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Abstract: Metal ions play important roles in biological system. Approaches capable of selective and
sensitive detection of metal ions in living biosystems provide in situ information and have attracted
remarkable research attentions. Among these, fluorescence probes with aggregation-induced emission
(AIE) behavior offer unique properties. A variety of AIE fluorogens (AIEgens) have been developed
in the past decades for tracing metal ions. This review highlights recent advances (since 2015) in
AIE-based sensors for detecting metal ions in biological systems. Major concerns will be devoted to
the design principles, sensing performance, and bioimaging applications.
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1. Introduction

Metal ions play crucial roles in various biological processes and are required by all life forms.
The diverse functions of metal ions include osmotic maintenance, signal transduction, catalysis,
and proliferation [1]. In addition to functionality, the biodistribution, dynamic ranges, and existing
forms of metal ions are also highly varied. Alkali and alkaline earth metal ions are of millimolar level
and ubiquitous in every organ. Transition metal ions are usually with lower abundance [2,3]. Owing to
their versatile coordination ability, many transition metal ions act as co-factors of macro biomolecules,
such as Fe2+ in hemoglobin, Zn2+ in zinc finger, and Mn2+ in photosystems [4,5]. Despite growing
knowledge about metal ions, the distribution, metabolism, and mechanism of actions of many metals
are largely uncharacterized [1]. The abnormal homeostasis of metal ions has been revealed to be
related to diseases including cancer, neurodegenerative disease, and diabetes [6,7]. The exposure and
accumulation of toxic metal ions also bring great threat to human health [8–10]. However, their exact
roles in disease pathologies still largely remain unclear [7]. To address these, sensing systems capable of
identification, quantification, and monitoring of metal ions in living biosystems are urgently demanded.

Fluorescent sensors with high sensitivity, simplicity, and visualization have attracted considerable
research interests for analyzing biological events in vitro and in vivo. In the past several decades,
fluorescent sensors became powerful tools for investigating metal ions in complicated systems.
Different recognition moieties and sensing mechanisms were developed to introduce high specificity
and sensitivity [11–15]. As an intrinsic property of metal ions, coordination lays an important
foundation for metal ion recognition. Reaction-based mechanism is also adopted for selectively sensing
respective ions [16,17]. However, conventional fluorescent dyes still suffer from problems including

Molecules 2019, 24, 4593; doi:10.3390/molecules24244593 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/24/24/4593?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24244593
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 4593 2 of 18

severe background interference, aggregation-induced quenching (ACQ) effect, and poor photostability,
which hinder detection sensitivity, real-time and long-term monitoring of biosystems [18,19].

Aggregation-induced emission fluorogens (AIEgens) first reported by Prof. Tang’s group in
2001 possess unique advantages of activatable emission, good photostability, and compatibility
with high concentration thus high sensitivity [20]. These fluorophores are non-emissive or weakly
emissive in diluted solution but strongly emissive upon aggregation resulted from the restriction
of intramolecular motion (RIM) [21], providing large Stokes’ shift, strong light tolerance and high
signal-to-noise ratio [22–25]. A number of molecules have been reported with AIE behavior, including
tetraphenylethene (TPE), hexaphenylsilole (HPS), and quinoline-malononitrile (QM) [19,22,23]
(Figure 1). Their tailorable structures allow further modification of the AIEgens with functional
molecules and materials, such as nucleic acids, peptides, graphene, and metal-organic frameworks
(MOFs) [26–29]. The successful applications have been demonstrated in the fields of detection,
disease diagnosis, and therapy [30–34]. In terms of metal ion analysis, different AIE-based sensing
systems have been developed which accelerate the understanding the roles of these ions in biological
samples. The sensing mechanism is crucial for the analytical performance of the sensors. These systems
usually contain two parts: recognition moiety and signaling moiety. AIE cores play the role of signal
output, while modifications on AIE structures enable the selective recognition. Coordination chemistry
and metal-related reactions are two major approaches for the recognition. The presence of target ion
changes the signal output of AIE cores, which enables sensitive detection.
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Given the importance of metal ions and the continuously growing body of AIEgens for metal ion
detection, this review focuses on recent development of AIE-based sensors for detecting and imaging
of metal ions in biological systems. Major concerns will be devoted to the design principles, sensing
performance, and applications for tracing metal ions in vitro and in vivo.

