Table S1. Desorption stability of protein–phenolic complexes affected by pH¹ and ionic strength¹.

		Phenolics desorption µmol/g protein ± SD			
Sample		Albumins		Globulins	
		pH 2	1 M NaCl	pH 2	1 M NaCl
Phenolics	GA	$4.8^{Ab}\pm0.49$	$1.8^{\mathrm{Bc}} \pm 0.44$	4.5 ^{Aa} ±0.34	2.9 ^{Ab} ±0.64
	FA	3.4 ^{Ac} ±0.45	2.2 ^{Ac} ±0.75	2.4 ^{Bb} ±0.52	1.9Ab±0.43
	CGA	3.6 ^{Bc} ±0.25	3.2 ^{Ab} ±0.53	4.7 ^{Aa} ±0.80	2.2 ^{Bb} ±0.26
	Q	1.2 ^{Bd} ±0.34	n.d.	2.5 ^{Ab} ±0.24	0.8 ^{Ac} ±0.23
	A	n.d.	n.d.	n.d.	n.d.
	CAT	6.4 ^{Aa} ±0.36	7.1 ^{Aa} ±0.8	5.4 ^{Ba} ±0.35	8.3 ^{Aa} ±0.93
GT -	GCAT	n.d.	n.d.	n.d.	n.d.
	EGCAT	3.2Ab±0.44	0.9 ^{Bb} ±0.3	2.3 ^{Bc} ±0.35	1.8 ^{Ab} ±0.43
	CAT	8.3Aa±0.83	4.3Ba±0.4	7.3 ^{Aa} ±0.45	6.5 ^{Aa} ±0.35
	ECAT	n.d.	n.d.	n.d.	n.d.
	EGCATG	2.2 ^{Bc} ±0.23	nd	3.2 ^{Ab} ±0.45	n.d.
	ECATG	n.d.	n.d.	n.d.	n.d.
Extracts	NCGA	0.9Ab±0.21	n.d.	n.d.	n.d.
EX –	CGA	6.5 ^{Aa} ±0.43	4.9 ^{Aa} ±0.24	7.2 ^{Aa} ±0.53	3.7 ^{Ba} ±0.36
GC _ -	CCGA	1.2Ab±0.35	n.d.	n.d.	n.d.
	FQA	n.d.	n.d.	n.d.	n.d.
	3,4-DCQA	n.d.	n.d.	n.d.	n.d.
	3,5-DCQA	n.d.	n.d.	n.d.	n.d.
	4,5-DCQA	n.d.	n.d.	n.d.	n.led.

 $^{^1}$ stability of protein–phenolic complexes was also determined in pH 7 and 10 as well as in the presence of 0M NaCl; however, in these conditions, the analyzed compounds were not detected and the results are not presented in the table. Means (\pm SD, n = 3) with different lowercase letters superscript within the same column for phenolics, GT extracts, and GC extracts are significantly different (α = 0.05). Means with different bolded uppercase and normal letters superscript within a same row for pH 2 and ionic strength in the presence of 1 M NaCl are significantly different (α = 0.05), respectively. GA, FA, CGA, Q, A, CAT–gallic acid, ferulic acid, chlorogenic acid, quercetin, apigenin, catechin, respectively. Green tea (GT) compounds: GCAT ((-)-gallocatechin), EGCAT ((-)-epigallocatechin), CAT ((+)-catechin), ECAT ((-)-epicatechin), EGCATG ((-)-epigallocatechin-3-gallate), and (-)-epicatechin gallate (ECATG); Green coffee (GC) compounds: NCGA (neochlorogenic acid), CGA (chlorogenic acid), FQA (3-feruloylquinic acid), 3,4-DCQA (3,4-dicafyloqunic acid), 3,5-DCQA (3,5-dicafyloqunic acid), 4,5-DCQA (4,5-dicafyloqunic acid).