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Abstract: Epilepsy is a common clinical syndrome characterized by sudden and recurrent attacks
and temporary central nervous system dysfunction caused by excessive discharge of neurons in
the brain. Amber, a fossilized organic substance formed by the resins of conifers and leguminous
plants, was prescribed to tranquilize the mind in China. In this paper, the antiepileptic effect of amber
was evaluated by a pentylenetetrazole (PTZ)-induced epileptic model. An untargeted metabolomics
approach was applied to investigate metabolic changes in the epileptic model, which was based
on HILIC-UHPLC-MS/MS multivariate statistical analysis and metabolism network analysis.
The outcome of this study suggested that 35 endogenous metabolites showed marked perturbations.
Moreover, four metabolism pathways were mainly involved in epilepsy. After treatment by amber,
the endogenous metabolites had a marked tendency to revert back to the situation of the control group
which was consistent with phenobarbital. This study characterized the pentylenetetrazole-induced
epileptic model and provided new evidence for the sedative effect of amber.

Keywords: amber; epilepsy; metabolomics; LC/MS; glycerophospholipid metabolism

1. Introduction

Epilepsy is a common clinical syndrome characterized by sudden and recurrent attacks and
temporary central nervous system dysfunction caused by excessive discharge of neurons in the brain.
This can result from a variety of endogenous or exogenous factors, often occurring months or years
after a sudden injury [1]. A seizure is a form of epilepsy characterized by abnormal movement or
behavior caused by unusual electrical activity in the brain. About 70% of epileptic patients who take
antiepileptic drugs have complete remission from seizure [2]. The drugs most commonly used for
antiepileptic therapy are the benzodiazepines diazepam (oral or rectal), clobazam, buccal or nasal
midazolam, lorazepam, phenobarbital, valproic acid, nitrazepam, acetazolamide, chloral hydrate,
pyridoxine, and antipyretics [3,4]. Continuous administration of classical antiepileptic drugs has
been argued against because of potentially toxic, sedative and cognitive side effects [5,6]. Thus, new
antiepileptic medicines are still needed for the remaining one third of epileptic patients that accounted
for approximately 1% of the world population [7,8].

Molecules 2019, 24, 460; doi:10.3390/molecules24030460 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/24/3/460?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24030460
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 460 2 of 12

Traditional Chinese medicine (TCM) has accumulated ambient experiences in treating epilepsy
and mineral Chinese Materia Medica (vermiculitum, chloriti lapis, amber, etc.) has a long history
of use for mind-tranquilizing with significant effects [9]. Amber is widely used in the treatment of
epilepsy in traditional Chinese medicine [10–12]. Amber is a fossilized organic substance formed by
the resins of conifers and leguminous plants which grew during the Mesozoic cretaceous to Cenozoic
tertiary through complex geological processes [13,14]. Amber is also admixed with monoterpenoids,
sesquiterpenoids, diterpenoids, triterpenoids, leaf wax and biopolymer products indicating mixed
sources of medicinal materials [15,16]. TCM doctors observe that amber possesses the character of
tranquilizing the mind, promoting the blood circulation to remove blood stasis, promoting diuresis and
relieving strangury. In clinics, amber is used for treating psychological diseases with the symptoms
of restfulness, convulsion and epilepsy. It was first recorded in Shen Nong’s Herbal Classic (before
A.D. 25) and has been used in TCM clinics for thousands of years. In modern studies, kujiol A and
kujigamberol B isolated from Kuji Amber were proven to be Ca2+-signal transduction inhibitors [17,18].
When Ca2+-signal transduction is involved in an allergy, 3-cler-oden-15-oic acid from Dominican
amber can inhibit Ca2+-influx [19,20]. However, to date, no modern pharmacological studies on the
anticonvulsive effect of amber have been reported and the action mechanism of amber in treating
epilepsy has never been elucidated.