2. Alkali Metal Ions

Alkali metals include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs),
and francium (Fr). The concentration of Na+ and K+ in human body is of millimolar level and differs
widely between intracellular and extracellular region [3]. Crown ether, aza-crown ether, and their
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derivates are the traditional recognition components for these ions due to the selection of cavity.
The sensing and detection of alkali metal ions are mainly focus on Li+, Na+, and K+. There has been an
excellent review on fluorescent probes for alkali metals and alkaline earth metals [35].

For conventional AIEgens, water solubility is usually a problem which prevents their applications
for biosensing and bioimaging. The introduction of biomolecules can overcome this issue. Tan et al.
modified TPE derivative with G-rich DNA oligonucleotide for the detection and imaging of K+ [36].
The oligonucleotide moiety not only enhanced water solubility, but also provided biocompatibility
and cell permeability. This probe was weakly emissive in aqueous solution. In the presence of K+,
parallel G-Quadruplex structure could be induced, which gathered TPE groups. The π-π stacking
interactions among phenyl-ring motifs of TPE derivatives further stabilized the G-Quadruplex structure.
Thereby, fluorescent emission was significantly enhanced. This turn-on probe showed a detection
limit of 5 µM towards K+ in Tris-HCl buffer. The feasibility of the probe for sensing K+ in living cells
was also demonstrated. Strong fluorescence was emitted from cytoplasm of HeLa cells after treated
with the probe. The disappearance of the blue emission after the treatment K+ suppressing reagents
confirmed the feasibility and reversibility of this probe for detection and imaging of K+.

3. Alkaline Earth Metal Ions

Alkaline earth metals are in group 2 of the periodic table, including beryllium (Be), magnesium
(Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). Among these metals, Mg and Ca
are involved in many biological processes, such as signal transduction and regulation of enzyme
activity. The normal concentrations of Mg2+ and Ca2+ are usually in the ranges of 0.5–20 mM and
0.1 µM–2 mM, respectively [3]. The abnormality in their concentrations may cause a series of diseases,
such as hypertension, osteoporosis, neuronal injury, soft tissue calcification, and hypercalcemia [37–39].
Probes containing β-ketoester, β-carboxyester, benzylguanine, or carboxyl moiety are usually designed
to detect and sense Mg2+ and Ca2+ [35].

For AIEgens, carboxyl or nitrogenous groups are usually integrated into the structures for Mg2+

and Ca2+ binding. Chemoensors including small molecules and polymers based on AIE phenomenon
have been developed [40–42]. An AIE probe synthesized by the condensation reaction between
benzene-1, 2-diamine and 5-bromo-2-hydroxybenzaldehyde was reported for Mg2+ detection [40].
A group of polymer sensors based on TPE appended poly(acrylic acid) derivatives [PAA-TPEx

(x = 0.01–0.05)] were reported for detecting Ca2+ [41,42]. The binding towards Ca2+ was realized via
the coordination behavior of carboxyl groups. These sensors showed selectivity of Ca2+ over Mg2+

due to the more effective induction of chain folding.
Water solubility, high selectivity and appropriate responding range are important for analyzing

Mg2+ and Ca2+ in living systems. An AIE-active Ca2+ probe (SA-4CO2Na) was developed with
a millimolar responding range which fitted the requirement for Ca2+ analysis in biosystems [43].
Two iminodiacetate groups with negative charge were modified to SA fluorogen acting as recognition
groups (Figure 2a). In the presence of Ca2+, the chelation between two iminodiacetate groups and
one metal ion gave fibrillar aggregates with strong fluorescence enhancement at 541 nm (Figure 2b).
The linear range of 0.6–3.0 mM was suitable to discriminate normal (1.0–1.4 mM) and hypercalcemic
(1.4–3.0 mM) Ca2+ concentration. SA-4CO2Na was successfully applied to imaging Ca2+ in different
biological samples, including human psammomatous meningioma slice with calcium deposits and
bovine bone microcracks (Figure 2c,d). Compared with commercial dyes calcein, SA-4CO2Na could
image Ca2+ with high signal-to-noise ratio without washing. Selective imaging of Ca2+ with clear
background demonstrated great potential of this probe for broad biomedical applications.
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Figure 2. (a) Ca2+ sensing mechanism of the turn-on probe SA-4CO2Na [43] (Reproduced with
permission from [43]). (b) Fluorescence, SEM, and TEM images of SA-4CO2Na upon Ca2+ addition.
(c) Fluorescence images of calcium deposits in psammomatous meningioma slice. (d) Fluorescence
images of bovine bone microcracks by treated with calcein and SA-4CO2Na.

