

Article Morphology-Dependent Catalytic Activity of Ru/CeO₂ in Dry Reforming of Methane

Lulu He¹, Yuanhang Ren¹, Yingyi Fu¹, Bin Yue^{1,*}, Shik Chi Edman Tsang² and Heyong He^{1,*}

- ¹ Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China; 14110220027@fudan.edu.cn (L.H.); yuanhangren@fudan.edu.cn (Y.R.); 13110220046@fudan.edu.cn (Y.F.)
- ² Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK; edman.tsang@chem.ox.ac.uk
- * Correspondence: yuebin@fudan.edu.cn (B.Y.); heyonghe@fudan.edu.cn (H.H.); Tel.: +86-21-3124-3916 (H.H.); Fax: +86-21-3124-5572 (H.H.)

Academic Editors: Robert Raja, Matthew E. Potter and Stephanie Chapman Received: 31 December 2018; Accepted: 29 January 2019; Published: 1 February 2019

Abstract: Three morphology-controlled CeO₂, namely nanorods (NRs), nanocubes (NCs), and nanopolyhedra (NPs), with different mainly exposed crystal facets of (110), (100), and (111), respectively, have been used as supports to prepare Ru (3 wt.%) nanoparticle-loaded catalysts. The catalysts were characterized by H₂-temperature programmed reduction (H₂-TPR), CO-temperature programmed desorption (CO-TPD), N₂ adsorption–desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (XDS). The characterization results showed that CeO₂-NRs, CeO₂-NCs, and CeO₂-NPs mainly expose (110), (100) and (111) facets, respectively. Moreover, CeO₂-NRs and CeO₂-NCs present higher oxygen vacancy concentration than CeO₂-NPs. In the CO₂ reforming of methane reaction, Ru/CeO₂-NR and Ru/CeO₂-NC catalysts showed better catalytic performance than Ru/CeO₂-NPs, indicating that the catalysts with high oxygen vacancy concentration are beneficial for promoting catalytic activity.

Keywords: carbon dioxide; methane; CeO₂; crystal facets; dry reforming

1. Introduction

As one of the most important emissions of modern industry and life, CO_2 has attracted great attention for its influence on global warming [1–3]. Many efforts have been made by governments around the world to depress the emission of CO_2 [4,5]. Actually, the use of CO_2 as a type of C1 resource for further chemical industry is also an efficient way to solve the problem [5,6]. As another important greenhouse gas, CH_4 exists extensively in natural resources. However, the current obstacle of the application of CH_4 is the activation of CH_4 due to its stable structure [7–9]. Thus, the studies of various reforming reactions have important industrial values and scientific significance in the application of CH_4 . Dry reforming of methane attracted more attention in recent years because this reaction could eliminate both greenhouse gases, CO_2 and CH_4 , simultaneously. Furthermore, the products H_2 and CO (syngas) of the reaction have a low H_2/CO molar ratio of nearly 1, which is more suitable for the subsequent chemical industrial processes [10–12].

For the methane dry reforming reaction, many kinds of catalysts have been widely studied by loading active metals on different supports. Ni, Co, Rh, Ru, Pd, Ir, and Pt have been studied for methane dry reforming reaction in recently years [7,13–15]. Ni- and Co-based catalysts attracted more

interest due to their lower price than noble metals. However, the sintering and coking problems along with the poor activity of the catalysts at relatively low temperature are difficult to solve. As a result, the study of noble metals in methane dry reforming is of great significance and the Rh- or Ru-based catalysts have been considered to have better activity and stability [15–17]. On the other hand, a lot of work has focused on the influence of the different metal oxide supports, such as SiO₂, γ -Al₂O₃, MgO, ZrO₂, La₂O₃, and TiO₂ [18–24]. These studies showed that the supports played an important role in their catalytic activity. The supports may not only offer various textures to disperse the active metal components, but also interact strongly with the active species. The interaction between supports and active metals influence on the structure of catalysts, the particle sizes, and the dispersion of active sites consequently influences the catalytic activity of the catalysts [25]. For example, Wang et al. found that the catalytic performance of a series of catalysts for methane dry reforming reaction was related to the redox properties of the supports [26].

CeO₂ is a unique metal oxide due to its low redox potential and high oxygen vacancy mobility, which could have a strong interaction with the active metals [27–29]. In recent years, CeO₂ has been widely used as a catalyst promoter or support for various reactions, such as dry reforming of methane, partial oxidation of methane, dry reforming of propane, and steam reforming of ethanol [30–34]. The studies indicate that the existence of CeO₂ in catalysts benefits their resistance to carbon deposition, because the coke on the catalyst could be removed by reacting with the oxygen species on the surface of CeO₂. Thus, the release of oxygen species is a crucial process for CeO₂-based catalysts. Generally, the surface energy of metal oxides is strongly related with their microstructures, and there are evident differences in surface energy among the faces with various indices of the crystallographic plane. The catalytic activity of shape-dependent CeO₂-supported active metal is obviously different [35–40]. Therefore, it is reasonable to believe that the use of CeO₂ supports specific exposed crystal facets may influence the catalytic behavior of the catalyst in dry reforming of methane.

