kinetic parameters obtained for the hydrolysis in the acidic-neutral buffers
are listed in Table 1 (see also the Experimental section and Supporting Information for the details).
As can be seen from the data in Table 1, the pseudo-first order rate constant kobs of the hydrolytic
amide bond cleavage in 2 gradually increases with the pD values in this pD range, with the maximum
of 1.849 × 10−4 min−1 (half-life ~62.5 h, 23 ◦C) in phosphate buffer at pD 6.68.

Table 1. Kinetic parameters for the hydrolysis of 2·HCl in acidic D2O buffers at different pD values, 23 ◦C.

pD Value Half-life of 2·HCl, min kobs, min−1 Log(kobs)

3.81 18,138 3.821 × 10−5 −4.418
4.85 4668 1.485 × 10−4 −3.828
6.68 3748 1.849 × 10−4 −3.733
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Hydrolysis of 2·HCl in alkaline buffers (phosphate at pD 7.95, carbonate at pD 9.45 and 10.68)
was found to become slower as the pD increased. The kinetic data obtained for this pD range are
shown in Table 2.

Table 2. Kinetic parameters for the hydrolysis of 2·HCl in alkaline D2O buffers at different pD values,
23 ◦C.

pD Value Half-life of 2·HCl, min kobs, min−1 Log(kobs)

7.95 18,802 3.686 × 10−5 −4.433
9.45 91,125 7.605 × 10−6 −5.119
10.68 126,114 5.496 × 10−6 −5.260

Interestingly, at pD 9.45 and 10.68 we observed a duplicated set of the 1H- and 13C-NMR signals
corresponding to the starting amide, suggesting the presence of its two forms in the solutions
(Figures S33–S36 in the Supplementary Materials). These two forms were observed immediately
after the compound was dissolved (the equilibrium between the forms established faster than we
could run the 1H-NMR spectrum, ~2 min), and their ratio remained unchanged during the whole
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period of the kinetic measurements (~2 months). However, the ratio between the forms depended
on the pD of the solutions. The form which was dominant at the pD 9.45 had the chemical shifts of
the NMR signals close to those observed for the 2·HCl in acidic buffers; at the pD 10.68, both forms
gave corresponding signals of almost equal intensity; to explain these observations, we suggest the
existence of the structures 2b+− and 2− in the alkaline solutions (Figure 5).
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3. Discussion

The bell-shaped rate profile for the hydrolytic cleavage of the amide 2 confirmed our suggestion
made using the model molecules 13 and 14: that both amino and carboxyl groups are involved in the
hydrolysis. On the basis of our experimental data, one can suggest the equilibria between differently
protonated 2 in different buffers, as schematically illustrated in Figure 7. Evidently, the basic nitrogen
in 2 is protonated and “switched off” from intramolecular assistance of the amide bond hydrolysis
at low pDs (where species 2+ dominate). Similarly, deprotonation of the COOH group “switches
off” its involvement in the reaction at high pDs (the equilibria shifting to unreactive 2−). There is an
alternative explanation of the pD rate profile—see the discussion of possible hydrolysis mechanisms
below—but in all cases the amino and carboxyl groups should act synergistically.

At the high pDs, another reason for the slowdown of the reaction might be epimerization at the
carbon atom next to the carboxyl group. The racemization could also explain the doubling of the
signals in the solution of 2 in the alkaline buffers. However, we can exclude this possibility: the NMR
signal-doubling is observed almost immediately after dissolving the amide 2 in the buffers, and the
ratio of the species observed in the NMR spectra is dependent on the pD, but not on time. Epimerization
in similar systems is known to proceed much more slowly and under harsher conditions, leading to
almost complete conversion of the endo-COOH epimer to the exo-COOH epimer [35]. Observation of
the two species in the spectra of 2 might be explained by the slow (on the NMR time scale) exchange
between the species 2b+− and 2− at high pDs (Figure 8). This could be confirmed by the fact that
one of the species (content increasing with pD, so assigned to 2−) has the carboxyl group 13C-NMR
resonance at lower field then the other species (tentatively assigned to 2b+−, Figure 8), in line with
literature data reporting the downfield shift for the COOH 13C-NMR peak upon deprotonation [38].