With water solubility and coordinating ability towards Ca2+, bidentate pyridine carboxylate was
anchored on TPE for the design of Ca2+ sensor [44]. Upon Ca2+ recognition, coordination oligomers or
polymers formed with decreased solubility. The aggregation enhanced fluorescence emission which
released detectable signal. The sensor was applied for imaging Ca2+ in A549 cells. The appearance
of blue fluorescence in cytoplasmic area suggested the binding of Ca2+. AIEgens are also involved
in the structures of polymers for the development of ion sensors. Liu et al. synthesized a copolymer
PEN-TPE/PPL (PEN: polyarylene ether nitrile; TPE: tetraphenylethene; PPL: phenolphthalin) through
the copolymerization of TPE-2OH, 2, 6-dichlorobenzonitile (DCBN) and phenolphthalein (PPL)
(Figure 3a) [45]. With the presence of carboxyl group, PEN-TPE/PPL showed coordination towards
metal ions, including Cu2+, Pb2+, Zn2+, and Ca2+. Among these, Ca2+ caused the largest emission
enhancement. Mechanism investigation indicated that Ca2+ induced crosslinking of PEN-TPE/PPL
and the formation of nanospheres. These nanospheres could penetrate EMT-6 cells and concentrate
in cytoplasm.
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Figure 3. (a) Synthesis of a copolymer PEN-TPE/PPL for the detection of Ca2+ [45]. (b,c) A molecular
probe (CaP1) with Ca2+-responsive signal for analyzing Ca2+ in the root cells of Arabidopsis thaliana [46]
(Reproduced with permission from [45,46]).
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Aggregation-induced phosphorescence (AIP) property was also introduced for the detection of
Ca2+. Recently, a molecular probe (CaP1) with phosphorescent properties was developed [46]. In the
presence of Ca2+, each CaP1 molecule coordinated two Ca2+ ions via cyano and carboxyl groups to form
linear long chains (Figure 3b). Precipitated particles were produced with AIP characteristics. Due to
the long lifetime of phosphorescence, time-gated detection method was established which effectively
inhibited autofluorescence. CaP1 was observed to successfully enter cells and emit phosphorescence
responding to Ca2+ in the root cells of Arabidopsis thaliana, which could be a useful tool for studying
the biological roles of Ca2+ in plants (Figure 3c).

4. Transition Metal Ions

Transition metals include a large family of metal elements. These metals vary in chemical
properties, concentration, distribution, and acting roles in living biosystems. Most transition metal
ions show good coordination ability, which is one main point to design binding group. Metal-mediated
reactions are also useful to selectively recognize metal ions [16,17,47,48]. In this part, several common
transition metal ions sensed by AIE probes are discussed, including Mercury, Fe3+, Cu2+, Zn2+, Ag+,
Ni2+, Cr3+, and Au3+.

4.1. Mercury Ions

Mercury is toxic and a great threat to human health. The bioaccumulation of mercury can
cause severe damage to many organs, such as central nervous system, lung, and kidneys [49,50].
Different mechanisms have been investigated for specific sensing of mercury based on AIE phenomenon.

Coordination chemistry has been employed for the recognition of Hg2+ [51–60].
Structures containing Schiff base, sulfydryl, and imidazole groups show effectiveness for Hg2+

binding. Huo et al. synthesized two probes by decorating diaminomaleonitrile moiety on TPE [51].
These probes formed nanoscale aggregates and were emissive in solution with high water fraction (f w).
In the presence of Hg2+, the N atoms in diaminomaleonitrile moiety bound Hg2+, which disturbed
internal charge transfer and caused fluorescence quenching. This turn-off response was applied for
detecting Hg2+ in living cells. Considering the complexity of living systems, turn-on probes can
provide accurate information. By incorporating Schiff base unit, Yang et al. designed and synthesized
a series of α-cyanostilbene derivatives for Hg2+ detection [52–54]. Hg2+ binding drove π-π stacking
and hydrogen bonding between adjacent probes, which hampered the intramolecular rotation thus
caused fluorescence enhancement. With improved emission performance, two of these probes were
used for imaging Hg2+ in living cells. Recently, a ratiometric probe using an AIEgen has been used for
the imaging of Hg2+ in onion inner and outer epidermal tissues [61].