In this work, we have prepared a series of CeO_2 nanorods (CeO_2 -NRs), nanocubes (CeO_2 -NCs), and nanopolyhedra (CeO_2 -NPs) with dominant specific crystal facets (110), (100), and (111), respectively. These morphology-controlled CeO_2 were used as supports for Ru as a catalytic active component through precipitation and deposition methods. The catalysts were characterized, and their catalytic behavior for dry reforming of methane was studied. In particular, the influence of the exposed crystal facets of the CeO₂ supports on the catalytic activities was investigated in detail.

2. Results and Discussion

2.1. Catalyst Characterization

2.1.1. TEM and High-Resolution Transmission Electron Microscopy (HRTEM) Analysis

Figure 1 shows the TEM and HRTEM images of the CeO₂ supports and Ru/CeO₂ catalysts. In Figure 1a–f, three CeO₂ samples show different morphologies. CeO₂-NRs with the rod-like morphology in Figure 1a,d exhibit a uniform diameter of ca. 10 nm with two obvious interplanar spacings of 0.19 and 0.27 nm, corresponding to the (220) and (200) lattice fringes, respectively. The shape of CeO₂-NRs indicates that the nanorods grow along the (110) direction. Figure 1b,e shows that CeO₂-NCs possess the cubic morphology with a size of around 10–50 nm and clear (200) lattice fringes with the interplanar spacing of 0.27 nm. Figure 1c,f shows CeO₂-NPs in the size range of 10–20 nm and (111) and (200) lattice fringes corresponding to the interplanar spacing of 0.31 and 0.27 nm, respectively [41]. HRTEM results show that only the (100) facet exists in the CeO₂-NCs, whereas the (110) and (111) facets are the mainly exposed planes for CeO₂-NRs and CeO₂-NPs, respectively. Figure 1g–i shows TEM images of 3% Ru/CeO₂ catalysts. It can be seen that the morphology of the supports remains after the loading of Ru species and no large aggregation was observed, indicating the high dispersion of the Ru species. The distribution of Ce and Ru was evaluated by EDS analysis. The EDS results are shown in Figures S1–S3 for the Ru/CeO₂-NRs, Ru/CeO₂-NCs, and Ru/CeO₂-NPs,

respectively. The elemental mapping results also indicate that Ru species are highly dispersed on the surface of CeO_2 supports.

Figure 1. TEM images of (**a**) CeO₂-NRs, (**b**) CeO₂-NCs, and (**c**) CeO₂-NPs; high-resolution transmission electron microscopy (HRTEM) images of (**d**) CeO₂-NRs, (**e**) CeO₂-NCs, and (**f**) CeO₂-NPs; TEM images of (**g**) Ru/CeO₂-NRs, (**h**) Ru/CeO₂-NCs, and (**i**) Ru/CeO₂-NPs.

2.1.2. X-ray Diffraction

Figure 2 shows the XRD patterns of CeO₂ samples with different exposed facets and their corresponding 3% Ru/CeO₂ catalysts. The peaks of CeO₂-NRs, CeO₂-NCs, and CeO₂-NPs at 28.7°, 33.2°, 47.6°, 56.5°, 59.1°, 69.4°, 76.6°, and 79.2° are assigned to the diffractions of (111), (200), (220), (311), (222), (400), (311), and (420) of CeO₂ indexed to the face-centered cubic fluorite structure with space group *Fm-3m* (JCPDS 34-0394). The crystalline sizes of different samples calculated by Scherrer formula are listed in Table 1. The results are consistent with TEM images. The diffraction peak positions of the three CeO₂ supports are nearly the same, but their relative intensities are different. The different ratios of ($I_{(200)}/I_{(111)} + I_{(220)}/I_{(111)}$) as 1.00, 1.02, and 0.82 for CeO₂-NRs, CeO₂-NCs, and CeO₂-NPs, respectively, show that the (111) facet exposure in the nanopolyhedra is higher than that in nanorods and nanocubes, which are consistent with the TEM and HRTEM analysis [39]. The XRD patterns of different Ru/CeO₂ catalysts are shown in Figure 2d–f, and no significant change of the diffractions of CeO₂ can be found, suggesting that the structure of CeO₂ supports remains. It is worth to note that from the inductively coupled plasma atomic emission spectrometer (ICP-AES) results (Table 1), Ru/CeO₂ samples show close Ru loading to the feeding value of 3 wt.% despite some weight loss.

No new diffraction assigned to Ru species appears in the XRD patterns, indicating the high dispersion of metal species on the support. The Ru dispersion calculated from CO-TPD shows that the Ru species are highly dispersed on the CeO₂ supports. Ru/CeO₂-NRs and Ru/CeO₂-NCs display higher Ru dispersion (54% and 59%, respectively) than that of Ru/CeO₂-NPs (35.0%) (Table 1). The results are consistent with the EDS mappings results (Supplementary Materials).

Figure 2. XRD patterns of (a) CeO₂-NRc, (b) CeO₂-NCs, (c) CeO₂-NPs, (d) Ru/CeO₂-NRs, (e) Ru/CeO₂-NCs, and (f) Ru/CeO₂-NPs.

Table 1. Physical properties of various samples.

