Supplementary Materials

Supplementary methods

MALDI-TOF mass-spectrometric analysis of the AlkB activity. The demethylation activity of AlkB towards 2aPu-containing substrates was confirmed by MALDI-TOF mass spectrometry on a Bruker REFLEX III instrument at the Joint Center for Genomic, Proteomic and Metabolomics Studies of ICBFM (Novosibirsk, Russia). The experiments were conducted with the free substrate (ss15m¹A_2aPu) and free product (ss15A_2aPu) in a reaction mixture consisting of 1.5 μ M substrate, 15 μ M AlkB, 50 mM HEPES-KOH (pH 7.5), 50 mM KCl, 10 mM MgCl₂, 1 mM α KG, 2 mM sodium ascorbate and 40 μ M (NH₄)₂Fe(SO₄)₂ 6H₂O. After incubation at 37 °C for 30 min, the reaction products were precipitated with 2% lithium perchlorate in acetone and desalted in a ZipTipC₁₈ pipette tip (Millipore, Germany). The spectra were acquired in negative mode using the 3-hydroxypicolinic matrix in 10 mM ammonium citrate.

Figure S1. PAGE analysis of AlkB repair activity towards model substrates. AlkB at 1.5 μ M was incubated with an equimolar amount of a ³²P-labelled ss-(or-ds)-15m¹A_(A) or ds15m¹A substrate (B). The reaction was quenched at each time point by the addition of an equal volume of 0.2 M NaOH. After thorough purification, each probe was treated with the DpnII enzyme, which is specific to non-methylated GATC motifs, and was analysed by denaturing PAGE. Each chemical quench experiment was carried out three times. Panels (A) and (B) represent the typical one.

-	Formatted: Font: Bold
-	Formatted: Font: Bold

-{	Formatted: Font: Bold
4	Formatted: Font: Bold

Figure S2. MALDI-TOF mass-spectrometric analysis of the reaction product generated by the incubation of AlkB with substrate 15m¹A_2aPu containing a 2aPu fluorescent base. Three probes were analysed by mass spectrometry in negative mode on the 3-hydroxy picolinic acid matrix: ODN 15m¹A_2aPu corresponding to the methylated substrate (left panel), ODN 15A_2aPu corresponding to the undamaged product (central panel) and a reaction mixture (right panel).

Formatted: Font: Bold
Formatted: Font: Bold

Figure S3. The SF time courses of Trp fluorescence obtained under interactions of AlkB and non-methylated DNA. The single- and double stranded DNA substrates of 15 nt length contained the adenine residue instead of m¹₁A. Equal concentrations of the enzyme and substrate were used (1.5 µM). All experimental conditions were the similar to those of SF experiments with methylated DNA.

	1	Formatted:	Superscript
--	---	------------	-------------

Formatted: Centered

Figure <u>\$3\$54</u>. The emission spectrum of the FAM label within the ssDNA or dsDNA substrates. *1*: The emission spectrum of substrate $ss15m^1A$ _FRET. *2*: The emission spectrum of substrate $ds15m^1A$ _FRET. $\lambda_{ex} = 494$ nm. The spectra were recorded in solutions consisting of 1.5 μ M substrate, 50 mM HEPES-KOH (pH 7.5), 50 mM KCl and 10 mM MgCl₂.

Formatted: English (United States)