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Abstract: Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative
agent of melioidosis in humans and animals, are genetically closely related. The high infectious
potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human
and animals make the differentiation from each other and other Burkholderia species challenging.
The increased resistance against many antibiotics implies the need for fast and robust identification
methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid
and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic
information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia
were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the
spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an
advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei,
13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level
classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of
unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based
Raman spectroscopic assay.

Keywords: Glanders; melioidosis; Raman spectroscopy; SVM; PCA; Burkholderia mallei; Burkholderia
pseudomallei; heat inactivation

1. Introduction

Most of the species belonging to the genus Burkholderia are known as plants’ associated pathogens
with a soil reservoir. Two important exceptions are B. mallei and B. pseudomallei, which are implicated
in life-threatening infections in human and animals. Genetic similarities and serological cross reactions
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between both pathovars make the identification and differentiation from each other difficult and
challenging. The high infectious potential of both agents, increased resistance against many antibiotics
and their small infectious dose, imply a need for fast and robust identification methods.

B. mallei is a Gram-negative non-motile bacterium belonging to the family Burkholderiaceae that
mainly affects equines, causing the notifiable zoonotic disease glanders [1]. Glanders in equids is
endemic in North Africa, South America, Middle East, and Asia [2]. Infection can be transmitted
through direct contact with infected animals, skin cuts and abrasions, aerosol inhalation, and ingestion
of contaminated drinking water and meat. The predominant generalized clinical signs are fever,
drooping of the head, labored breathing, emaciation, swelling of limbs and joints. The cutaneous
manifestation by multiple popular or pustular nodules and sometimes the typical yellowish-green
nasal discharge with or without ulcerous nodules on the nasal mucosa can be observed [3]. The meat
of infected equids can act as a reservoir for carnivorous animal infection [4]. The disease in human is
occupational, affecting mainly veterinarians and laboratory and slaughterhouse workers in addition to
horse owners. B. mallei is a host-adapted pathogen and has no environmental reservoir [5]. In contrast,
its closely related species B. pseudomallei is a saprophyte with a reservoir in soil [6]. B. pseudomallei is a
Gram-negative, motile, aerobic, nonspore-forming, and intracellular pathogen with a high resistance
to environmental conditions [7]. The organism causes serious invasive infections in humans (including
septicemia and pneumonia) and is the causative agent of melioidosis, an endemic disease affecting
humans and many animal species in tropical areas with a high fatality rate [8,9]. It has frequently
been reported in recent decades that melioidosis is an endemic disease of public health importance in
Southeast Asia and Australia [10,11].

B. mallei and B. pseudomallei cause similar clinical symptoms in human and animals.
The conventional microbiological identification for both have the disadvantages of being time and
labor consuming and have to be performed in biosafety level 3 (BSL 3) conditions [12]. The soil
bacterium B. thailandensis is phenotypically and genetically related to B. mallei and B. pseudomallei.
Nonetheless, it shows less pathogenicity [6,13]. Since B. thailandensis and B. pseudomallei share the same
reservoir, the appearance of B. thailandensis frequently decreases the assay specificity for the hazardous
agents [13,14].

The B. cepacia complex (comprising the B. cepacia, B. multivorans, B. stabilis, B. ambifaria, B. dolosa,
and B. cenocepacia spp.) is occupying ecological niches ranging from soil to hospital environments.
Those species are considered as opportunistic pathogens to humans. They are suspected to cause
cystic fibrosis [15]. B. glathei and B. phytofirmans represent the non-pathogen species of the genus
Burkholderia [16–18].

The classification of B. mallei and B. pseudomallei as category B biothreat agents on one side and
the increasing spread of pathogens due to international animal transport on the other side provoked
researches to evaluate innovative diagnostic strategies to differentiate between both pathovars at one
time. Beside the serodiagnosis, DNA microarray-based detection methods and matrix-assisted laser
desorption/ionization mass spectrometry (MALDI-TOF MS) are evaluated by various research groups
for the above-mentioned task [14,19,20].

