Supplementary Materials

Kleeb Bua Daeng, a Thai Traditional Herbal Formula, Ameliorated Unpredictable Chronic Mild Stress-Induced Cognitive Impairment in ICR Mice

Juthamart Maneenet ^{1,2}, Supawadee Daodee ², Orawan Monthakantirat ², Chantana Boonyarat ², Charinya Khamphukdee ², Pakakrong Kwankhao ³, Supaporn Pitiporn ³, Suresh Awale ⁴, Yaowared Chulikhit ^{2,*} and Anake Kijjoa ^{5,*}

- ¹ Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; juthamart_pp@hotmail.com (J.M.)
- ² Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; csupawad@kku.ac.th_(S.D.); oramon@kku.ac.th (O.M.); chaboo@kku.ac.th_(C.B.); charkh@kku.ac.th_(C.K.)
- ³ Department of Pharmacy, Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi, Thailand 25000, Thailand; pakakrong2@gmail.com (P.K.); spitiporn@yahoo.com (S.P.)
- ⁴ Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; suresh@inm.u-toyama.ac.jp
- ⁵ *ICBAS-*Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- * Correspondence: yaosum@kku.ac.th (Y.C.); ankijjoa@icbas.up.pt (A.K.), Tel.: +351-22042-8331 (A.K.)

1. Statistical analysis of KBD on Unpredictable Chronic Mild Stress (UCMS)-Induced Cognitive Impairment.

Table S1. One-way analysis of variance (ANOVA) test of the Y-maze test.

	ANOVA followed by Tukey's post hoc			
Group comparison		test		
	Р	F (DF between group, DF residual)		
non-stress group VS. vehicle-treated UCMS group	< 0.001			
vehicle-treated UCMS group VS. UCMS+Vit E100	0.019			
vehicle-treated UCMS group VS. UCMS+KBD100	0.121	F(4,43)=8.973		
vehicle-treated UCMS group VS. UCMS+KBD500	< 0.001			
UCMS+KBD100 VS. UCMS+KBD500	0.015			

Table S2. One-way analysis of variance (ANOVA) of the Novel Object Recognition Test (NORT).

	ANOVA followed by Tukey's post hoc			
Group comparison		test		
	P	F(DF) between group, DF residual)		
non-stress group VS. vehicle-treated UCMS group	0.002			
vehicle-treated UCMS group VS. UCMS+Vit E100	0.002	F.4.41 \ 7.77		
vehicle-treated UCMS group VS. UCMS+KBD100	0.006	F(4,41)=7.77		
vehicle-treated UCMS group VS. UCMS+KBD500	<0.001			

Table S3. T-test of time exploring object (comparison between the new object and the familiar object).

Crown comparison		<i>t</i> -test				
Group comparison	t	Df	P			
non-stress group (familiar) VS. non-stress group (new)	-16.299	-26.299	< 0.001			
vehicle-treated UCMS group (familiar) VS. vehicle-treated UCMS group (new)	-1.046	-4.261	0.313			
UCMS+Vit E100 (familiar) VS. UCMS+Vit E100 (new)	-11.486	-25.471	< 0.001			
UCMS+KBD100 (familiar) VS. UCMS+KBD100 (new)	-2.925	-6.689	0.011			
UCMS+KBD500 (familiar) VS. UCMS+KBD500 (new)	-4.595	-18.031	< 0.001			

2. Statistical analysis of the KBD extract on UCMS-Induced hypersecretion of serum corticosterone.

Table S4. One-way analysis of variance (ANOVA) test of serum corticosterone (CORT) levels.

	ANOVA followed by Tukey's post hoc			
Group comparison		test		
	Р	F (DF between group, DF residual)		
non-stress group VS. vehicle-treated UCMS group	<0.001			
vehicle-treated UCMS group VS. UCMS+Vit E100	0.003	E4 10: 16 047		
vehicle-treated UCMS group VS. UCMS+KBD100	0.004	F(4,10)=16.047		
vehicle-treated UCMS group VS. UCMS+KBD500	<0.001			

3. Statistical analysis of KBD on the UCMS-Induced lipid peroxidation.

Table S5. One-way analysis of variance (ANOVA) test of the lipid peroxidation in the frontal cortex.