Two types of possible mechanisms of the hydrolysis of 2 can be suggested, if both the amino and
carboxyl functions are involved. These mechanisms (which we name N- and O-mechanisms in order
to distinguish them in the following discussion) differ by the roles played by the two functional groups
in intramolecular catalysis. The N-mechanism, realizable either through path a or b (Figure 7) involves
a nucleophilic attack of the basic nitrogen atom on the amide bond carbon while the COOH group acts
as a general acid. It might be concerted (path a) or involve formation of a tetrahedral intermediate
(TIb, path b), but in both cases should result in formation of the twisted amide 1. Although we
did not observe 1 in the reaction mixtures at any pDs by NMR, we know that its hydrolysis will be
extremely fast under the reaction conditions used [1], excluding the accumulation of 1 in observable
concentrations. The O-mechanism (concerted path c or stepwise path d, Figure 7) suggests that the
amino and the carboxyl group swap roles in the first step of the reaction: the deprotonated COOH is
now the nucleophile and the protonated amino group acts as the general acid. This possible mechanism
would involve formation of the anhydride intermediate A (apart from the tetrahedral intermediate TId
in the path d). Degradation of A might again involve the nucleophilic amino group attack at one of the
anhydride carbonyls and formation of the twisted amide 1. In all cases the limiting step is the first; the
following transformations should be fast—explaining why no intermediates were detected by NMR
spectroscopy in the reaction mixtures. In order to prove that the rate limiting step of the hydrolysis
(at least at low pH) involves a proton transfer, we set up two hydrolysis reactions of 2·HCl running in
parallel with all the conditions but one identical: the solvent for one being H2O, for the other, D2O.
NMR monitoring of the reaction rates revealed a well-defined isotope effect: the hydrolysis in H2O
being ca 1.3–1.6 times faster than in D2O. Figure 9 illustrates the faster appearance of the hydrolysis
product in the 1H-NMR spectra of the reaction mixtures run in the course of the experiment.
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The fact that we observed none of the possible intermediates makes it difficult to choose between
paths a-d based only on our experimental data.

If the amine nitrogen is indeed involved as the nucleophilic center in the intramolecular catalysis
of the amide bond cleavage in 2, this raises an intriguing question: why does nature not utilize
nitrogen-based nucleophilic centers in enzymatic hydrolytic cleavage of the amide bond? None of
the currently known peptidases (hydrolases acting on amide bonds in protein backbones [39]) utilize
an N-nucleophilic attack as a part of their catalytic mechanism [40]. Ubiquitous and long-studied
serine and cysteine proteases feature the side-chain –OH or –SH nucleophilic groups in their active
sites. Similarly, the threonine –OH group is thought to be involved as a nucleophile in relatively
recently discovered threonine proteases [41]. The catalytic mechanisms proposed for both aspartic and
metalloproteases involve nucleophilic attack of a water molecule at the scissile amide bond. Finally,
the rare glutamic proteases were also suggested to utilize a water molecule as the nucleophile [42].
Even if there are as yet undiscovered “XX-peptidases” (XX designating an N-nucleophile in the active
site), they undoubtedly must be rare.

In fact, there are known proteolytic enzymes that cleave peptide bonds with active participation of
a nucleophilic nitrogen atom. These enzymes are not peptidases but rather lyases, as their action does
not include hydrolysis. The N-nucleophile thought to play the key role in the amide bond cleavage
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is the nominally non-nucleophilic amide nitrogen of the asparagine side chain. Named asparagine
peptide lyases, these enzymes were assigned to a “seventh catalytic type of proteolytic enzymes” [43];
many families of this enzyme type are now known. Typical examples are inteins, the protein segments
able to mediate their own scission from larger proteins [44,45]. This process, known as protein
splicing, involves cleavage of the two amide bonds flanking the inteins, producing the intein-removed
proteins built from two remaining N- and C-extein fragments. Most intein-containing proteins have a
conserved asparagine residue at one of the amide-bond cleavage sites. In the key step of the splicing,
the asparagine amide is activated for intramolecular nucleophilic attack at its own peptide bond,
leading to its cleavage. The chain of molecular events, a part of the mechanism proposed for splicing
an intein (SspDnaE) [46] is illustrated in Figure 10.Molecules 2018, 23, x 13 of 20 

 

 

Figure 10. A part of the proposed intein SspDnaE splicing mechanism involving the Asn159 
nucleophilic attack (marked with the yellow star) at the nearby amide bond carbonyl. Reprinted from 
[45] with permission from Elsevier. 

