Supplementary Material

Adsorption and desorption performance and mechanism of tetracycline hydrochloride by activated carbon-based adsorbents derived from sugar cane bagasse activated with ZnCl₂

Yixin Cai^{1, 2}, Liming Liu^{1, 2}, Huafeng Tian^{1, *}, Zhennai Yang^{1, *}, Xiaogang Luo^{1, 2, 3, *}

¹ Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology &

Business University (BTBU), Beijing, 100048, China

² School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus,

No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei

Province, PR China

³ School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue,

Zhengzhou City, 450001, Henan Province, PR China

^{*} Corresponding author: Xiaogang Luo, Professor, Ph.D.

School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, Hubei, China

Tel.: +86-139-86270668;

Email: xgluo0310@hotmail.com; xgluo@wit.edu.cn (X. Luo)

Corresponding author: Zhennai Yang, Professor, Ph.D.

School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China E-mail: yangzhennai@th.btbu.edu.cn (Z. Yang).

Corresponding author: Huafeng Tian, Professor, Ph.D.

School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China E-mail address: tianhuafeng@th.btbu.edu.cn (H. Tian).

Figure S1. XRD patterns and FTIR of bagasse and ZBAC.

Figure S2. TGA/DTGA of bagasse and ZIB.

Table S1. SBET, DP and	V _{mic} of BAC and ZBAC.
------------------------	-----------------------------------

Samples	S _{BET}	Dp	V _{mic}
	(m ² g ⁻¹)	(nm)	(cm ³ g ⁻¹)
BAC	376.08	2.826	0.186
ZBAC	831.23	2.519	0.453

 Table S2. Kinetic Parameters of TCH Removal onto ZBAC.

Model I	q _{e,exp}	q _{e,cal}	k_1	R^2	
	mg g⁻¹	mg g⁻¹	min ⁻¹		
298 K	23.818	21.505	0.116	0.8523	
308 K	24.000	22.277	0.193	0.9481	
318 K	24.000	23.070	0.262	0.9864	
Model II	$q_{e,exp}$	$q_{e,cal}$	k ₂	k _o	R^2
	mg g ⁻¹	mg g⁻¹	g mg ⁻¹ min ⁻¹	g mg ⁻¹ min ⁻¹	
298 K	23.818	22.232	0.011	5.310	0.9437
308 K	24.000	23.294	0.016	8.524	0.9106
318 K	24.000	24.765	0.020	12.137	0.9988
Model ID	q _{e,exp}	k i	С	R ²	
	mg g⁻¹	mg ⁻¹ g min ^{-1/2}	mg g⁻¹		
298 K	23.818	0.792	13.059	0.9083	
308 K	24.000	0.884	14.922	0.9426	
318 K	24.000	1.311	15.846	0.9136	

Table S3. *R*_{*L*} values at various temperatures and initial concentrations.

RL	240 mg L ⁻¹	300 mg L ⁻¹	360 mg L ⁻¹	420 mg L ⁻¹	480 mg L ⁻¹
298 K	0.022	0.018	0.015	0.013	0.011
308 K	0.005	0.004	0.004	0.003	0.003
318 K	0.002	0.001	0.001	0.001	0.001

Table S4. Constant parameter and correlation coefficients calculated forvarious adsorption models at different temperatures for TCH on ZBAC.

lso	Isotherm equation		ТСН			
		298 K	308 K	318 K		
Langmuir	<i>q₀</i> (mg g⁻¹)	173.3	207.9	353.3		
	<i>K</i> (L mg ⁻¹)	0.183	0.781	2.418		
	R ²	0.8011	0.9499	0.9830		
Freundlich	<i>k</i> f	73.82	148.9	276.7		
	1/n	0.184	0.007	0.538		
	R ²	0.9048	0.9070	0.9922		
DR	<i>q_m</i> (10 ⁻³ mol g ⁻¹)	0.707	2.381	15.13		
	<i>K</i> ' (10 ⁻² mol ² kJ ⁻²)	1.550	2.010	2.741		
	<i>E</i> (kJ mol ⁻¹)	17.96	15.77	13.51		
	R^2	0.9068	0.9961	0.9907		

Table S5. Adams–Bohart, Thomas, Yoon–Nelson, BDST, Dose Response and Clark Model.

		Parameters				
Model	Equation	Unit				
Adama $C_t = \exp(k_{AB}c_0t)$		Кав		No v		
Borhart	$\frac{1}{c_0} = \frac{1}{\exp\left(\frac{k_{AB}N_0L}{v}\right) - 1 + \exp(k_{AB}c_0t)}$	L mg ⁻¹ min ⁻¹		mg L ⁻¹ cm min ⁻¹		
	c_t 1	<i>k</i> 1	$k_{ m Th}$		$oldsymbol{q}_{0}$	
Thomas $\frac{1}{c_0} = \frac{1}{1 + \exp[(\frac{k_{Th}}{Q})(q_0 M - c_0 Q t]]}$		mL min ⁻¹		mg g⁻¹		
Yoon-Nelson $\frac{c_t}{c_0}$:	$c_t = \exp(k_{YN}t - \tau k_{NY})$	$\kappa_{ m YN}$		Т		
	$\frac{1}{c_0} = \frac{1}{1 + \exp(k_{YN}t - \tau k_{NY})}$	min ⁻¹		min		
BDST $\frac{c_t}{c_0} = \frac{1}{2}$	c_t 1	k bdst	N ₀	V	L	<u> </u>
	$\frac{c_0}{c_0} = \frac{1}{1 + \exp[k_{BDST}c_0(\frac{N_0}{c_0v} - t)]}$	L mg ⁻¹	mg L ⁻¹	cm mir	n ⁻¹ Cr	m
Dose $\frac{c_t}{c_0} = 1 - \frac{1}{1 + (\frac{c_0 Qt}{q_0 M})^a}$		α		q_o		
				mg g ⁻¹		
	$\frac{c_t}{c_0} = (\frac{1}{1 + Ae^{-rt}})^{\frac{1}{n-1}}$	А		r		
Clark				Min ⁻¹		