In addition to detection, tracing biological distribution of Hg2+ is important for studying its
toxicology. A peptide-based probe was designed by using a tripeptide as Hg2+-targeting moiety and
TPE as the signaling group [55]. The incorporation of the peptide not only allowed the highly specific
turn-on discrimination of Hg2+ from 19 different metal ions, but also provided high compatibility with
physiological environment. For mechanism investigation, peptide analogues were also conjugated with
TPE, which suggested the thiol and carboxyl side chains played important roles for the binding with
Hg2+ (Figure 4a). Further applications of the sensor for monitoring Hg2+ in living cells and zebrafish
were demonstrated. The observation that Hg2+ showed high tendency to accumulate in cell nucleus
indicated the damage effect of this ion to this subcellular compartment (Figure 4b). As indicated by the
signal of the sensor, the distribution of Hg2+ in chorion of zebrafish embryo and the brain of larvae
was related to the deleterious effect of inorganic mercury in living biosystems (Figure 4c).
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The bioaccumulation of Hg2+ leads to the formation to highly toxic organomercury compounds
such as methylmercury (MeHg+) and phenylmercury (PhHg+). Therefore, detection of both inorganic
and organic species is crucial to protect ecosystem and human health. Recently, Kong et al. modified
four methylated benzimidazole groups on the TPE skeleton to prepare a water soluble AIE probe
Tmbipe (Figure 5a) [56]. In addition to Hg2+, benzimidazole groups in Tmbipe could also bind MeHg+

and PhHg+, producing Hg2+-tetracarbene complex via C-Hg bonds. The formation of chelate ring
restricted the intramolecular rotation and increased molecular planarity, which induced the formation
of aggregates and further restricted the molecule skeletal vibration. Due to the unusual coordination
mode of C-Hg, this probe showed high selectivity towards Hg2+ and organomercury. The detection
limits for Hg2+, MeHg+, and PhHg+ were estimated as 63 nM, 94 nM, and 78 nM, respectively.
With good solubility, Tmbipe was successfully applied for imaging Hg2+ in different cells. In another
work, a dual detection strategy for the bioaccumulation of Hg2+ in P. phosphoreum was developed
by using an AIE sensor 2-AFN-I (Figure 5b) [57]. Hg2+ quenched the strong bioluminescence of
P. phosphoreum by interrupting quorum sensing system, meanwhile increased the emission of 2-AFN-I
inside the bacteria. This strategy provided a useful inspiration for the imaging and evaluation of
bioaccumulated toxins in P. phosphoreum.

In addition to coordination chemistry strategy, reaction-based mechanism is another effective
way to sense Hg2+ [62,63]. Joshi et al. designed a TPE-monoboronic acid probe to sense and
image Hg2+ and CH3Hg+ based on mercury ion-promoted transmetalation reaction (Figure 5c) [64].
After reaction, the transformation of the C-B bond in the probe to C-Hg gave poorly soluble TPE-HgCl or
TPE-HgMe product. The resultant aggregates, restriction of intramolecular rotation caused fluorescence
enhancement. This probe was used to image methylmercury in HEK cells and zebrafish. For CH3HgCl
pretreated samples, strong blue emission was observed in cells and the whole body of zebrafish. In other
examples, Hg2+-induced umpolung reaction was reported to sensing Hg2+ [65,66]. 2-mercaptoethanol
was integrated with the AIEgen to increase solubility and provide dethioacetalization site. In the
presence of Hg2+, mercaptoethanol was substituted by an aldehyde group, leading to AIE phenomenon.
Further applications in the detection of Hg2+ in river water, urine samples, living cells, and zebrafish
were achieved.
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Considering the co-existence of multiple species in complicated biosamples, multi-targeting sensors
were developed with AIE behaviors. Some dual-responsive strategies have been reported to sense Hg2+

and other targets [67,68]. By combining AIE organic nanoparticles with Au nanoparticles, Ouyang et al.
developed a dual-emission fluorescent sensor to detect mercury and melamine [68]. The composite
exhibited maximum emission wavelengths at 525 nm and 625 nm, respectively, under excitation at
365 nm. In the present of Hg2+, the red fluorescence of Au NPs was quenched via metallophilic
Hg2+-Au interactions while the green emission of the AIE particles almost remained unchanged,
generating a ratiometric fluorescent signal. With higher affinity for Hg2+, melamine prevented the
fluorescence quenching thus also could be detected with this sensor. Cell imaging assays demonstrated
the effectiveness of this sensing strategy.