Details of the activation of the Asn side chain amide for the nucleophilic attack are not 
completely understood. This could involve its tautomerization with the formation of a more reactive 
imidate species [46] or, alternatively, twisting the amide bond, which is known to enhance its 
nucleophilicity [47]. Interestingly, a mechanism involving the twisted asparagine amide group was 
proposed for oligosaccharyltransferases, the membrane protein complexes which catalyze 
asparagine-linked glycosylation [48]. Whatever the mechanism of the amide nucleophile activation, 
it is clear that nature avoids strong amine nucleophiles in the active sites of the proteolytic enzymes. 
They are present in a latent form (amide group of Asn) and only generated during the catalysis. It 
cannot be due to low availability of active N-nucleophiles in proteins. The lysine amino group, for 
example, acts as a nucleophile in ribulose 1,5-bisphosphate carboxylase (Rubisco), the most abundant 
enzyme on Earth [49]. In the catalytic protein splicing described above, where amide bonds are 
cleaved, however, the action of the asparagine-derived active nucleophile results in destruction of 
the enzyme itself. One might even question whether the splicing can be considered as an enzymatic 
process [42]. The prospect of self-destruction could be one of the reasons why natural proteases 
evolved without N-nucleophiles in the active site.  

Our model compound 2 demonstrates that one possible way to avoid self-destruction could be 
structural constraint holding the intermediate N-acylated species in a twisted conformation, before a 
water molecule arrives and completes the hydrolysis cycle. There are no reasons to believe that this 
is impossible in natural catalytic systems, therefore, one might also believe that “XX-peptidases” are 
yet to be discovered. In any case, in seems worthwhile to design artificial catalytic systems exploiting 
the N-nucleophiles in the catalytic processes. Such systems could be inspired by known natural 
enzymes or by model molecules as described in this paper. One important step towards this goal has 
already been reported by Otaka et al. [50]. They developed a photo-responsive amide cleavage device, 
mimicking the intein-mediated protein splicing. According to their approach, photo-triggered 
liberation of the secondary amino group on a modified asparagine fragment activates the asparagine 

Figure 10. A part of the proposed intein SspDnaE splicing mechanism involving the Asn159
nucleophilic attack (marked with the yellow star) at the nearby amide bond carbonyl. Reprinted
from [46] with permission from Elsevier.

Details of the activation of the Asn side chain amide for the nucleophilic attack are not
completely understood. This could involve its tautomerization with the formation of a more reactive
imidate species [47] or, alternatively, twisting the amide bond, which is known to enhance its
nucleophilicity [48]. Interestingly, a mechanism involving the twisted asparagine amide group
was proposed for oligosaccharyltransferases, the membrane protein complexes which catalyze
asparagine-linked glycosylation [49]. Whatever the mechanism of the amide nucleophile activation, it is
clear that nature avoids strong amine nucleophiles in the active sites of the proteolytic enzymes. They
are present in a latent form (amide group of Asn) and only generated during the catalysis. It cannot
be due to low availability of active N-nucleophiles in proteins. The lysine amino group, for example,
acts as a nucleophile in ribulose 1,5-bisphosphate carboxylase (Rubisco), the most abundant enzyme
on Earth [50]. In the catalytic protein splicing described above, where amide bonds are cleaved,
however, the action of the asparagine-derived active nucleophile results in destruction of the enzyme
itself. One might even question whether the splicing can be considered as an enzymatic process [43].
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The prospect of self-destruction could be one of the reasons why natural proteases evolved without
N-nucleophiles in the active site.

Our model compound 2 demonstrates that one possible way to avoid self-destruction could be
structural constraint holding the intermediate N-acylated species in a twisted conformation, before a
water molecule arrives and completes the hydrolysis cycle. There are no reasons to believe that this is
impossible in natural catalytic systems, therefore, one might also believe that “XX-peptidases” are yet
to be discovered. In any case, in seems worthwhile to design artificial catalytic systems exploiting the
N-nucleophiles in the catalytic processes. Such systems could be inspired by known natural enzymes or
by model molecules as described in this paper. One important step towards this goal has already been
reported by Otaka et al. [51]. They developed a photo-responsive amide cleavage device, mimicking
the intein-mediated protein splicing. According to their approach, photo-triggered liberation of the
secondary amino group on a modified asparagine fragment activates the asparagine amide for the
nucleophilic attack that subsequently cleaves the adjacent peptide bond, as illustrated in Figure 11.
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4. Materials and Methods