	ANOVA followed by Tukey's post hoc			
Group comparison		test		
	Р	F (DFbetween group, DFresidual)		
non-stress group VS. vehicle-treated UCMS group	< 0.001			
vehicle-treated UCMS group VS. UCMS+Vit E100	< 0.001	F.4.17× EDE EE.6		
vehicle-treated UCMS group VS. UCMS+KBD100	< 0.001	F(4,17)=525.556		
vehicle-treated UCMS group VS. UCMS+KBD500	< 0.001			

Table S6. One-way analysis of variance (ANOVA) test of lipid peroxidation in the hippocampus.

Group comparison	ANOVA followed by Tukey's post hoc test			
	P	F (DFbetween group, DFresidual)		
non-stress group VS. vehicle-treated UCMS group	<0.001			
vehicle-treated UCMS group VS. UCMS+Vit E100	<0.001	F.4.16, 22,222		
vehicle-treated UCMS group VS. UCMS+KBD100	<0.001	F(4,16)=32.222		
vehicle-treated UCMS group VS. UCMS+KBD500	<0.001			

4 Statistical analysis of KBD on the UCMS-Induced Oxidative Stress in the Brain.

Table S7. One-way analysis of variance (ANOVA) test of the catalase activity in the frontal cortex

Group comparison	ANOVA followed by Tukey's post hoc test			
1 1	P	F (DF between group, DF residual)		
non-stress group VS. vehicle-treated UCMS group	0.006			
vehicle-treated UCMS group VS. UCMS+Vit E100	0.046	FA 14: 6 27E		
vehicle-treated UCMS group VS. UCMS+KBD100	0.99	F(4,14)=6.275		
vehicle-treated UCMS group VS. UCMS+KBD500	0.048			

Table S8. One-way analysis of variance (ANOVA) test of the catalase activitiy in the hippocampus

	ANOVA followed by Tukey's post hoc			
Group comparison		test		
	P	F (DF between group, DF residual)		
non-stress group VS. vehicle-treated UCMS group	0.02			
vehicle-treated UCMS group VS. UCMS+Vit E100	< 0.001	FA 125 7 E20		
vehicle-treated UCMS group VS. UCMS+KBD100	0.998	F(4,13)=7.538		
vehicle-treated UCMS group VS. UCMS+KBD500	0.004			

Table S9. One-way analysis of variance (ANOVA) test of the superoxide dismutase (SOD) activitity in the frontal cortex.

	ANOVA followed by Tukey's post hoc			
Group comparison		test		
	P	F (DF between group, DF residual)		
non-stress group VS. vehicle-treated UCMS group	< 0.001			
vehicle-treated UCMS group VS. UCMS+Vit E100	< 0.001			
vehicle-treated UCMS group VS. UCMS+KBD100	0.996	<i>F</i> (4,14)=17.385		
vehicle-treated UCMS group VS. UCMS+KBD500	< 0.001			
UCMS+KBD100 VS. UCMS+KBD500	<0.001			

Table S10. One-way analysis of variance (ANOVA) test of the SOD activitity in the hippocampus.

	ANOVA followed by Tukey's post hoc			
Group comparison		test		
	P	F(DF) between group, DF residual)		
non-stress group VS. vehicle-treated UCMS group	< 0.001			
vehicle-treated UCMS group VS. UCMS+Vit E100	< 0.001			
vehicle-treated UCMS group VS. UCMS+KBD100	0.997	F(4,15)=21.732		
vehicle-treated UCMS group VS. UCMS+KBD500	< 0.001			
UCMS+KBD100 VS. UCMS+KBD500	<0.001			

Table S11. Validation results of the analytical method for determination of piperine (1), madecassoside (2), asiaticoside (3), ferulic acid (9), lutiolin-7-*O*-glucoside (8), rutin (7), kaempferol-3-glucoside (6), quercetin (4) and kaempferol (5) content in the KBD extract.