Metabolomics is a top–down systems biology approach which is the systematic study of
the special chemical fingerprints left by specific cellular processes and the overall study of their
small-molecule metabolites [21]. Analytical technologies, such as 1H-NMR spectroscopy [22,23] and
mass spectrometry (MS) [24–26] (the latter mainly combined with separation techniques, for example,
liquid chromatography (LC) [27–29], gas chromatography (GC) [30,31], or capillary electrophoresis
(CE) [32] are typically used for untargeted metabolic studies.

In this experiment, the PTZ-induced epilepsy mice were treated with amber, and behavioral
observation showed that there was a significant trend toward the normal after the intervention.
The cerebral cortex of ICR mice was analyzed and determined by UHPLC-MS/MS. The potential
biomarkers and metabolic pathways of amber anti-epileptic treatment were searched using a mode
discrimination method and metabolome network database. Metabolomics was used to explain the
metabolic pathway and mechanism of amber in the treatment of epilepsy in mice.

2. Results and Discussion

2.1. Behavioral Analysis

Behavioral scoring is commonly used in different seizure models to assess seizure intensity.
Racine’s scale is frequently used as an intensity measurement in other experimental seizure or epilepsy
models which originally developed for the amygdala-kindling model [33,34].

The mice in the model group showed obvious epileptic symptoms after receiving an
intraperitoneal injection of pentylenetetrazole (PTZ), and the Racine score of epilepsy reached 4
or 5. As shown in Figure 1, the positive drug phenobarbital (PB) could reverse the epileptic symptoms,
such as incubation time and seizures, indicating that the established animal model was suitable for
anti-epileptic activity screening.
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Figure 1. The effect of amber on behavior in the seizure model induced by pentylenetetrazole. (A) The 
incubation time of each group. Control group and PB group had no incubation time, and used 900 s 
for analysis. Under the intervention of amber, the incubation period was significantly prolonged 
compared to the model group. (B) Under the intervention of amber, the level of seizures was 
significantly reduced compared to the model group. ** p < 0.01 for extremely significant difference. 

2.2. Brain Tissue Nissl Staining 

The Nissl staining, a classic nucleic acid staining method to observe the damage degree in the 
cortex and hippocampal neurons of mice, was widely used in the study of epilepsy [35,36]. To 
evaluate the effect of amber on cell death in the PTZ-induced kindling model, Nissl staining was 
performed. The neuronal cells of the control group were found to be round or conical while the model 
group was impaired. The average density of intact surviving neurons was lower in the PTZ group 
compared to the control group, while pre-treatment with amber reversed the damage to cell 
morphology (Figure 2). 

  

Figure 2. Amber rescues CA1 pyramidal neurons from seizure-induced damage as revealed by Nissl 
staining. (A) Control group; (B) Model group (PTZ); (C) PB group (PTZ + Phenobarbital); (D) Amber 
group (PTZ + amber). Photomicrographs show sample CA1 subfields (magnification, ×400) in the 
coronal plane for each treatment group. A damaged cell body is indicated by red frame. These signs 
of neural damage were reduced by amber pre-treatment. 
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Figure 1. The effect of amber on behavior in the seizure model induced by pentylenetetrazole.
(A) The incubation time of each group. Control group and PB group had no incubation time, and
used 900 s for analysis. Under the intervention of amber, the incubation period was significantly
prolonged compared to the model group. (B) Under the intervention of amber, the level of seizures
was significantly reduced compared to the model group. ** p < 0.01 for extremely significant difference.

Under the intervention of amber, the incubation period was significantly prolonged, and the level
of seizures was reduced as well (p < 0.01, Figure 1A,B).