Sample	Specific Surface Area ^a (m ² ·g ⁻¹)	Particle Size ^b (nm)	Mean Sizes ^c (nm)	Ru ^d (wt.%)	Ru Dispersion ^e (%)
CeO ₂ -NRs	87.1	$(8 \pm 2) imes (50 - 100)$	13.6	-	
CeO ₂ -NCs	31.7	26 ± 15	23.0	-	
CeO ₂ -NPs	67.4	13 ± 5	13.9	-	
Ru/CeO ₂ -NRs	84.9	$(7 \pm 3) \times (20 - 100)$	12.1	2.4	54
Ru/CeO2-NCs	30.1	24 ± 15	23.6	2.4	59
Ru/CeO ₂ -NPs	65.8	12 ± 5	13.7	2.3	35

^a Surface area determined from N₂ isotherm. ^b Calculated for about 100 nanoparticles from the TEM images. ^c Estimated by Scherrer equation, applied to the (111) reflection on fluorite CeO₂. ^d Analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES). ^e calculated based on the CO-TPD results.

2.1.3. N₂ Adsorption–Desorption

The N₂ adsorption–desorption characterization was performed at 77 K to study the textural properties of CeO₂ supports and Ru/CeO₂ catalysts. The Brunauer–Emmett–Teller (BET) surface areas of CeO₂-NRs, CeO₂-NCs, and CeO₂-NPs and their corresponding Ru-supported catalysts, Ru/CeO₂-NRs, Ru/CeO₂-NCs, and Ru/CeO₂-NPs are 87.1, 31.7, 67.4, 84.9, 30.1, and 65.8 m²·g⁻¹, respectively. As shown in Table 1, the surface areas of pure CeO₂-NRs and CeO₂-NPs are higher than those of CeO₂-NCs, which is mainly because of smaller particle sizes of the former compared to the latter. The surface areas and particle sizes are merely changed after the addition of Ru species with low loading. It is well known that the surface area has an influence on the catalytic activity for

many reactions, and the catalysts with a large surface area would be beneficial to enhance the catalytic activity. However, for some reaction over ceria-based catalysts, the surface area is not the crucial factor based on the previous research [33,36].

2.1.4. H₂-Temperature Programmed Reduction

The H_2 -temperature programmed reduction (H_2 -TPR) measurements were performed to clarify the reduction characteristics of CeO₂ supports and supported Ru/CeO₂ catalysts. As shown in Figure 3a, two reduction peaks appear in the temperature range of 250–900 °C for three CeO₂ supports with different exposed facets. The first peak below 600 °C is due to the reduction of Ce⁴⁺ to Ce³⁺ on the CeO₂ surface with oxygen vacancy, and the second peak is the reduction of Ce⁴⁺ to Ce³⁺ inside the bulk CeO₂ [27,40]. After loading the Ru species on the supports, the reduction peak changed significantly. The presence of two sets of peaks at 30-110 °C and 110-200 °C indicates Ru species exist in two different states. The reduction peaks at low temperature are usually assigned to the adsorbed oxygen and well-dispersed Ru species interacting strongly with the CeO_2 supports [42]. From the previous research, the surface energies (γ) associated with different crystallographic planes are usually different, and a general sequence is $\gamma(111) < \gamma(100) < \gamma(110)$ [43,44]. Thus, the order of reduction temperature of all catalysts in the range of 30–110 °C is Ru/CeO₂-NRs < Ru/CeO₂-NCs < Ru/CeO₂-NPs, which agrees with the energy order of different facets. The reduction peaks at a relatively high temperature are assigned to the Ru species interacting weakly with CeO₂ supports and the surface oxygen of CeO₂. It has been reported that the hydrogen consumption is 178–188 μ mol·g⁻¹ for the reaction of $RuO_2 + 2H_2 \rightarrow Ru^0 + 2H_2O$ [42]. The total H₂ consumption calculated by integrating the peaks is ~754 μ mol·g⁻¹ for Ru/CeO₂-NRs, ~710 μ mol·g⁻¹ for Ru/CeO₂-NCs, and ~638 μ mol·g⁻¹ for Ru/CeO₂-NPs. The high hydrogen consumption of three catalysts should result from the reduction of a large amount of surface oxygen of CeO_2 due to the existence of Ru–O–Ce. The low hydrogen consumption of Ru/CeO₂-NPs indicates that the Ru species have a weak interaction with CeO₂ support compared to those of Ru/CeO₂-NRs and Ru/CeO₂-NCs.

Figure 3. H₂-temperature programmed reduction (H₂-TPR) curves of (a) CeO₂ samples (b) Ru/CeO_2 samples.

2.1.5. Raman Spectroscopy

Figure 4 shows Raman spectra of CeO₂ supports and Ru/CeO₂ catalysts. All three CeO₂ supports with different morphologies exhibit a strong peak at around 461 cm⁻¹, which is assigned to the vibration model (F_{2g}) of the CeO₂ fluorite phase. Additionally, the other three weak peaks at 257, 594, and 1170 cm⁻¹ are assigned to second-order transverse acoustic (2TA) mode, defect-induced (D) mode, and second-order longitudinal optical (2LO) mode, respectively [35–38,45]. The relative intensity of I₍₅₉₄₊₁₁₇₀₎/I₄₆₁ reflects the intrinsic concentration of defect sites on CeO₂ supports, such as oxygen vacancies [38,46]. The calculation results show that the concentration of vacancy sites decreases in the

following order of CeO₂-NRs > CeO₂-NCs > CeO₂-NPs (Table 2). This is because the formation energy of vacancy is in a reversed order of surface energies on different facets [43]. After the loading of the Ru species, two new peaks appear at 694 and 968 cm⁻¹ in addition to the peaks of CeO₂ supports, which are ascribed to the formation of the Ru–O–Ce bond between metal oxides and supports [38,40]. The relative intensity ratio of I₍₆₉₄₊₉₆₈₎/I₄₆₁ implies that the interaction between Ru and CeO₂ supports on Ru/CeO₂-NR and Ru/CeO₂-NC samples is stronger than that on the Ru/CeO₂-NP sample [38], in accordance with the TPR results.