Parameter						Compounds				
		Piperine	Madecassoside	Asiaticoside	Ferulic acid	Luteolin-7- <i>O</i> - glucoside	Rutin	Kaempferol-3- glucoside	Quercetin	Kaempferol
	Range (µg/mL)	5-100	5-30	5-30	1-6	1-6	1-6	1-6	1-6	1-6
Linearity	Coefficient Determination (\mathbf{R}^2)	0.9994 ± 0.002	0.9937 ± 0.001	0.9917 ± 0.004	0.9984±0.001	0.9988±0.001	0.9951±0.002	0.9958±0.003	0.9901±0.001	0.9938±0.005
		0.05	2.5	2.5	0.5	0.5	0.5	0.5	0.5	0.5
LOI	O (μg/mL)	$(S/N \sim 3.417 \pm$	$(S/N \sim 2.814 \pm$	$(S/N \sim 3.129 \pm$	(S/N~3.206 ±	(S/N~4.284 ±	(S/N~4.027 ±	(S/N~4.453 ±	(S/N~3.976 ±	(S/N~3.814 ±
		0.545)	0.986)	0.150)	0.714)	0.434)	0.348)	1.240)	0.551)	0.277)
		0.1	5	5	1	1	1	1	1	1
LOG	Q (μg/mL)	$(S/N \sim 10.175 \pm$	$(S/N \sim 10.643 \pm$	$(S/N \sim 10.400 \pm$	(S/N~11.051 ±	$(S/N\sim12.853 \pm$	(S/N~12.086 ±	(S/N~11.930 ±	(S/N~11.927 ±	(S/N~11.443 ±
		2.300)	0.098)	0.129)	1.737)	1.303)	1.044)	2.272)	1.652)	0.826)
Precision	Within day	0.719 - 2.710	0.698 - 1.594	0.620 - 1.728	0.420 - 1.386	0.598 - 1.985	0.009 - 1.400	0.531 - 1.944	0.141 - 1.616	0.616 - 3.761
(%RSD)	Between day	0.828 - 5.012	0.978 - 2.700	1.110 - 3.000	1.228 - 3.464	0.749 - 5.765	1.789 - 6.725	2.197 - 5.553	2.127 - 4.123	0.299 - 4.892
Accuracy	Conc. (Low)	96.243 ± 0.061	92.704 ± 6.252	101.436 ± 4.525	99.728 ± 0.812	100233 ± 6.294	109.538 ± 2.776	106.655 ± 4.296	106.232 ± 4.420	104.835 ± 3.582

Recovery	ery Conc. (Medium)	102.091 ± 0.387	99.533 ± 2.469	97.377 ± 1.570	98.778 ± 3.529	100.429 ± 4.888	96.342 ± 3.207	98.940 ± 3.481	96.507 ± 10.665	94 153 + 4 930
_		102:071 ± 0:507	77.555 ± 2.407	27.577 ± 1.570	76.776 ± 5.527	100.427 ± 4.000	70.542 ± 5.207	20.240 ± 3.401	70.507 ± 10.005	74.155 ± 4.750
	Conc.	100.693 ± 2.697	103.564 ± 3.076	97.584 ± 0.464	100.732 ± 2.034	99.324 ± 1.880	102.049 ± 1.789	101.893 ± 4.849	102.726 ± 5.254	104 734 + 2 941
	(High)	100.093 ± 2.097	103.364 ± 3.076	97.364 ± 0.464	100.732 ± 2.034	99.324 ± 1.000	102.049 ± 1.769	101.093 ± 4.049	102.726 ± 5.254	104.734 ± 2.941

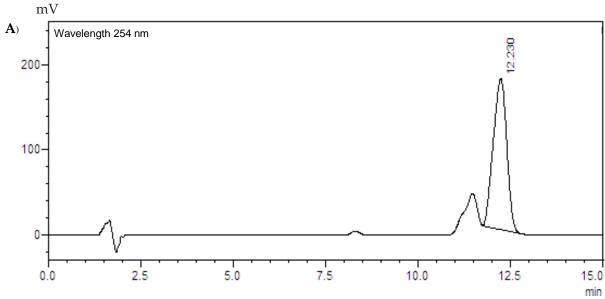


Figure S1. HPLC chromatograms of piperine solution (A) and the KBD extract (B).