4.1. General

Solvents were purified according to standard procedures [52]. Melting points were measured
on an automated melting point system and are uncorrected. Analytical TLC was performed using
Polychrom SI F254 plates. Column chromatography was performed using silica gel (230–400 mesh) as
the stationary phase. 1H, 13C NMR and all 2D NMR spectra were recorded at 499.9 or 400.4 MHz for
protons and 124.9 or 100.4 MHz for carbon-13. Chemical shifts are reported in ppm downfield from
TMS (1H, 13C) as an internal standard. Mass spectra were recorded either on an Agilent 1100 LC/MSD
SL (Agilent, Santa Clara, CA, USA) instrument by chemical ionization (CI) or on a GCMS instrument
with electron impact ionization (EI). CHN-analysis was done on an Elementar VarioMICRO Cube
analyzer (Elementar, Langenselbold, Germany).

4.2. Synthetic Procedures

3-Endo-bicyclo[3.3.1]nonane-3-carboxylic acid (20). This known compound was prepared starting
from 1-cyclohexenylpyrrolidine (16) and 2-bromomethyl-acrylic acid benzyl ester (15) on a
0.2 mol scale in 69% overall yield following the procedures described in [36] for the analogue,
7-endo-3-(tert-butoxycarbonyl)-3-azabicyclo [3.3.1]nonane-7-carboxylic acid. The 1H-NMR spectrum
of the product corresponded to that described in [53]. White crystals, m.p. 126 ◦C (lit.
126.5–127 ◦C [52]).1H-NMR (δ, CDCl3, 500 MHz): 11.78 (broad s, 1H, COOH), 2.48 (h, 6.0 Hz, 1H, 3-H),
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1.9–2.1 (m, 4H), 1.6–1.7 (m, 1H), 1.55 (d, 13.5 Hz, 1H), 1.25–1.45 (m, 7H), 1.09 (d, 13.5 Hz, 1H). 13C-NMR
(δ, CD3Cl, 124.9 MHz): 183.27 (COOH), 36.56, 32.50, 28.74, 28.48, 24.43, 15.55. LC/MS (CI, neg. scan):
m/z = 167.2; (CI, pos. scan): m/z = 169.2. Anal. Calc. for C10H16O2: C, 71.39; H, 9.59. Found: C, 71.35;
H, 9.55.

3,7′-Endo-3′-(bicyclo[3.3.1]non-3-ylcarbonyl)-3′-azabicyclo[3.3.1]nonane-7′-carboxylic acid (13). Compound
20 (266 mg, 1.6 mmol) was dissolved in dry dichloromethane (0.5 mL) and mixed with oxallyl chloride
(5 mg, 4 mmol). The mixture was stirred under protection from air moisture for 8 h. Then the volatile
products were removed under vacuum (0.01 mm Hg, 40 ◦C, 4 h). The residue was dissolved in dioxane
(1 mL) and added dropwise to a solution of the amino acid 3 (prepared as described in [1], 244 mg,
1.44 mmol) and Na2CO3 (0,763 g, 7.2 mmol) in water (1 mL) under stirring and cooling by an ice bath.
The mixture was stirred for 8 h at ambient temperature, evaporated on a rotary evaporator, and the
residue (the sodium salt of 13) crystallized from ethanol. The crystallized and air-dried product was
dissolved in a minimum amount of water (approximately 0.4 mL) and the solution was acidified by
conc. HCl to afford 13 as a white crystalline material. It was filtered and dried in vacuum (0.01 mm.
Hg, 40 ◦C, 4 h). 230 mg, 45% overall yield. Below, the data for the sodium salt of 13 (an analytical
sample) are listed. m.p. 233 ◦C. 1H-NMR (δ, D2O, 500 MHz): 4.13 (d, 12.5 Hz, 1H), 3.82 (d, 12.5 Hz,
1H), 3.01 (d, 12.5 Hz, 1H), 2.91 (m, 1H), 2.52 (d, 12.5 Hz, 1H), 2.20 (m, 1H), 1.75–2.35 (m, 8H), 1.55–1.75
(m, 3H), 1.15–1.45 (m, 8H), 0.95—1.10 (m, 3H). 13C-NMR (δ, D2O, 124.9 MHz): 184.89, 179.73, 52.16,
48.93, 37.80, 32.41, 32.26, 32.18, 28.79, 28.75, 28.26, 28.05, 27.73, 26.35, 25.58, 25.43, 24.39, 24.11, 15.09.
LC/MS (CI, neg. scan): m/z = 318.2; (CI, pos scan): m/z = 320.2. Anal. Calc. for C19H29NO3: C, 71.44;
H, 9.15; N, 4.38. Found: C, 71.40; H, 9.13; N, 4.39.