4.2. Cu2+

Copper, as an important trace element, participates in the formation of some enzymes and proteins,
such as amine oxidase and ceruloplasmin. However, high concentration of Cu2+ is toxic [69]. Derivates
based on rhodamine are frequently used to detect Cu2+ via Cu2+-induced spirolactam ring-opening
and hydrolysis processes to produce a turn-on response [70,71]. In the past years, AIE-based probes
have also been designed for Cu2+ sensing and find applications in bioimaging [72–75].

Based on the coordination behavior of Schiff base towards Cu2+, Hou et al. synthesized a Schiff
base derivative with a Cu2+ binding stoichiometry of 2:1 (Figure 6a) [72]. The resultant fluorescence
enhancement at 455 nm was used as the signal for Cu2+ detection in HeLa cells. In addition to turn-on
sensors, turn-off strategy was also employed for the development of Cu2+ probes by using Schiff
base as the core structure. The condensation of salicylaldehyde and 2-hydroxy-1-naphthaldehyde
presented two probes with Schiff base moiety (Figure 6b,c) [73]. These two probes were highly emissive
at 534 nm and 530 nm, respectively, by forming micron particles in water. The coordination with
Cu2+ broke the planar conformation of the probes, therefore quenched the fluorescence. The turn-off

signal was used to indicate the appearance of Cu2+ in KYSE510 cells. Another probe with pyrrole and
coumarin units connected by Schiff base was also reported to detect Cu2+ by fluorescence quenching
(Figure 6d) [74]. This probe displayed different emission in solvents with varied water/DMSO fractions.
Fluorescence was quenched upon Cu2+ addition due to photoinduced electron transfer (PET) process
and disassembling of the aggregates. The sensor was utilized for Cu2+ imaging in HeLa cells.

He et al. reported a dual-detection strategy for Cu2+ and ATP [75]. An amphiphile probe was
designed by modifying oxyalkyl chains with 1,5,9-triazacyclododecane unit as Cu2+-targeting group.
This probe assembled into micelles and emitted at 491 nm in aqueous solution. Upon Cu2+ chelation,
fluorescence was quenched. Since ATP has higher affinity with Cu2+, fluorescence can be recovered.
Such fluorescence recovery responded specifically to ATP with slightly interference from ADP.
The on-off-on mode provided detection limits of 0.1 µM for Cu2+ and 1.5 µM for ATP. The quenching
and recovering of blue emission located in cytoplasm of HeLa cells was successfully achieved.
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4.3. Zn2+

Zn2+ plays essential roles in the formation of zinc finger proteins, enzyme catalysis and signaling.
The intracellular concentration of Zn2+ is around 200 µM [76]. The imbalance of Zn2+ in human
bodies is related to many diseases, including growth retardation, Alzheimer’s disease and defects in
immune systems [77,78]. AIE-active fluorescence probes have been developed for Zn2+ detection and
sensing [79–83].

Jin and coworkers designed a Schiff-based compound, 2-(Trityliminomethyl)-quinolin-8-ol (HL),
as ligand to coordinate with Zn2+ (Figure 7a) [79]. HL was non-emissive in THF/H2O solution.
However, the complex ZnL2 formed nanoscale J-aggregates through coordination bonds and π-π
interactions, thus showed obvious fluorescence. This turn-on mode was applied for detecting and
imaging Zn2+ in SH-SY5Y cells. Recently, another Schiff base chemosensor Hbdhn with AIE properties
was developed for imaging Zn2+ in living cells. (Figure 7b) [83]. In another example, Fan et al.
designed an AIE probe to detect Zn2+ and single-stranded DNA (ssDNA) in different solvents [80].
In H2O/DMSO (fw = 80%), the coexistence of Zn2+ with this probe caused fluorescence enhancement.
However, in H2O/DMSO (fw = 99%) a new metal complex L-Zn2+ was produced which was weakly
emissive. After addition of ssDNA, the metal coordination between ssDNA and Zn2+ enhanced
the emission. This dual responsive turn-on approach was used to sense intracellular Zn2+ and
ssDNA. Xiao et al. synthesized two AIE probes (SPF-1 and SPF-2) for Zn2+ sensing, by modifying
spirobifluorene (Figure 7c,d) [81]. The detection limits were 0.3 µM and 63 nM, respectively, based on
AIE enhancement. SPF-1 was applied in the intracellular Zn2+ imaging of A549 cells with green
fluorescence. Notably, SPF-2 was used for two-photon fluorescence imaging due to the donor-π-acceptor
type molecule structure. In the cell imaging, yellow fluorescence was emitted from cells under excitation
at 800 nm.Molecules 2019, 24, x 9 of 18 
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Integrating biomolecule into probes is an effective strategy for biosensing and bioimaging due
to the good biocompatibility. Wang et al. designed a peptide-modified TPE probe to sense Zn2+