Figure 4. Raman spectra of (a) CeO₂ samples (b) Ru/CeO₂ samples.

Sample	$I_{(594 + 1170)}/I_{461}$	$I_{(694 + 968)}/I_{461}$
CeO ₂ -NRs	0.116	-
CeO ₂ -NCs	0.102	-
CeO ₂ -NPs	0.057	-
Ru/CeO ₂ -NRs	-	0.234
Ru/CeO ₂ -NCs	-	0.187
Ru/CeO ₂ -NPs	-	0.177

Table 2. Raman spectral data of CeO₂ and Ru/CeO₂ samples.

2.1.6. X-ray Photoelectron Spectroscopy (XPS)

Figure 5 shows Ru 3d XPS spectra of Ru/CeO₂ samples before H₂ reduction. The Ru XPS results of Ru/CeO₂-NCs and Ru/CeO₂-NPs show three peaks around 277.5, 281.4, and 284.8 eV, which are assigned to Ru⁰, Ru⁴⁺, and Ru⁶⁺, respectively. The Ru/CeO₂-NRs only exhibit two Ru species, which could be assigned to Ru⁶⁺ and Ru⁴⁺ [35,38]. Moreover, the content of Ru⁴⁺ follows the order: Ru/CeO₂-NRs > Ru/CeO₂-NCs > Ru/CeO₂-NPs (Table 3). The Ru⁴⁺ ions may insert into the surface lattice of CeO₂ to increase of oxygen vacancy concentration on the CeO₂ support [38]. This effect leads to the high concentration of surface oxygen vacancies for Ru/CeO₂-NRs and Ru/CeO₂-NCs catalysts, and, on the other hand, the decrease of the aggregation of RuO₂ particles.

Figure 5. Ru 3d X-ray photoelectron spectroscopy (XPS) spectra of (**a**) Ru/CeO₂-NRs, (**b**) Ru/CeO₂-NCs, and (**c**) Ru/CeO₂-NPs.

Table 3. XPS data of Ru/CeO₂-NR, Ru/CeO₂-NC, and Ru/CeO₂-NP samples.

Samples	Ru ⁴⁺ (%)	$Ce^{3+}/(Ce^{3+} + Ce^{4+})$ (%)	O_{β}/O_{α}
Ru/CeO ₂ -NRs	80.9	22.8	0.40
Ru/CeO ₂ -NCs	78.9	21.1	0.36
Ru/CeO ₂ -NPs	22.4	19.8	0.32

Figure 6 shows the Ce 3d XPS spectra of three Ru/CeO₂ samples. There are ten peaks resulting from the pairs of spin orbit doublets, which can be identified through deconvolution. The four peaks around 880.6 (v₀), 884.4 (v'), 898.8 (u₀), and 901.0 eV (u') are assigned to Ce³⁺ species, and six peaks around 882.2 (v), 888.6 (v''), 898.3 (v'''), 900.7 (u), 907.7 (u''), and 916.2 eV (u''') are assigned to Ce⁴⁺ species [36–38,47]. The intensity ratio of Ce³⁺ /(Ce³⁺ + Ce⁴⁺) is 22.8%, 21.1%, and 19.8% for Ru/CeO₂-NRs, Ru/CeO₂-NCs, and Ru/CeO₂-NPs, respectively. The appearance of Ce³⁺ species leads to the formation of oxygen vacancy on the CeO₂ surface. The high concentration of Ce³⁺ on the surface reflects the high concentration of surface oxygen vacancies, which benefits the activation and conversion of reactants in dry reforming of methane reaction [40].

Figure 6. Ce 3d XPS spectra of (a) Ru/CeO₂-NRs, (b) Ru/CeO₂-NCs, and (c) Ru/CeO₂-NPs.

Figure 7 shows O 1s XPS spectra of Ru/CeO₂ samples. All three samples mainly exist in two peaks corresponding to two kinds of oxygen species. The peak around 529 eV is ascribed to the oxygen species inside of the CeO₂ lattice, marked as the O_{α} species, and the peak around 531 eV marked O_{β} species is mainly ascribed to low coordination oxygen defects on the surface [36,48]. As shown in Table 3, Ru/CeO₂-NRs have the highest O_{β}/O_{α} ratio and Ru/CeO₂-NPs have the lowest O_{β}/O_{α} ratio. The O_{β}/O_{α} ratio estimated through deconvolution shows that the content of surface oxygen defects on CeO₂ is morphology-dependent.

Figure 7. O 1s XPS spectra of (a) Ru/CeO₂-NRs, (b) Ru/CeO₂-NCs, and (c) Ru/CeO₂-NPs.