7′-Endo-3′-[(benzyloxy)carbonyl]-3-azabicyclo[3.3.1]nonane-7′-carboxylic acid (21). Amino acid 3 (169 mg, 1
mmol) and NaHCO3 (200 mg, 2.4 mmol) were dissolved in water-dioxane mixture (10 mL, 1:1 v/v). To
this solution was added benzyl carbonochloridate (carbobenzoxychloride, 0.2 mL) dropwise under
stirring. The mixture was stirred for 3 h, and then acidified carefully by 1N HCl till pH 2. The product
was extracted with MTBE (3 × 50 mL), the combined extracts were dried over Na2SO4 and evaporated.
The product was purified by column chromatography (silica gel, MTBE as an eluent). Analytical
sample was prepared by crystallization from diethyl ether. Yield: 200 mg, 66%. White crystals, m.p.
120 ◦C. 1H-NMR (δ, CDCl3, 500 MHz): 10.02 (br s, 1H, COOH), 7.40–7.70 (m, 5H, arom.), 5.12 (br s,
1H), 4.97 (br s, 1H), 4.03 (br s, 2H), 2.92 (d, 11.5 Hz, 2H), 2.60 (br s, 1H), 2.36 (d, 13.0 Hz, 2H), 1.75–2.00
(m, 4H), 1.64 (d, 11.5 Hz, 1H), 1.54 (d, 11.5 Hz, 1H). 13C-NMR (δ, CDCl3, 124.9 MHz): 178.67, 156.18,
136.47, 128.01, 127.72, 127.47, 66.67, 48.70, 36.96, 30.89, 29.26, 26.21. LC/MS (CI, neg. scan): m/z = 302.3;
LC/MS (CI, pos. scan): m/z = 304.2. Anal. Calc. for C17H21NO4: C, 67.31; H, 6.98; N, 4.62. Found: C,
67.36; H, 6.86; N, 4.60. Chromatographic purification of 21 also yielded a side-product assigned to the
structure 22 (6 mg), on the basis of its 1H-NMR and MS data.

7,7′-Endo-3′-({3-[(benzyloxy)carbonyl]-3-azabicyclo[3.3.1]non-7-yl}carbonyl)-3′-azabicyclo[3.3.1]no
ane-7′-carboxylic acid (22). m.p. 170 ◦C: 1H-NMR (δ, (CD3)2SO, 500 MHz): 11.63 (s, 1H, COOH),
7.20-7.50 (m, 5h, arom.), 5.03 (s, 2H, CH2Ph), 4.11 (d, 13.0 Hz, 1H), 3.70-3.90 (m, 3H), 2.93 (d, 12.0 Hz,
1H), 2.55–2.75 (m, 3H), 2.32 (m, 2H), 1.35–1.95 (m, 13H), 1.33 (d, 12.0 Hz, 1H), 1.11 (d, 12.0 Hz, 1H),
0.98 (br s, 1H). LC/MS (CI, neg. scan): m/z = 453.4; LC/MS (CI, pos. scan): m/z = 455.2.

3-azabicyclo[3.3.1]nonane (25), 3-azabicyclo[3.3.1]nonane-2,4 dione 24 (5 g, 32 mmol, prepared as described
in [35]) was dissolved in THF (100 mL) under an argon atmosphere. Lithium aluminum hydride (3.7 g,
98 mmol) was added in portions to the solution, which was then refluxed for 5 h and stirred for an
additional 8 h without heating. The excess of the LiAlH4 was quenched carefully with water, the
product was sublimed to afford 25 as a colorless crystalline product, 2.68 g, 67% yield.