in a turn-on manner [82]. With a sequence of LHLHLRL, the peptide could selectively recognize
Zn2+ via histidine residues by mimicking the Zn2+ binding site of carbonic anhydrase. Two glycine
residues were introduced as spacer to connect the fluorophore and recognition group. The TPE unit
provided fluorescence signal under aggregates. The detection of Zn2+ was realized in 80% aqueous
buffered-ethanol solution (1 mM PBS, pH 7.0), with a detection limit of 18.56 nM. This probe could image
the intracellular Zn2+ in HeLa cells without internal addition of Zn2+. Furthermore, the permeability
rate and intracellular concentration change of Zn2+ were also measured according to the emission of
the probe.

In addition to organic probes, some nanoparticles and metal nanoclusters also show AIE
behavior [84], and some of them have been used for Zn2+ sensing with the merits of simple preparation,
broad excitation range and high photostability [85,86]. For instance, copper nanoclusters (Cu NCs)
are frequently used for fluorescence analysis with AIE activity [87,88]. Zhao’s group synthesized
glutathione (GSH)-capped Cu NCs with AIE property for sensing Zn2+ [86]. Upon the addition of Zn2+

in buffered aqueous solution, Cu NCs bound Zn2+ via surface groups and electrostatic interaction.
The crosslinking between clusters caused aggregation and emission enhancement due to the restriction
of vibration, rotation, and torsion of Cu NCs. This light-up imaging of Zn2+ was also achieved in
MGC-803 cells.

4.4. Fe3+

Fe3+ is one of the most common transition metals in the human body and participates in many
biological activities, including oxygen carrying, electron transport, and enzyme catalysis. Nevertheless,
the abnormality in Fe3+ has been revealed to correlate with many diseases, such as anemia, Parkinson’s
syndrome and cancer [89,90]. There have been many reports for Fe3+ detection with AIE probes [91–94].

Cyano group is usually used as the recognition group for the coordination of iron ions. Hence,
combining cyano group and AIE fluorophore is an effective method to detecting Fe3+. Liu et al. designed
an AIE probe containing cyano groups and triphenylamine unit to detect Fe3+, CN−, and SO3

2− [91].
In aqueous solution (1% DMSO), fluorescence enhancement around 570 nm was observed due to the
formation of nanoparticles from the probe. Upon the addition of Fe3+, the coordination from Fe3+

disturbed the hyperconjugation structure and caused fluorescence quenching. This turn-off mechanism
could selectively discriminate Fe3+ from Fe2+. In imaging experiment, blue fluorescence of the probe
was observed in the cytoplasm of HeLa cells. For cells treated with Fe3+, blue fluorescence disappeared
in cells. Moreover, anion CN− and SO3

2− also quenched the fluorescence by affecting the charge density
and breaking the hyperconjugation structure. Lee et al. reported an iron-selective turn-on sensor IQ44
which shows high affinity and sensitivity towards Fe3+. By localized to lysosomes, IQ44 can imaging
cellular Fe3+ in lysosomes, and is promising for studying related biological processes (Figure 8a) [91].
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Fluorescence nanoparticles have been explored as sensors to sense Fe3+ [93,94]. Wang et al.
synthesized a conjugated polymer P2 for sensing Fe3+ (Figure 8b) [93]. This polymer containing
TPE unit and zwitterionic unit. Then, DSPE-PEG 2000 was reprecipitated with P2, forming lipid-P2
NPs with spherical shape and an average diameter of ~23 nm. Lipid-P2 NPs displayed stable and
strong emission at 500 nm in physiological conditions. The appearance of Fe3+ could quench the
fluorescence. This turn-off response provided a detection limit for Fe3+ of 0.22 µM. Bioimaging of Fe3+