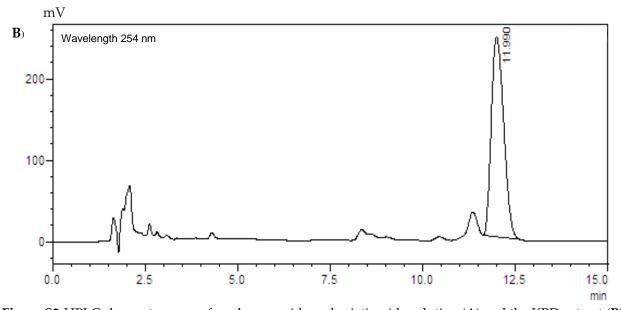
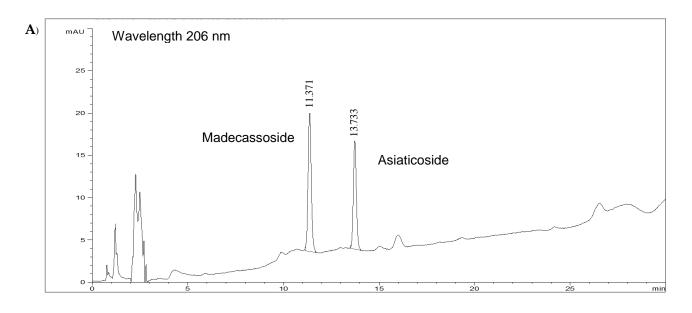
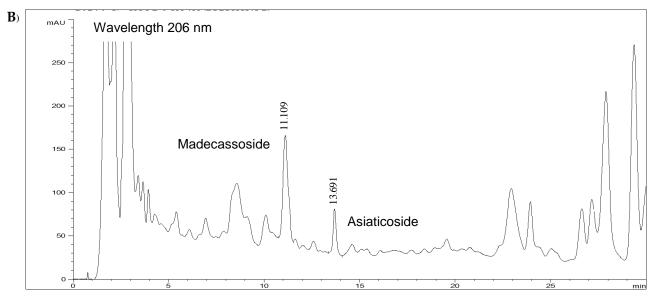
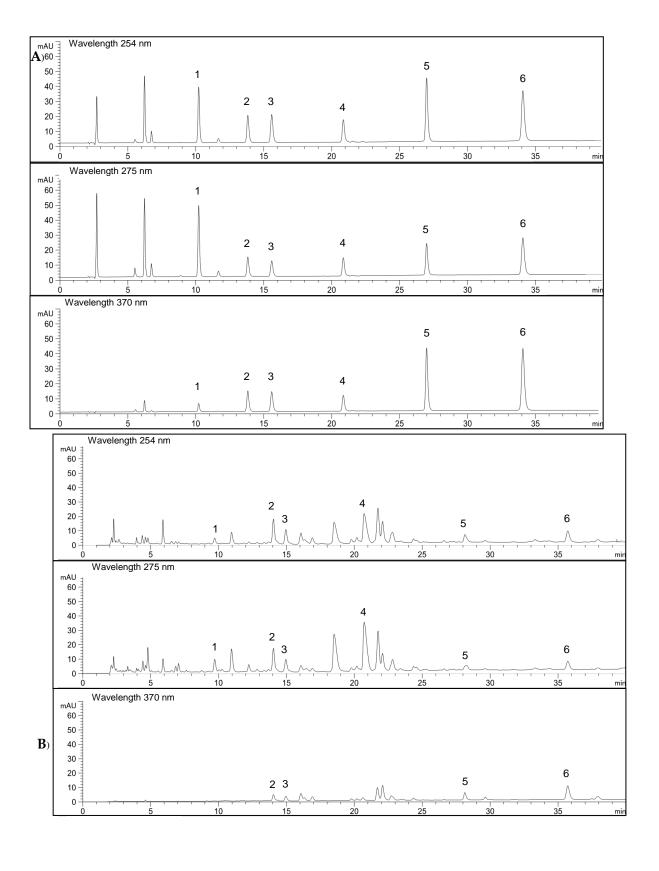





Figure S2. HPLC chromatograms of madecassosside and asiaticoside solution (A) and the KBD extract (B).

Figure S3. HPLC chromatograms of six standards solution (**A**) and the KBD extrac (**B**) (1 = ferulic acid, 2 = luteolin-7-O-glucoside, 3 = rutin, 4 = kaempferol-3-glucoside, 5 = quercetin, 6 = kaempferol).