All the spectral data were identical to those described in the literature [54]. m.p. 157 ◦C.
For the use in the next step, the amine was converted to its hydrochloride by dissolving in an
excess of 1N HCl, evaporation in vacuum, co-evaporation with water (3 × 20 mL) on a rotary



Molecules 2019, 24, 572 15 of 19

evaporator, drying in a desiccator over P2O5 for 24 h. White crystals (crystallized from isopropanol),
3-azabicyclo[3.3.1]nonanehydrochloride (25·HCl): 1H-NMR (δ, (CD3)2SO, 500 MHz): 9.81 (broad s, 1H,
NH), 8.08 (broad s, 1H, NH), 3.14 (d, 13 Hz, 2H), 3.03 (d, 13 Hz, 2H), 1.90–2.10 (m, 3H), 1.40–1.80 (m,
7H). 13C-NMR (δ, (CD3)2SO, 124.9 MHz): 46.40, 29.80, 28.96, 25.22, 19.36. Anal. Calc. for C8H16ClN: C,
59.43; H, 9.98; N, 8.66. Found: C, 59.40; H, 9.95; N, 8.69.

7-Endo-benzyl 7-(3′-azabicyclo[3.3.1]non-3′-ylcarbonyl)-3-azabicyclo[3.3.1]nonane-3-carboxylate (26).
The Cbz-protected amino acid 21 (95 mg, 0.31 mmol) and DIPEA (81 mg, 0.63 mmol) were dissolved
in acetonitrile (1 mL). (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(HBTU, 128 mg, 0.34 mmol) was added to the solution under stirring, and the stirring continued
for 5 min. Then the mixture was combined with a solution of the amine hydrochloride (25·HCl,
prepared as described above, 61 mg, 0.37 mmol) and DIPEA (73 mg, 0.56 mmol) in acetonitrile (1 mL).
The resulting mixture was stirred for 8 h, and then evaporated on a rotary evaporator. The residue was
applied to a chromatographic column (silica gel) and pure 26 was eluted with hexane-ethylacetate 2:1
v/v). Colorless oil, crystallized on standing, 88% yield (112 mg). An analytical sample was prepared by
crystallization from petroleum ether. m.p. 157 ◦C. 1H-NMR (δ, (CDCl3, 500 MHz): 7.25–7.45 (m, 5H,
arom.), 5.20 and 5.09 (two d, 2H), 4.57 (m, 1H), 4.02 (d, 12.0 Hz, 1H), 3.95 (d, 12.0 Hz, 1H), 3.88 (d,
12.0 Hz, 1H), 3.29 (d, 12.0 Hz, 1H), 2.75–2.85 (m, 3H), 2.74 (broad s, 1H), 1.80–2.15 (m, 7H), 1.50–1.80 (m,
9H), 1.43 (broad s, 1H), 1.26 (m, 1H). 13C-NMR (δ, (CD3)2SO, 124.9 MHz): 177.47, 177.09, 136.55, 128.15,
127.56, 127.36, 50.43, 35.75, 32.80, 30.20, 29.51, 29.00, 27.00, 26.21., 26.20, 25.97. LC/MS (CI, pos. scan):
m/z = 411.2. Anal. Calc. for C25H34N2O3: C, 73.14; H, 8.35; N, 6.82. Found: C, 73.11; H, 8.39; N, 6.80.

7-Endo-3′-(3-azabicyclo[3.3.1]non-7-ylcarbonyl)-3′-azabicyclo[3.3.1]nonane (14). The Cbz-protected amide
26 (38 mg, 0.1 mmol) was dissolved in methanol (3 mL). Palladium on charcoal (10%, 60 mg) was
added to the reaction vessel, which was then filled with hydrogen and the mixture was shaken under
1 atm H2 for 8 h. Then the mixture was filtered, evaporated in high vacuum (0.01 mm Hg) without
heating. The crude product 14 easily forms the carbonate upon handling on air, therefore it was mixed
with 5% aqueous NaOH solution (5 mL) and extracted with dichloromethane (3 × 20 mL) under an
argon atmosphere. The combined dichloromethane extracts were evaporated in high vacuum without
heating, the residue was dried in high vacuum for 5 h. Yellowish oil, 27.6 mg (quantitative yield).
1H-NMR (δ, CD3OD, 500 MHz): 4.55 (d, 15.0 Hz, 1H), 4.08 (d, 15.0 Hz, 1H), 3.36 (d, 15.0 Hz, 1H), 3.03
(m, 1H), 2.85 (d, 15.0 Hz, 1H), 2.69 and 2.61 (two d, 14.5 Hz, 4H), 1.60–2.20 (m, 17H), 1.55 and 1.51 (two
d, 14.5 Hz, 2H), 1.46 (broad s, 1H), 1.38 (d, 14.5 Hz, 1H). For the peaks assignments, see Supporting
Information. 13C-NMR (δ, CD3OD, 124.9 MHz): 176.47, 51.81, 51.76, 50.71, 32.61, 31.93, 30.85, 30.36,
28.65, 28.25, 28.08, 26.88, 25.64, 25.59, 20.13. LC/MS (CI, pos. scan): m/z = 277.2.

