Supplementary Information

A green-emitting fluorescent probe based on benzothiazole derivative for

imaging thiols in living cells

Xiaohua Ma 1,2, Yuanqiang Hao 2,*, Guoguang Wu 1,*, and Lin Liu 3,*

- ¹ School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221000, China; mayingjie518@sohu.com (X.M.); b12040004@cumt.edu.cn (G.W)
- ² Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; haoyuanqiang@aliyun.com (Y.H.)
- ³ Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; liulin@aynu.edu.cn (L.L.)
- * Correspondence: haoyuanqiang@aliyun.com (Y.H.); b12040004@cumt.edu.cn; liulin@aynu.edu.cn (L.L.), Tel.: +86-0370-3112844 (Y.H.)

Figure S1 Fluorescence spectra changes of probe **1** (5.0 μ M) upon the addition of Hcy (0.0–100.0 μ M) in PBS buffer($\lambda_{exc} = 413$ nm, and t = 15 min).

Figure S2 Fluorescence intensity of probe **1** (5.0 μ M) at 530 nm as a function of Hcy concentration (0.0–100.0 μ M) in PBS buffer ($\lambda_{exc} = 413$ nm, and t = 15 min). Inset: the linear relationship between fluorescence intensity and Hcy at low concentrations.

Figure S3 Fluorescence spectra changes of probe **1** (5.0 μ M) upon the addition of GSH (0.0–100.0 μ M) in PBS buffer ($\lambda_{exc} = 413$ nm, and t = 15 min).

Figure S4 Fluorescence intensity of probe **1** (5.0 μ M) at 530 nm as a function of GSH concentration (0.0–100.0 μ M) in PBS buffer ($\lambda_{exc} = 413$ nm, and t = 15 min). Inset: the linear relationship between fluorescence intensity and GSH at low concentrations.

Figure S5 The fluorescence intensity at 530 nm of probe 1 (5.0 μ M) upon the addition of the various common amino acid (A-O: 100.0 μ M for K⁺, Na⁺, Mg²⁺, Ca²⁺, Zn²⁺, Fe³⁺, SO₄²⁻, SCN⁻, AcO⁻, CO₃²⁻, NO₃⁻, PO₄³⁻, NO₂⁻, H₂O₂, Cys) ($\lambda_{exc} = 413$ nm, and t = 15 min).

Figure S6 The fluorescence intensity at 530 nm of probe **1** (5.0 μ M) to Cys (100.0 μ M) with the competition analytes in PBS buffer($\lambda_{exc} = 413$ nm, and t = 15 min).

Figure S7 Synthetic route to probe 1.

Figure S8 ¹H NMR spectrum of probe 1 in DMSO-d₆.

Figure S9 ¹³C NMR spectrum of probe 1 in DMSO-d₆.

Figure S10 Mass spectrum of probe 1.

Figure S11 Mass spectrum of probe 1+Cys.

Figure S12 ¹H NMR spectrum of dye 2 in DMSO-d₆.

Figure S13 ¹³C NMR spectrum of dye 2 in DMSO-d₆.

Figure S14 Percentage of viable A549 cells after treatment with different concentrations of probe 1 for 24 hours.

Figure S15 Percentage of viable A549 cells after treatment with different concentrations of dye 2 for 24 hours.

Probes	λex/λem (nm)	Stokes shift (nm)	Limit of detection	Response time	Reference
$ \begin{array}{c} $	450/540	90	1.5× 10⁻ ⁸ M	10 min	Sensors actuat B-Chem, 2016, 223, 274-279.
	454/521	67	0.16 μΜ	10 min	Tetrahedron Letters, 2016, 57, 2478-2483
$\begin{array}{c} \mathbf{O}_{2}\mathbf{N} & \mathbf{NO}_{2} \\ \mathbf{O}_{3}\mathbf{S} & \mathbf{O}_{3}\mathbf{S} \\ $	280/482	202	2.0× 10⁻ ⁸ M	20 min	Tetrahedron, 2017, 73, 589-593
	309/510	201	0.17 μM	10 min	Tetrahedron Letters, 2017, 58, 2654-2657.
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$	370/464	94	4.11× 10⁻™	12 h	Analyst, 2013, 138, 7169-7174.
$\begin{array}{c} CH_3 \\ O \\ O \\ O \\ O \\ H \\ H \\ O \\ O \\ H \\ O \\ O$	353/450	97	30 nM	2 h	Chem Commun, 2013, 49,4640-4642.
$\left \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	413/530	117	0.12 μΜ	15 min	This work

Table S1. Comparison of fluorescent probes for biothiols.