2.2. Catalytic Performance for the Dry Reforming of Methane

The catalytic performance of three CeO₂-supported Ru catalysts in the dry reforming of methane under the reaction temperature of 500 °C and 650 °C is shown in Figures 8 and 9. Compared to high CO₂ conversion, low CH₄ conversion is due to the simultaneous occurrence of a reverse water–gas shift reaction. Moreover, the catalytic activities for all three catalysts remain relatively stable after a 240-min reaction. The conversion trends of CO₂ and CH₄ are followed by Ru/CeO₂-NRs (26.5% of CO₂ and 12.3% of CH₄) \approx Ru/CeO₂-NCs (26.0% of CO₂ and 13.6% of CH₄) > Ru/CeO₂-NPs (19.3% of CO₂ and 6.2% of CH₄) after a 240-min reaction process. Both CO₂ and CH₄ conversions increase for all three catalysts when increasing the temperature to 650 °C (Figure 9). The conversions of CO₂ and CH₄ over Ru/CeO₂-NR and Ru/CeO₂-NC samples are much higher than those for Ru/CeO₂-NPs.

Figure 8. The CH₄ conversion (**a**) and CO₂ conversions (**b**) of three Ru/CeO₂ samples versus time at 500 °C.

Figure 9. The CH₄ conversion (**a**) and CO₂ conversions (**b**) of three Ru/CeO₂ samples versus time at 650 $^{\circ}$ C.

From the above results, CeO_2 exposed with a high energy facet of (110) and (100) have a high catalytic activity in the methane dry reforming reaction. This is due to the strong interaction between Ru species and supports exposed (110) and (100) facets, and the (110) and (100) facets on the CeO₂ with high oxygen vacancy concentration benefit the activation of CO₂ during the reaction.

3. Experimental Section

3.1. Preparation of CeO₂ Samples

Morphology-controlled CeO₂ samples were synthesized using the hydrothermal method. For the preparation of CeO₂-NCs and CeO₂-NPs, 1.82 g of Ce(NO₃)₃·6H₂O was dissolved in 40 mL of distilled water and 16.8 g of NaOH for CeO₂-NCs or 0.33 g of NaOH for CeO₂-NPs were dissolved in 30 mL of distilled water. The Ce(NO₃)₃ solution was added into the NaOH solution dropwisely under stirring and stirred for further 30 min to form a milky slurry. Then, the milky slurry was transferred into a 100-mL stainless steel autoclave and hydrothermally treated at 180 °C for 24 h. After the autoclave was cooled to room temperature naturally, the precipitates were separated by centrifugation, washed with distilled water thoroughly, dried at 60 °C for 12 h, and calcined at 500 °C with a heating rate of 1 °C min⁻¹ from room temperature for 4 h to obtain the CeO₂-NCs and CeO₂-NPs. The synthesis procedure of CeO₂-NRs was the same as that of CeO₂-NCs, except that the hydrothermal treatment temperature was 100 °C.

3.2. Preparation of Ru/CeO₂ Catalysts

The Ru/CeO₂ catalysts were prepared using the precipitation and deposition method. A total of 1.0 g of CeO₂ was added into a 20 mL of solution containing 0.015 g of RuCl₃·3H₂O and stirred for 30 min. Then, 0.1 M NH₃·H₂O aqueous solution was added to adjust the pH of the suspension up to 8.0, and then the suspension was aged at room temperature for 3 h. The catalyst in suspension was separated by centrifugation, washed with distilled water, dried at 60 °C for 12 h, and calcined at 500 °C with a heating rate of 1 °C ·min⁻¹ from room temperature for 4 h. The loading of metal Ru in the catalysts is 3 wt.%.

3.3. Catalyst Characterization

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were obtained on a JEM-2011 transmission electron microscope (JOEL, Japan) and a FEI Tecnai G² F20 S-Twin field-emission transmission electron microscope (Hillsboro, OR, USA, respectively. X-ray diffraction (XRD) patterns were obtained on a Bruker D8 Advance diffractometer (Karlsruhe, Germany), using Cu Ka radiation ($\lambda = 1.5418$ Å) at 40 kV and 40 mA, a scanning rate of 5°·min⁻¹, a step size of 0.02°, and a 2θ angle ranging from 20° to 80° . The N₂ adsorption–desorption characterization was performed using a Micromeritics Tristar 3000 apparatus (Quantachrome, Boynton Beach, FL, USA). Prior to the adsorption measurements, the sample was outgassed at 250 °C for 3 h under vacuum. The specific surface areas were calculated using the Brunauer–Emmett–Teller (BET) method. Elemental analysis was performed on a Thermo Elemental IRIS Intrepid inductively coupled plasma atomic emission spectrometer (ICP-AES, Thermo Elemental, Waltham, MA, USA). X-ray photoelectron spectroscopy (XPS) was performed on a Versa Probe PHI 5000 instrument with Al K α radiation (Versa Probe, Amreica). The binding energies were calibrated using the containment carbon (C1s = 284.6 eV). H₂-temperature programmed reduction (H₂-TPR) was performed using a Micromeritics ChemiSorb 2720 apparatus with a thermal conductivity detector (TCD, Micromeritics, Chanhassen, MN, USA). Before measurement, 45.0 mg of sample was placed in a U-shape quartz tube and degassed under flowing He at 200 °C for 2 h, cooled to room temperature, and then switched gas to 10% H_2/Ar . The sample was reduced in a stream of 10% H_2/Ar (50 mL·min⁻¹) with a heating rate of 10 °C min⁻¹ from room temperature up to 900 °C. CO-temperature programmed desorption (CO-TPD) was performed to determine the dispersion of Ru particles using a Micromeritics ChemiSorb 2720 apparatus

with TCD (Micromeritics, Chanhassen, MN, USA). The Ru:CO molar ratio in the chemisorption was taken as 1 [49]. The sample (45.0 mg) was firstly reduced in a stream of 10% H₂/Ar (50 mL·min⁻¹) at 500 °C for 2 h. Subsequently, the reduced sample was purged in He (50 mL min⁻¹) at 500 °C for 30 min to remove excess H₂ and then cooled down to 40 °C for adsorption of CO for 30 min, and then gas was switched to He to keep 30 min at 40 °C to remove excess CO. Finally, the samples were heated in He with a temperature ramp of 10 °C min⁻¹.