7,7′-Endo-3′-[(3-{[2-(trimethylsilyl)ethoxy]carbonyl}-3-azabicyclo[3.3.1]non-7-yl)carbonyl]-3′-azabicyclo[3.3.1]
nonane-7′-carboxylic acid (27). Amino acid 3 (100 mg, 0.59 mmol) was suspended in THF (2 mL) and
triethylamine (120 mg, 1.2 mmol) was added to the suspension under stirring. The mixture was then
cooled to −20 ◦C and 2-(trimethylsilyl)ethylcarbonochloridate (214 mg, 1.2 mmol) was slowly added
under stirring, keeping the mixture temperature not higher than −10 ◦C. After the addition, the
mixture was stirred at−10 ◦C for 15 min and at ambient temperature for 30 min. The mixture was then
again cooled in an ice-water bath, and a suspension of 3 (100 mg, 0.59 mmol) in a triethylamine (60 mg,
0.6 mmol) solution in THF (2 mL) was added to the stirred mixture in one portion. The resulting
mixture was stirred overnight at ambient temperature. The volatile products were removed in vacuum,
the residue was triturated with aqueous citric acid solution (5%). The crude product was extracted
with MTBE (3 × 50 mL), the combined extracts were evaporated and the residue was purified by
reverse-phase HPLC to afford 27 as colorless oil which crystallized on standing. Yield: 178.2 mg, 65%.
m.p. 198 ◦C. 1H-NMR (δ, CDCl3, 500 MHz): 9.83 (br. s, 1H), 4.36 (br. s, 1H), 4.13 (br. s, 2H), 3.80–4.05
(br. m, 3H), 3.12 (br. s, 1H), 2.65–2.82 (br. m, 5H), 2.53 (br. s, 1H), 2.24 (br. m, 2H), 1.75–2.15 (br. m,
9H), 1.64 (br. s, 1H), 1.57 (br. s, 2H), 1.21 (br. s, 1H), 0.98 (br. m, 2H), −0.1 (br. m, 9H). 13C-NMR (δ,
CDCl3, 124.9 MHz): (all the signals are broadened) 117.72, 117.27, 157.53, 63.64, 50.73, 47.37, 36.83,
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33.33, 33.12, 31.31, 30.02, 29.30, 29.05, 28.53, 27.26, 27.07, 26.94, 26.78, 25.81, 25.52, 25.32, -1.47. LC/MS
(CI, neg. scan): m/z = 463.2, 454.2, 465.2; (CI, pos. scan): m/z = 466.2, 467.2, 468.2. Anal. Calc. for
C24H40N2O5Si: C, 62.03; H, 8.68; N, 6.03. Found: C, 62.08; H, 8.64; N, 6.00.

7,7′-Endo-3′-(3-azabicyclo[3.3.1]non-7-ylcarbonyl)-3′-azabicyclo[3.3.1]nonane-7′-carboxylic acid hydrochloride
(2·HCl). Compound 27 (50 mg, 0.11 mmol) was dissolved in a mixture of dry diethyl ether and
dichloromethane (1:1 v/v, 1 mL) and a solution of HCl in dry dioxane (~10%, 0.5 mL) was added.
The mixture was left standing at ambient temperature for 8 h, the formed white crystals of the product
(2·HCl) were filtered, washed thoroughly with dry diethyl ether on the filter, dried in high vacuum
(0.05 mm Hg) for 6 h at 25 ◦C). Yield: 18 mg (46%). m.p. 198 ◦C (with decomposition). 1H-NMR (δ,
D2O, 500 MHz): 4.06 (d, 13.5 Hz, 1H), 3.85 (d, 13.5 Hz, 1H), 3.10–3.33 (m, 3H), 2.90–3.15 (m, 3H), 2.74
(dd, 13.5 and 2.0 Hz, 1H), 2.57 (h, 2.0 Hz, 1H), 1.85-2.20 (overlapped m, 11H), 1.73 (dd, 13.5 and 3.0 Hz,
1H), 1.50-1.70 (m, 4H), 1.34 (q, 3.0 Hz, 1H). 13C-NMR (δ, D2O, 124.9 MHz): 180.58, 179.33, 50.75, 49.01,
48.32, 47.98, 35.51, 29.83, 29.26, 29.10, 28.72, 27.11, 26.36, 26.30, 26.28, 26.09, 23.74, 23.39. Anal. Calc. for
C18H29ClN2O3: C, 60.58; H, 8.19; N, 7.85. Found: C, 60.54; H, 8.22; N, 7.83.