2.2. Brain Tissue Nissl Staining

The Nissl staining, a classic nucleic acid staining method to observe the damage degree in the
cortex and hippocampal neurons of mice, was widely used in the study of epilepsy [35,36]. To evaluate
the effect of amber on cell death in the PTZ-induced kindling model, Nissl staining was performed.
The neuronal cells of the control group were found to be round or conical while the model group was
impaired. The average density of intact surviving neurons was lower in the PTZ group compared to
the control group, while pre-treatment with amber reversed the damage to cell morphology (Figure 2).
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Figure 2. Amber rescues CA1 pyramidal neurons from seizure-induced damage as revealed by Nissl
staining. (A) Control group; (B) Model group (PTZ); (C) PB group (PTZ + Phenobarbital); (D) Amber
group (PTZ + amber). Photomicrographs show sample CA1 subfields (magnification, ×400) in the
coronal plane for each treatment group. A damaged cell body is indicated by red frame. These signs of
neural damage were reduced by amber pre-treatment.
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2.3. Analysis of Metabolite Profiling

The cortex samples were analyzed by ESI-MS under positive and negative ion modes. Base peak
chromatograms (BPCs) for different groups are shown in Figure 3. In order to reveal the differences,
peak extraction, peak alignment, background deduction, and elimination of missing values by the
80% rule of zero were carried out for the data of each group. After data filtering, 408 metabolites from
positive and negative ion modes were used to build multivariate models separately.
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2.5. Comparison of Model Against Control Using OPLS-DA 
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2.4. Multivariate Data Analysis

Representative HILIC-UHPLC-ORBITRAP-MS cortex metabolic profiles from a control and a
PTZ-treated animal, in ESI+ and ESI− modes, are shown in Figure 3. The use of quality control (QC)
samples and evaluation of data quality have been detailed previously for metabolomics analyses of
biological samples [21]. Clustering of QC samples was assessed using principal component analysis
(PCA) to reveal if platform stability had been achieved. A PCA scores plot (PC1 vs. PC2) of all study
cortex and QC samples analyzed in ESI+ mode and ESI− mode are shown in Figure 4A (ESI+) and 4B
(ESI−). The QC samples are clustered, indicating good reproducibility of the data.

PCA analysis in positive and negative TIC was used to evaluate the PTZ-induced epileptic model.
In the positive ion mode, a model with two principal components was obtained (R2X cum = 0.641,
Q2 cum = 0.461) while three principal components were obtained in negative mode (R2X cum = 0.836,
Q2 cum = 0.449). PCA scores showed that all samples in the positive ion mode were distributed in the
95% confidence interval ellipse while one sample was distributed out of the ellipse in negative mode.

As shown in the PCA scores scatter plot, significant separation between the three groups in
the unsupervised mode could be observed, indicating the difference in the metabolites between the
different groups.
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2.5. Comparison of Model Against Control Using OPLS-DA

When the amber group was omitted, six model samples compared against five control samples
produced a strong Orthogonal Projections to Latent Structures Discriminant Analysis(OPLS-DA) model
(Figure 5A,B, R2X cum = 0.976, Q2 cum = 0.867) explaining 97.6% of the variation in the samples with
seven components in positive mode and 74.6% of the variation with two components in negative mode
(Figure 5C,D, R2X cum = 0.746, Q2 cum = 0.895). Q2 > 0.5 is generally accepted as being indicative of a
robust model and the model gave a permutations plot where all the permutated Q2 values (n = 200)
on the left are lower than the points on the right (Figure 5B,D) and the line plot intercepts the y-axis
below 0 [34,35].
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Figure 5. OPLS-DA score plot and validation plot of the OPLS-DA model of control group and model
group. OPLS-DA score plot for the first two components showed the separation between the control
group and model group. The fitness (R2Y) and prediction power (Q2Y) of this two-component model
were 0.979 and 0.918, respectively ((A) ESI+; (C) ESI−). Validation plot of the OPLS-DA model of
control group and model group were obtained from 200 permutation tests. The intercepts of R2 were
lower than the original point to the right, whereas those of Q2 were negative, indicating no signs of
overfit ((B) ESI+; (D) ESI−).

