Supplementary Materials

Antibacterial isoquinoline alkaloids from the fungus Penicillium

spathulatum Em19

Christina Nord ¹, Jolanta J. Levenfors ^{1,2}, Joakim Bjerketorp ^{1,2}, Christer Sahlberg ³, Bengt Guss ⁴, Bo Öberg ^{2,5}, and Anders Broberg ^{1,*}

- ¹ Department of Molecular Sciences, Uppsala BioCentrum, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden; <u>Christina.Nord@slu.se</u> (C.N.), <u>Jolanta.Levenfors@slu.se</u> (J.J.L.), <u>Joakim.Bjerketorp@slu.se</u> (J.B.), <u>Anders.Broberg@slu.se</u> (A.B.)
- ² Ultupharma AB, Södra Rudbecksgatan 13, SE-752 36 Uppsala, Sweden. bo.oberg1@gmail.com
- ³ Medivir AB, P.O. Box 1086, SE-141-22 Huddinge, Sweden; christer.sahlberg@gmail.com
- ⁴ Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7036, SE-750 07 Uppsala, Sweden; Bengt.Guss@slu.se
- ⁵ Department of Medicinal Chemistry, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
- * Correspondence: <u>Anders.Broberg@slu.se</u>; Tel.: +46 18 672217.

Contents

Figure S1: ¹ H NMR (acetone- <i>d</i> ₆ , 600 MHz) spectrum of 1
Figure S2: ¹³ C NMR (acetone- <i>d</i> ₆ , 150 MHz) spectrum of 1
Figure S3: COSY NMR (acetone- <i>d</i> ₆) spectrum of 1
Figure S4: HSQC NMR (acetone- d_6) spectrum of 1
Figure S5: HMBC NMR (acetone- <i>d</i> ₆) spectrum of 1 7
Figure S6: ¹ H NMR (acetone- <i>d</i> ₆ , 600 MHz) spectrum of 2
Figure S7: ¹³ C NMR (acetone- d_6 , 150 MHz) spectrum of 2
Figure S8: COSY NMR (acetone- d_6) spectrum of 2 10
Figure S9: HSQC NMR (acetone- d_6) spectrum of 2
Figure S10: HMBC NMR (acetone- d_6) spectrum of 2
Figure S11: ¹ H NMR (acetone- d_6 , 600 MHz) spectrum of 3 . Integral values shown for signals from compound 3 , the other signals belong to compound 1 , the solvent or residual amounts of methanol13
Figure S12: ¹³ C NMR (acetone- d_6 , 150 MHz) spectrum of 3 . Shift values shown for carbons from compound 3, remaining signals belong to compound 1
Figure S13: COSY NMR (acetone- d_6) spectrum of 3 15
Figure S14: HSQC NMR (acetone- d_6) spectrum of 3 16

Figure S15: HMBC NMR (acetone- <i>d</i> ₆) spectrum of 3 17
Figure S16: HRMS base peak chromatogram of the mixture of compound 3 (2.6 min $-$ m/z 242.0451) and compound 1 (3.0 min $-$ m/z 246.0762)
Figure S17: HR mass spectrum of compound 1 , m/z 246.0762 [M+H] ⁺ (calcd. for C ₁₃ H ₁₂ NO ₄ , 246.0761)
Figure S18: HR mass spectrum of compound 2 , m/z 202.0861 [M+H] ⁺ (calcd. for C ₁₂ H ₁₂ NO ₂ , 202.0863)
Figure S17: HR mass spectrum of compound 3 , m/z 242.0451 [M+H] ⁺ (calcd. for C ₁₃ H ₈ NO ₄ , 242.0448)

Figure S1: ¹H NMR (acetone- d_6 , 600 MHz) spectrum of **1**. Signal at δ_H 2.05 is acetone- d_5 and the signal at δ_H 3.31 is methanol.

Figure S3: COSY NMR (acetone- d_6) spectrum of **1**. Signal at δ_H 2.05 is acetone- d_5 and the signal at δ_H 3.31 is methanol.

Figure S4: HSQC NMR (acetone- d_6) spectrum of **1**. Signal at $\delta_H 3.59/\delta_C 71.4$ is from a polyethylene glycol type contaminant.

Figure S5: HMBC NMR (acetone- d_6) spectrum of **1**. Signal at $\delta_H 3.59/\delta_C 71.4$ is from a polyethylene glycol type contaminant.

Figure S6: ¹H NMR (acetone- d_6 , 600 MHz) spectrum of 2. Signal at δ_H 2.05 from acetone- d_5 .

Figure S7: ¹³C NMR (acetone-*d*₆, 150 MHz) spectrum of **2**.

Figure S8: COSY NMR (acetone-*d*₆) spectrum of 2.

Figure S9: HSQC NMR (acetone- d_6) spectrum of **2**.

Figure S10: HMBC NMR (acetone-*d*₆) spectrum of 2.

Figure S11: ¹H NMR (acetone- d_6 , 600 MHz) spectrum of **3**. Integrals are shown for signals from compound **3**, the other signals belong to compound **1**, acetone- d_5 ($\delta_{\rm H}$ 2.05) or residual methanol ($\delta_{\rm H}$ 3.31).

Figure S12: ¹³C NMR (acetone- d_6 , 150 MHz) spectrum of **3**. Chemical shifts are shown for carbons from compound **3**, and remaining signals belong to compound **1**.

Figure S13: COSY NMR (acetone-*d*₆) spectrum of 3.

Figure S14: HSQC NMR (acetone- d_6) spectrum of 3.

Figure S15: HMBC NMR (acetone-*d*₆) spectrum of **3**.

Figure S16: HRMS base peak chromatogram of the mixture of compound 3 (2.6 min - m/z 242.0451) and compound 1 (3.0 min - m/z 246.0762).

Figure S17: HR mass spectrum of compound **1**, *m/z* 246.0762 [M+H]⁺ (calcd. for C₁₃H₁₂NO₄, 246.0761).

Figure S18: HR mass spectrum of compound **2**, *m/z* 202.0861 [M+H]⁺ (calcd. for C₁₂H₁₂NO₂, 202.0863).

Figure S19: HRMS spectrum of compound **3**, m/z 242.0451 [M+H]⁺ (calcd. for C₁₃H₈NO₄, 242.0448).