3.4. Catalytic Activity Measurements

The catalytic measurements for dry reforming of methane were carried out in a quartz tube with the inner diameter of 6 mm using a fixed-bed reactor system at atmospheric pressure. The gas flow rate was controlled by mass-flow controllers. A total of 30 mg of 40–60 mesh catalyst was mixed with 250 mg of 40–60 mesh inert quartz sand and placed into the reactor. Before the reaction, the catalyst was reduced in a flow of H₂ (30 mL·min⁻¹) at 500 °C for 2 h. Then, the reaction gas mixture consisting of CO₂, CH₄, and N₂ (CO₂:CH₄:N₂ volume ratio of 1:1:3) was introduced into the reaction with the gas hourly space velocity (GHSV) of 24,000 mL·h⁻¹·g⁻¹ (CO₂ + CH₄ + N₂), and the effluent product gases were cooled in an ice-water bath and analyzed by online gas chromatography with a thermal conductivity detector (TCD) using a TDX-01 packed column. The reaction activity of the methane dry reforming reaction was tested at 500 °C and 650 °C.

4. Conclusions

In this work, a series of CeO₂ supports, CeO₂-NRs, CeO₂-NCs, and CeO₂-NPs, with different exposed facets were synthesized via the hydrothermal method; the metal Ru was loaded on the CeO₂ supports as catalyst for the dry reforming of methane. The CeO₂-NR and CeO₂-NC supports with mainly (110) and (100) exposed facets contain higher oxygen vacancy concentration than the CeO₂-NP supports with (111) exposed facets. The high energy surface structure of the CeO₂-NRs and CeO₂-NCs enhances the interaction between Ru and CeO₂. The catalytic results of the three catalysts for dry reforming of methane are related with the surface energy of the CeO₂ supports and the Ru/CeO₂-NR and Ru/CeO₂-NC catalysts perform a higher catalytic activity than Ru/CeO₂-NPs, due to the former containing higher oxygen vacancy concentration.

Supplementary Materials: The following are available online, Figure S1: Ce, Ru, and O mapping with EDS spectrum of the Ru/CeO₂-NR catalyst. Figure S2: Ce, Ru, and O mapping with EDS spectrum of the Ru/CeO₂-NC catalyst. Figure S3: Ce, Ru, and O mapping with EDS spectrum of the NRu/CeO₂-NP catalyst.

Author Contributions: Conceptualization, B.Y. and H.H.; Data curation, Y.R. and Y.F.; Formal analysis, L.H. and Y.F.; Investigation, L.H.; Methodology, L.H. and B.Y.; Project administration, H.H.; Software, Y.R.; Supervision, H.H.; Writing—original draft, L.H.; Writing—review and editing, B.Y., S.C.E.T., and H.H.

Funding: The authors acknowledge the financial supports from the National Natural Science Foundation of China (91645201, 21473036 and 21673046) and the Ministry of Science and Technology (2017YFB0602204).

Conflicts of Interest: The authors declare no conflict of interest.

References

- Florides, G.A.; Christodoulides, P.; Messaritis, V. Reviewing the effect of CO₂ and the sun on global climate. *Renew. Sustain. Energy Rev.* 2013, 26, 639–651. [CrossRef]
- Ghoniem, A.F. Needs, resources and climate change: Clean and efficient conversion technologies. *Prog. Energy Combust. Sci.* 2011, 37, 15–51. [CrossRef]
- Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.A.; et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO₂ fixation. *Chem. Rev.* 2013, *113*, 6621–6658. [CrossRef] [PubMed]
- 4. Abdallah, D.; Dang, V.Q.; Lourdes, F.V.; Enas, N.; Mohammad, R.M.A.-Z. Applications of fly ash for CO₂ capture, utilization, and storage. *J. CO*₂ *Util.* **2019**, *29*, 82–102.