4.2.1. Kinetic Measurements for Hydrolysis Reaction of Compound 2 in D2O

Hydrolysis was carried out at 23 ◦C in NMR sample tubes, monitored by 1H-NMR spectra
(recorded by single scans). Six buffer solutions were prepared in D2O: acetate buffers (pD 3.81 and
4.85), phosphate buffers (pD 6.68 and 7.95), and carbonate buffers (pD 9.45 and 10.68); the pD values
were measured at 23 ◦C immediately before the measurements. The buffer concentrations were 250 mM
in each case, the ionic strengths were adjusted with NaCl to 1 M. The compound 2·HCl was weighed in
an NMR sample tube (5–7 mg), and the measurements started by addition of the corresponding buffer
solution to the compound (in the amount to achieve the compound concentration 25 mM). The content
of the tube was vigorously shaken, starting immediately the recording of the time. The first 1H-NMR
spectrum was measured as quickly after the buffer addition as practical (~2 min), then the spectra
were measured at intervals, depending on the reaction progress. The spectra were run as single scans,
in order to avoid integral-value distortions due to relaxation effects. The unambiguously assigned
non-overlapping peaks of the starting compound and its hydrolysis product were carefully integrated.
The complete data sets (Tables S1–S12) were used to build the kinetic curves and calculate kobs and the
half-lives for each compound (see the Supporting Information).

4.2.2. Estimation of the Kinetic Isotope Effect by Comparison of the Hydrolysis Rates of 2·HCl in D2O
and H2O

Two reactions were set up in two NMR sample tubes simultaneously by dissolving 4.2 mg of the
2·HCl in each tube in 0.5 cm3 D2O or H2O. The 1H-NMR spectra of the samples were run at intervals
(as single scans, in order to avoid integral-value distortions due to relaxation effects). For the spectral
measurements in H2O, excitation sculpting technique [55] was used for the water signal suppression.
The unambiguously assigned non-overlapping peaks of the starting compound and its hydrolysis
product were carefully integrated. Representative spectra can be seen in Figures S13 and S14.

4.2.3. X-ray Data for Compound 13

Crystal Data for C19H29NO3 (M = 319.43 g/mol): monoclinic, space group P21/c (no. 14),
a = 6.9409(2) Å, b = 10.8409(3) Å, c = 22.2437(6) Å, β = 93.2098(12)◦, V = 1671.11(8) Å3, Z = 4,
T = 180(2) K, µ(CuKα) = 0.673 mm-1, Dcalc = 1.270 g/cm3. The diffraction pattern was indexed as two
domains with 19230 measured reflections (domain 1 only), 19298 reflections (domain 2 only) and 3794
reflections (overlapped) (7.96◦ ≤ 2 ≤ 133.37◦), Rint = 0.0399. 2954 unique reflections were used in all
calculations. The final R1 was 0.0599 (I > 2σ(I)) and wR2 was 0.1593 (all data).
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CCDC 1884473 contains the supplementary crystallographic data for this paper. These data can
be obtained free of charge via https://www.ccdc.cam.ac.uk/structures (or from the CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Supplementary Materials: The following are available online. Figures S1–S36, NMR spectra and chromato-mass
traces for the compounds described in the main text; Tables S1–S12, Figures S37–S48, kinetic data on the hydrolysis
of 2·HCl in different buffers; Figures S49 and S50, Representative 1H-NMR data set used for estimation of the
kinetic isotope effect on the 2·HCl hydrolysis reaction; Figure S51; The CIF file for compound 13.
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