2.6. Screening and Identification of Metabolic Differences

In this study, loading S-plots (Figure 6) and the variable importance (VIP) generated by OPLS–DA
analysis in the projection were used to select potential biomarkers. VIP values larger than 1 were
considered to be more important on the classification than average. Ions with p < 0.05 (using an
independent sample t-test) showing significant changes in the model group compared to the control
group were taken as candidate biomarkers [37]. For those differential features, theoretical database
searching and manual spectrum confirmation were used for identification. Thirty-five metabolites
differentially expressed between the control and model groups (Table 1) were identified.
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12 HMDB0000195 Inosine C10H12N4O5 269.0880 + <0.002 2.33
13 HMDB0000562 Creatinine C4H7N3O 114.0662 + <0.003 2.51
14 HMDB0011496 Lysope(0:0/22:6(4z,7z,10z,13z,16z,19z)) C27H44NO7P 526.2928 + <0.004 3.12
15 HMDB0000062 L-carnitine C7H15NO3 162.1125 + 0.0015 3.17
16 HMDB0010720 butenoic acid C4H6O2 87.04406 + 0.0017 3.06
17 HMDB0000112 Gamma-aminobutyric acid(GABA) C4H9NO2 104.0706 + 0.0018 3.18
18 HMDB0010384 Lysopc(18:0) C26H54NO7P 524.3711 + 0.0018 3.05
19 HMDB0038039 Isovaleric acid amine C5H13NO2 120.1019 + 0.0025 2.16
20 HMDB0060348 2-Maleylacetate C6H6O5 159.0288 + 0.0028 2.58
21 HMDB0000064 Creatine C4H9N3O2 132.0768 + 0.0029 2.31
22 HMDB0005065 Oleoyl carnitine C25H47NO4 426.3578 + 0.0041 1.59
23 HMDB0001565 Phosphorylcholine C5H15NO4P 184.0739 + 0.0105 2.96
24 HMDB0010382 Lysopc(16:0) C24H50NO7P 496.3398 + 0.0110 8.87
25 HMDB0000097 Choline C5H14NO 104.1075 + 0.0211 2.45
26 HMDB0008067 Pc(18:1(11z)/16:0) C42H82NO8P 760.5851 + 0.0228 4.07
27 HMDB0008003 Pc(16:1(9z)/18:0) C42H82NO8P 760.5851 + 0.0329 2.56
28 HMDB0007911 Pc(14:1(9z)/20:0) C42H82NO8P 760.5851 + 0.0405 4.29
29 HMDB0007879 Pc(14:0/20:1(11z)) C42H82NO8P 760.5851 + 0.0465 3.05
30 HMDB0001406 Niacinamide C6H6N2O 123.0553 + <0.001 4.29
31 HMDB0001311 D-lactic acid C3H6O3 89.0244 − 0.0981 3.86
32 HMDB0000805 Pyrrolidonecarboxylic acid C5H7NO3 128.0353 − 0.0529 2.43
33 HMDB0035291 Isoplumbagin C11H8O3 187.0401 − 0.0103 3.62
34 HMDB0014118 Trifluoroacetic acid C2HF3O2 112.9856 − 0.0327 1.82
35 HMDB0000700 Hydroxypropionic acid C3H6O3 89.0244 − 0.0368 0.62

2.7. Metabolic Pathway Analysis

Pathway analysis of the discriminating metabolites was performed with MetaboAnalyst 4.0, a
web-based tool for pathway analysis and visualization of metabolomics [38]. As shown in Figure 7,
biological pathway analysis revealed that the identified metabolites important for epilepsy are
mainly responsible for the following metabolism pathways: (A) glycerophospholipid metabolism;
(B) nicotinate and nicotinamide metabolism; (C) alanine, aspartate and glutamate metabolism; and
(D) pyruvate metabolism. The trends of the metabolites associated with the above four pathways are
shown in Figure 8.
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The variation of phosphorylcholine, choline, acetylcholine, phosphatidylcholine (PC) and
lysophosphatidylcholine (LysoPC) in the cortex could potentially indicate that the glycerophospholipid
metabolism was disrupted and played a major role in seizures. Increased choline may reflect myelin
breakdown, increased cell density, or gliosis, which may indicate Alzheimer’s disease or epilepsy.
Phosphatidylcholine is the main component of the cell membrane and usually exists on the surface of
the ectoplasmic membrane. Excitotoxic events enhance the hydrolysis of phosphatidylcholine in the
brain, which was evidenced caused by a concomitant increase in the levels of choline and free fatty
acids [39].