was achieved in A549 cells. Another example of fluorescent organic nanoparticles via self-assembly
to sense and image Fe3+ was reported by Li et al. [94]. The fluorophore monomer TPE-BIMEG
containing bis-imidazolium (BIM), oligo(ethyleneglycol) (EG), and TPE moieties (Figure 8c) showed
good solubility in polar solvents. Due to the interaction between BIM and ATP, TPE-BIMEG could
self-assemble into nanoparticles, which exhibited AIE enhancement around 470 nm in aqueous solution.
Due to the excited state deactivation effect of Fe3+, the fluorescence of the nanoparticles could be
quenched by Fe3+. The fluorescence quenching at a Fe3+ concentration as low as 0.1 nM was observed,
suggesting the high sensitivity of the method. During imaging of HeLa cells, strong fluorescence was
emitted from the cytoplasm and cell membrane after incubation with TPE-BIMEG. In the presence of
Fe3+, the measurement of fluorescence at different time points showed the fluorescence in HeLa cells
could be completely quenched by Fe3+ within 30 min.

4.5. Other Transition Metal Ions

Besides the above-mentioned ions, other transition metal ions also draw research attentions.
Hahn et al. utilized TPE bridged tetraimidazolium salts, [H4L-Et](PF6)4, and [H4L-Bu](PF6)4,

to chelate Ag+ and Au+ to form dinuclear tetracarbene complexes [94]. The restriction of the rotation
of the phenyl groups caused sharp fluorescence enhancement at 500 nm. Kim et al. designed a TPE
probe to detect Au3+ based on AIEgen disaggregation effect [95]. The probe AuP-1 was prepared by
decorating the TPE core with four propargyl groups (Figure 9a). In aqueous solution, the fluorescence
of AuP-1 dramatically decreased within 1 min after the addition of Au3+. It was proposed that the
interaction of Au3+ with alkynyl could convert aggregated AuP-1 to disaggregated form, therefore
quenching the fluorescence. With low toxicity and high stability, this probe was applied for imaging
Au3+ in RAW 264.7 cells. The inhibition of the green fluorescence from AuP-1 was used as the indicator
of Au3+ inside cells.Molecules 2019, 24, x 11 of 18 
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Pitchumani et al. reported a probe Pyr-1 for Ni2+ detection which was synthesized from pyrene
and 1,8-naphthyridine units (Figure 9b) [97]. Due to the PET process from pyrene to 1,8-naphthyridine,
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Pyr-1 was weakly emissive in dilute solution. Upon the addition of Ni2+, obvious fluorescence
enhancement at 420 nm and red shift were observed. Mechanism investigation indicated that Pyr-1
and Ni2+ formed a square-planer complex with a stoichiometry of 2:1. The coordination operated
between Ni2+ and N atoms in 1,8-naphthyridine. The emission enhancement was attributed to the
inhibition of PET process and the formation of excimer. This probe showed high selectivity towards
Ni2+ and a detection limit of 0.25 µM in water. Successful application for Ni2+ imaging in HeLa cells
was also demonstrated.

5. Other Metal Ions

Post-transition metals usually refer to aluminum (Al) gallium (Ga), indium (In), thallium (Tl), tin
(Sn), lead (Pb), and bismuth (Bi). Among these metal ions, current reported AIE probes mainly focus
on Al3+ and Pb2+.

Zhao and coworkers designed a simple and effective probe TPE-COOH for Al3+ sensing [98].
In the presence of Al3+, the formation of coordination complex and nanoaggregates led to activatable
emission at 470 nm. The high selectivity was demonstrated by the discrimination of Al3+ from various
metal ions. Quantitation analysis gave a detection limit of 21.6 nM for Al3+. A time-course imaging
of Al3+ was performed in HeLa cells to record the binding process of TPE-COOH to intracellular
Al3+. Feng et al. introduced four carboxylate groups into one TPE core to sense Al3+ and Pb2+ [99].
The probe TPE-4CO2Na shows good solubility in pure aqueous solution. Both Al3+ and Pb2+ can
coordinate with TPE-4CO2Na to produce millimetre-sized aggregates. To examine the bio-applicability,
Arabidopsis thaliana were chosen as the model. The acidic form of the probe TPE-4CO2H exhibited better
cell permeability and could sense the metal ions inside cells. Probes with pyrene structure were also
reported to detect Al3+, Fe3+, and Cr3+ [100–102]. In one of such examples, monomeric pyrene PCS1
and dimeric PCS2 (Figure 10a) displayed AIE characteristic owing to the inhibition of PET/twisted
intramolecular charge transfer (TICT) process in aggregates [102]. By using the turn-on response of
PSC1 towards Al3+, Fe3+, and Cr3+, cell imaging experiments with RAW 264.7 cells were performed.Molecules 2019, 24, x 12 of 18 
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Figure 10. (a) Design and synthesis of PCS1 and PCS2 [102]. (b,c) Schematic illustration of GSSH-2TPE
for Pb2+ sensing and imaging. (b) The design and synthesis of GSSH-2TPE. (c) Binding kinetics of
GSSH-2TPE to Pb2+ in HeLa cells [103]. (Reproduced with permission from [102,103]).