- 5. Aresta, M.; Dibenedetto, A.; Angelini, A. The changing paradigm in CO₂ utilization. *J.* CO₂ Util. **2013**, 3–4, 65–73. [CrossRef]
- Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z.; Saw, E.T. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. *ChemSusChem* 2015, *8*, 3556–3575. [CrossRef] [PubMed]
- Spallina, V.; Melchiori, T.; Gallucci, F.; Annaland, M.v.S. Auto-thermal reforming using mixed ion-electronic conducting ceramic membranes for a small-scale H₂ production plant. *Molecules* 2015, 20, 4998–5023. [CrossRef]
- 8. Abbas, H.F.; Daud, W.M.A.W. Hydrogen production by methane decomposition: A review. *Int. J. Hydrogen Energy* **2010**, 35, 1160–1190. [CrossRef]
- 9. Wang, J.; Yu, H.; Ma, Z.; Zhou, S. Enhanced stability of CaO and/or La₂O₃ promoted Pd/Al₂O₃ egg-shell catalysts in partial oxidation of methane to syngas. *Molecules* **2013**, *18*, 8289–8297. [CrossRef]
- 10. Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Selective conversion of syngas to light olefins. *Science* **2016**, *351*, 1065–1068. [CrossRef]
- Ha, K.-S.; Bae, J.W.; Woo, K.-J.; Jun, K.-W. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane. *Environ. Sci. Technol.* 2010, 44, 1412–1417. [CrossRef] [PubMed]
- 12. Pakhare, D.; Spivey, J. A review of dry (CO₂) reforming of methane over noble metal catalysts. *Chem. Soc. Rev.* **2014**, 43, 7813–7837. [CrossRef] [PubMed]
- 13. Wang, Y.; Yao, L.; Wang, S.; Mao, D.; Hu, C. Low-temperature catalytic CO₂ dry reforming of methane on Ni-based catalysts: A review. *Fuel Process. Technol.* **2018**, *169*, 199–206. [CrossRef]
- 14. Zhao, Y.; Pan, Y.X.; Xie, Y.B.; Liu, C.J. Carbon dioxide reforming of methane over glow discharge plasma-reduced Ir/Al₂O₃ catalyst. *Catal. Commun.* **2008**, *9*, 1558–1562. [CrossRef]
- Singh, S.A.; Madras, G. Sonochemical synthesis of Pt, Ru doped TiO₂ for methane reforming. *Appl. Catal. A* 2016, *518*, 102–114. [CrossRef]
- 16. Derk, A.R.; Moore, G.M.; Sharma, S.; McFarland, E.W.; Metiu, H. Catalytic dry reforming of methane on ruthenium-doped ceria and ruthenium supported on ceria. *Top. Catal.* **2014**, *57*, 118–124. [CrossRef]
- 17. Whang, H.S.; Choi, M.S.; Lim, J.; Kim, C.; Heo, I.; Chang, T.-S.; Lee, H. Enhanced activity and durability of Ru catalyst dispersed on zirconia for dry reforming of methane. *Catal. Today* **2017**, *293*, 122–128. [CrossRef]
- Cai, W.; Ye, L.; Zhang, L.; Ren, Y.; Yue, B.; Chen, X.; He, H. Highly dispersed nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: The effect of anchoring. *Materials* 2014, 7, 2340–2355. [CrossRef]
- 19. Shang, Z.; Li, S.; Li, L.; Liu, G.; Liang, X. Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane. *Appl. Catal. B* **2017**, *201*, 302–309. [CrossRef]
- 20. Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W.; Muzart, J.; Sahebdelfar, S. NiO-MgO solid solution prepared by sol-gel method as precursor for Ni/MgO methane dry reforming catalyst: Effect of calcination temperature on catalytic performance. *Catal. Lett.* **2016**, *146*, 238–248. [CrossRef]
- 21. Wei, J.M.; Xu, B.Q.; Li, J.L.; Cheng, Z.X.; Zhu, Q.M. Highly active and stable Ni/ZrO₂ catalyst for syngas production by CO₂ reforming of methane. *Appl. Catal. A* **2000**, *196*, L167–L172. [CrossRef]
- 22. Carrara, C.; Munera, J.; Lombardo, E.A.; Cornaglia, L.M. Kinetic and stability studies of Ru/La₂O₃ used in the dry reforming of methane. *Top. Catal.* **2008**, *51*, 98–106. [CrossRef]
- Takanabe, K.; Nagaoka, K.; Nariai, K.; Aika, K. Influence of reduction temperature on the catalytic behavior of Co/TiO₂ catalysts for CH₄/CO₂ reforming and its relation with titania bulk crystal structure. *J. Catal.* 2005, 230, 75–85. [CrossRef]
- 24. Lovell, E.C.; Scott, J.; Amal, R. Ni-SiO₂ catalysts for the carbon dioxide reforming of methane: Varying support properties by flame spray pyrolysis. *Molecules* **2015**, *20*, 4594–4609. [CrossRef] [PubMed]
- 25. Boudart, M. Catalysis by supported metals. Adv. Catal. 1969, 20, 153–166.
- 26. Wang, H.Y.; Ruckenstein, E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support. *Appl. Catal. A* **2000**, *204*, 143–152. [CrossRef]
- 27. Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Nanostructured Au-CeO₂ catalysts for low-temperature water-gas shift. *Catal. Lett.* **2001**, 77, 87–95. [CrossRef]
- 28. Kurnatowska, M.; Mista, W.; Mazur, P.; Kepinski, L. Nanocrystalline Ce_{1-x}Ru_xO₂—Microstructure, stability and activity in CO and soot oxidation. *Appl. Catal. B* **2014**, *148*, 123–135. [CrossRef]