The variation of gamma-aminobutyric acid (GABA) in the cortex could potentially reflect that
the metabolism of alanine, aspartate and glutamate is disrupted, which plays a major role in seizures.
GABA, a key inhibitory neurotransmitter, is synthesized through the decarboxylation of glutamate
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via alanine, aspartate and glutamate metabolism [1]. Studies have shown that epileptic-related brain
damage is caused by the release of excitatory amino acid neurotransmitters from over-discharged
presynaptic terminals that eventually reach neurotoxic concentrations [40]. Evidence indicated that
there are certain regions of the brain where enhanced GABA transmission is anticonvulsant [41].
The GABA level in the cortex was lower in the epileptic group than those in the healthy group which
supported the literature [1,42]. After the amber intervention, the level of GABA rebounded and
approached the control group.

3. Materials and Methods

3.1. Materials and Extract Preparation

Acetonitrile, methanol, alcohol, acetone and formic acid (HPLC grade) were purchased from
Merck Company Inc. (Darmstadt, Germany); HPLC grade water was produced by a Direct-Q3
Ultrapure Water System from Millipore (Hertfordshire, UK). Other reagents and chemicals were of
analytical grade.

Amber samples were purchased from Shaanxi Science Pharmaceutical Co., Ltd. They were
identified by Dr. Hui Yan (Department of Medicinal Plants, Nanjing University of Chinese Medicine,
Nanjing, China). Pentylenetetrazol (PTZ), Phenobarbital (PB), and sodium chloride injections were
from Macklin (Shanghai, China), Shanxi Yunpeng Pharmaceutical Co., Ltd. (Linfen, China), and
Chenxin Pharmaceutical Co. Ltd (Qidong, China), respectively.

3.2. In Vivo Experiments Protocol

Specific Pathogen-Free (SPF) male ICR mice were purchased from the Experimental Animal
Center of Qinglongshan (Nanjing, China, license number: 2018-0001). All the mice were kept in the
Specific Pathogen Free Center of Nanjing University of Chinese Medicine, Nanjing, China. All animal
studies were in accordance with the guidelines of the Animal Ethics Committee of Nanjing University
of Chinese Medicine (201810A016).

After an initial acclimation period of 7 days in cages, 40 mice were randomly allocated into 4
groups: Control, model (oral administration of water for 14 days followed by intraperitoneal injection
of PTZ at the dose of 60 mg/kg), PB (PTZ + phenobarbital, abdominal injection with phenobarbital
at a dose of 40 mg/kg followed by an intraperitoneal injection of PTZ at the dose of 60 mg/kg with
30 min interval), and amber (oral administration of amber for 14 days at the dose of 0.9 g/kg followed
by an intraperitoneal injection of PTZ at the dose of 60 mg/kg).

After the intraperitoneal injection of pentylenetetrazole, observation of the seizures lasted for 30
min, and the severity, latency and duration of seizures were recorded. The degree of epileptic behavior
was divided into 6 grades according to the Racine standard of neurology: Level 0, no response; Level I,
ear and facial twitch; Level II, myoclonus, but no upright position; Level III, myoclonus, with axial
position; Level IV, systemic tonic-clonic seizure; and Level V, systemic tonic-clonic seizure and loss of
postural control [43].

The mice were sacrificed after the observation. Three brains of each group were taken and
immersed in 4% paraformaldehyde, and paraffin sections of coronal plane were used for Nissl staining.
The rest of the brain was divided into cortex and hippocampus, and kept in liquid nitrogen.