Peptides with tailorable structures and rich coordination chemistry provide rich resource for
designing recognition blocks. Huang and coworkers designed a Pb2+-specific sensor by mimicking the
structure of GSH [103] (Figure 10b). Lewis acid-base theory was employed to guide the modulation
of the selectivity of the probe. With both hard Lewis base (the carboxyl group) and soft Lewis
base (the thiol group), the leading structure GSH-TPE responded to several metal ions with turn-on
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fluorescence. After the oxidation of side groups, the probe GSSH-2TPE selectively recognized Pb2+

with high affinity due to the matched coordination configuration and cavity size. The complex
further assembled into nanoparticles via the intermolecular noncovalent interactions, activating bright
fluorescence. Endogenous biothiol species and metal ions such as GSH, cysteine, Mg2+, and Ca2+

hardly interfered the sensing performance. Cellular binding kinetics and biodistribution of Pb2+ were
measured (Figure 10c). The higher intensity in cell membrane and cytoplasm suggested stronger
retention and accumulation of Pb2+ in these compartments.

Uranium belonging to actinides group is a radioactive element and poses great threats to human
health. Tang et al. developed a ratiometric fluorescence probe, 3-hydroxy-flavone salicylaldehyde
azine (HFSA), for the detection and cell imaging of trace uranyl ion [104]. HFSA showed obvious
emission enhancement in water/EtOH (fw = 80%) at 534 nm due to AIE effect. In the presence of
UO2

2+, the emission at 534 nm remained unchanged while a new emission peak appeared at 457 nm.
This phenomenon was ascribed to the connection of UO2

2+ with adjacent hydroxy groups in HFSA with
a stoichiometric ratio of 1:2. The emission ratio (I457/I534) was linearly dependent on the concentration
of UO2

2+ in the range of 0–20 ppb. This probe showed excellent selectivity for UO2
2+ after F- addition

and pH adjustment to reduce interference. During cell imaging, only yellow emission was observed in
HFSA-treated HeLa cells. For cells loaded with UO2

2+ and HFSA, both yellow and blue fluorescence
was emitted, demonstrating the effectiveness of the probe for UO2

2+ sensing.

6. Conclusions

Since the first introduction of fluorescence probes for metal ion sensing, great progress has been
achieved both in fundamental mechanism and applications. The rapid development in instrumental
tools and dyes not only allows the quantitative measurement of target molecules, but also permits in
situ mapping the distribution of the analytes in a spatially resolved manner. In the past years, AIE-based
sensors also contribute to the investigation of metal ions in living biosystem. Various fluorescent
structures have been designed providing activatable signal and high sensitivity. Further decoration
of these AIEgens with recognition moieties brings metal coordination or reaction abilities, thus high
selectivity. The biological applications of the probes have been extended from simply qualitative
detection to quantitative analysis and real-time tracing of metal ions in samples including living cells,
microbe, plants, and fishes. The obtained information can benefit the insights into the roles of these
metal ions.

There is broad space remaining for the future development of novel AIE-based sensors for metal
ions. Considering the crucial biological functions of Na+, K+, Ca2+, and Mg2+, AIE sensors for them
are relatively lack. Sensors selectively responding to these essential ions are desirable. Aiming at
bioanalytical applications, attentions still should be paid on the water solubility and biocompability
of the sensors. Shifting the emission to long wavelength range such as near infrared region is also
appealing for bioimaging. This can benefit deep tissue penetrability thus enable monitoring of metal
ions inside tissues. Due to the advantages of high penetrability and low phototoxicity, two-photon
probes also attract increasing research interests. The development of two-photon AIEgens will benefit
the investigation of metal ions in biosystems. Probes allowing tracking spatial distribution and kinetic
process of cellular uptake of metal ions are also demanded. It is for sure that AIEgens for metal ions
will continuously emerge and contribute to the field of bioanalysis.
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