- 29. Devaiah, D.; Reddy, L.H.; Park, S.-E.; Reddy, B.M. Ceria-zirconia mixed oxides: Synthetic methods and applications. *Catal. Rev. Sci. Eng.* **2018**, *60*, 177–277. [CrossRef]
- 30. Xu, S.; Yan, X.; Wang, X. Catalytic performances of NiO-CeO₂ for the reforming of methane with CO₂ and O₂. *Fuel* **2006**, *85*, 2243–2247. [CrossRef]
- 31. Hou, T.; Yu, B.; Zhang, S.; Xu, T.; Wang, D.; Cai, W. Hydrogen production from ethanol steam reforming over Rh/CeO₂ catalyst. *Catal. Commun.* **2015**, *58*, 137–140. [CrossRef]
- 32. Fu, Y.; Wu, Y.; Cai, W.; Yue, B.; He, y. Promotional effect of cerium on nickel-containing mesoporous silica for carbon dioxide reforming of methane. *Sci. Chin. Chem.* **2015**, *58*, 148–155. [CrossRef]
- 33. Liao, Y.; He, L.; Man, C.; Chen, L.; Fu, M.; Wu, J.; Ye, D.; Huang, B. Diameter-dependent catalytic activity of ceria nanorods with various aspect ratios for toluene oxidation. *Chem. Eng. J.* **2014**, 256, 439–447. [CrossRef]
- Raju, G.; Devaiah, D.; Reddy, P.S.; Rao, K.N.; Reddy, B.M. Hydrogenolysis of bioglycerol to 1,2-propanediol over Ru/CeO₂ catalysts: Influence of CeO₂ characteristics on catalytic performance. *Appl. Petrochem. Res.* 2014, 4, 297–304. [CrossRef]
- 35. Li, Y.; Wei, Z.; Gao, F.; Kovarik, L.; Peden, C.H.F.; Wang, Y. Effects of CeO₂ support facets on VO_x/CeO₂ catalysts in oxidative dehydrogenation of methanol. *J. Catal.* **2014**, *315*, 15–24. [CrossRef]
- 36. Singhania, N.; Anumol, E.A.; Ravishankar, N.; Madras, G. Influence of CeO₂ morphology on the catalytic activity of CeO₂-Pt hybrids for CO oxidation. *Dalton Trans.* **2013**, *42*, 15343–15354. [CrossRef] [PubMed]
- Han, J.; Meeprasert, J.; Maitarad, P.; Nammuangruk, S.; Shi, L.; Zhang, D. Investigation of the facet-dependent catalytic performance of Fe₂O₃/CeO₂ for the selective catalytic reduction of NO with NH₃. *J. Phys. Chem. C* 2016, 120, 1523–1533. [CrossRef]
- 38. Huang, H.; Dai, Q.; Wang, X. Morphology effect of Ru/CeO₂ catalysts for the catalytic combustion of chlorobenzene. *Appl. Catal. B* **2014**, *158*, 96–105. [CrossRef]
- Gawade, P.; Mirkelamoglu, B.; Ozkan, U.S. The role of support morphology and impregnation medium on the water gas shift activity of ceria-supported copper catalysts. *J. Phys. Chem. C* 2010, *114*, 18173–18181. [CrossRef]
- 40. Wang, F.; Li, C.; Zhang, X.; Wei, M.; Evans, D.G.; Duan, X. Catalytic behavior of supported Ru nanoparticles on the {100}, {110}, and {111} facet of CeO₂. *J. Catal.* **2015**, *329*, 177–186. [CrossRef]
- 41. Wang, Z.L.; Feng, X.D. Polyhedral shapes of CeO₂ nanoparticles. *J. Phys. Chem. B* 2003, *107*, 13563–13566. [CrossRef]
- Wang, R.; Wang, Y.; Ren, M.; Sun, G.; Gao, D.; Chong, Y.R.C.; Li, X.; Chen, G. Effect of ceria morphology on the catalytic activity of Ru/ceria for the dehydrogenation of ammonia borane. *Int. J. Hydrogen Energy* 2017, 42, 6757–6764. [CrossRef]
- 43. Wang, Z.L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. *J. Phys. Chem. B* 2000, *104*, 1153–1175. [CrossRef]
- 44. Sayle, T.X.T.; Parker, S.C.; Sayle, D.C. Oxidising CO to CO₂ using ceria nanoparticles. *Phys. Chem. Chem. Phys.* **2005**, *7*, 2936–2941. [CrossRef] [PubMed]
- 45. Liu, L.; Yao, Z.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO₂ for NO reduction by CO. *ChemCatChem* **2011**, *3*, 978–989. [CrossRef]
- 46. Schierbaum, K.D. Ordered ultra-thin cerium oxide overlayers on Pt(111) single crystal surfaces studied by LEED and XPS. *Surf. Sci.* **1998**, *399*, 29–38. [CrossRef]
- 47. YAO, H.C.; YAO, Y.F.Y. Ceria in automotive exhaust catalysts. J. Catal. 1984, 86, 254–265. [CrossRef]
- 48. Weber, W.H.; Bass, K.C.; McBride, J.R. Raman study of CeO₂: Second-order scattering, lattice dynamics, and particle-size effects. *Phys. Rev. B* **1993**, *48*, 179–184. [CrossRef]
- 49. Ji, S.; Xiao, Z.; Zhang, H.; Li, L.; Li, G.; Wang, L.; Liu, G. Catalytic steam reforming of n-dodecane over high surface area Ce_{0.75}Zr_{0.25}O₂ supported Ru catalysts. *Int. J. Hydrogen Energy* **2017**, *42*, 29484–29497. [CrossRef]

Sample Availability: Samples of the compounds are available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).