After thawing in the fridge at 4 ◦C, 40 mg of the cortex sample was precisely weighed and used for
the following process: 160 µL of extract solution, vortexed for 1 min, sonicated for 5 min in an ice bath,
centrifuged for 10 min under 13,000 rpm at 4 ◦C, and then 100 µL of supernatant was collected and
concentrated to dry. The extract was then reconstituted with 40 µL of mobile phase, vortexed for 1 min,
sonicated for 5 min in ice bath and centrifuged for 10 min under 13,000 rpm at 4 ◦C. The supernatant
was then finally collected for analysis. Quality control (QC) samples were prepared by pooling aliquots
(2 µL) of each sample.
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3.3. UHPLC–LTQ–Orbitrap MS Analyses

An LTQ–Orbitrap Velos pro-mass spectrometer (Thermo Scientific) equipped with an ESI source
was set to collect data from m/z 100 to 1000 in profile mode. External calibration was carried out with a
standard LTQ calibration mixture (Thermo Scientific, Waltham, MA, USA). The following settings were
used for MS detection: vaporizer temperature, 280 ◦C; sheath and auxiliary gases, 35 and 15 (arbitrary
units); spray voltage, 3.5 kV(ESI+), 2.5 kV(ESI−); capillary temperature, 350 ◦C; capillary voltage, 10 V;
tube-lens voltage, 120 V; maximum injection time, 1000 ms; maximum number of ions collected for
each scan, 5 × 105; mass resolution, 30,000; MS/MS mode, high-energy induced dissociation (HCD);
Collision gas, N2.

For LC separation, UHPLC Dionex Ultimate 3000 (Thermo Scientific, San Jose, CA, USA) and
an ACQUITYTM UPLC BEH Amide column (1.7 µm, 2.1 mm × 100 mm) were used. Water and
acetonitrile modified with 5 mM ammonium formate, 5 mM ammonium acetate, and 0.1% formic
acid were used as mobile phase A and B, respectively. The column was eluted with a program as
follows: The percentage of B was decreased from 95% to 55% at the first 13 min, and then held for 2
min. The flow rate and injection volume were set at 0.4 mL/min and 2 µL, respectively.

3.4. Data Analysis

The experimental data were analyzed by R and Compound Discoverer 2.1 software (Thermo Fisher
Scientific, Waltham, MA, USA), including peak extraction, peak alignment, background deduction
and compound identification. After removing exogenous component interference, the extracted ion
fragment peak area was normalized by SIMCA 14.1 software (Umetrics AB, Umea, Sweden), and
multivariate statistical analysis was conducted after standardization. The mean-centering method
and pareto-scaling method were used to transform the data, and the importance of low-abundance
ions was increased, while the noise was not obviously amplified. Principal component analysis (PCA)
and orthogonal partial least squares discriminant analysis (OPLS-DA) were used for classification.
The s-plot was generated to discover the significant components between groups as potential markers.

The potential endogenous biomarkers were identified based on accurate molecular mass, MS/MS
fragments, and retention behavior by searching online databases. The potential markers were identified
within 5 ppm. Moreover, the MS/MS spectrum match was searched in the METLIN database. In this
study, the Compound Discoverer (Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used to
search KEGG, HMDB and LIPID MAPS database. Metabolism pathway analysis was performed with
MetaboAnalyst 4.0 (McGill University, Montreal, QC, Canada), a web-based tool for pathway analysis
and visualization metabolomics.

4. Conclusions

Metabolomics, as a systematic method, could systematically identify, quantify or reveal the
metabolites of diseases, provide a basis for the diagnosis, biomarkers and/or monitoring tools of
diseases, and provide potential targets for the treatment and prevention of diseases. In this study,
the metabolic changes and potential biomarkers of epileptic models were studied by using the
metabolomics method of LC-MS technology and metabolic network analysis. After intervention of
amber, the incubation period was significantly prolonged, and the level of seizures was reduced as well.
The damage to the cortex and hippocampal neuron cells was reversed, the fluctuating composition
metabolites had a marked tendency to revert back to the control group which was consistent with
phenobarbital. This study characterized the PTZ-induced epileptic model and provided new evidences
for amber sedative effect. Our work enhanced not only the understanding of the pathology of epilepsy,
but also revealed that amber could effectively inhibit seizures with a similar mechanism to that
of phenobarbital.
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