The concept of Raman spectroscopic differentiation of bacteria combines the physical recording of
bacterial Raman spectra with machine learning on validated reference spectra [21–24]. Stöckel et al.
reported the successful differentiation between B. mallei and B. pseudomallei by Raman spectroscopy
after inactivation of the bacteria with formaldehyde to handle them under BSL 1 condition [25].
Raman spectroscopy-named after Indian physicist C.V Raman-is a modern analytical tool, which uses
monochromatic light sources in the visible, infrared, or ultraviolet range to investigate the biochemical
composition of specimen. By simply irradiating a sample with laser light, the molecular composition
of the probed sample volume can be analyzed. The photons, which are inelastically scattered by
molecular bonds, are analyzed spectroscopically and the intensity of the inelastic scattering is plotted
as a Raman spectrum [26]. Since Raman scattering can be observed through a microscope to measure
very small sample volumes such as single bacterial cells, it became a promising tool for a wide range of
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microbiological applications. Within the cell’s structure, a phenotypic specific mixture of biochemical
components is present. Probing a single bacterium results in a complicated Raman spectrum exhibiting
overlapping Raman peaks originating from the cell’s typical components for example lipids, proteins,
DNA/RNA, pigments and storage materials. Such a Raman spectrum acts as a molecular pattern,
which consists of multiple features and can hardly be interpreted by comparing with a single reference
spectrum. To utilize these Raman spectra for microbial diagnostic and bacterial identification, the
spectral information is analyzed by multivariate statistics and machine learning. After many replicates,
the class-specific Raman spectral pattern will be learned, and the algorithm can model the differences
between the bacterial classes of interest [24].

Depending on the extent of distinguishable spectral phenotypes, the identification of bacteria based
on Raman spectroscopic data is either successful, providing imprecise prediction or fail. It has been
shown that the learning performance improves considerably if the expected biological or biochemical
variances of a certain spectral phenotype are included in the training [27]. Phenotypical variations that
typically mirrored in the Raman spectrum are contributed to: (i) The ecological setting from which the
bacteria originate, (ii) the isolation procedures for the bacterial cells from their habitat, and (iii) the
inactivation techniques to handle potential pathogen germs [28–32]. Furthermore, it was shown that
the data pre-processing and a proper compilation of training collectives for the supervised machine
learning in combination with hierarchical classification approaches improve the identification outcome
significantly [27,33–39]. Once a reliable statistical model is established, the microbial diagnostic based
on Raman spectroscopy is not dependent on time consuming cultivation, molecular or biochemical
reactions. Only a small number of single cells (<100 isolated cells) or a minimum of biomass can
uncover the identity of a specimen with a high level of accuracy. The only pre-requisite processing is
the nondestructive isolation of the bacterial cells from the sample matrix to probe single intact cells [23].
The present study evaluates the reproducibility of a Raman based differentiation of Burkholderia spp.
previously reported by Stöckel et al. carried out by an independent research laboratory and with
an independent measurement set-up. In contrast to the study from Stöckel et al. bacteria in the
current study are inactivated by heat instead of formaldehyde-inactivation to perform the analysis
under biosafety level 1 conditions [25]. This study aims mainly to differentiate between the hazardous
agents B. mallei and B. pseudomallei on a single cell level. It is investigated to which extent the
spectral phenotypes form clusters analogous to the taxonomic pre-determined Burkholderia species.
The potential to additionally detect and differentiate further relevant Burkholderia species is discussed.
A representative panel of strains compromising Burkholderia from cell culture selections, round-robin
tests, and well-characterized isolates (see Table 1) are measured to find out which spectral phenotypes
are interfering the performance of the classification. According to the observed spectral phenotypes,
classification tasks are defined to train predictive models for the stepwise differentiation of the most
relevant Burkholderia classes. The performance of the classification is validated by independent batch
cultures of the test strains. Finally, the statistic models are evaluated by the identification of Burkholderia
strains, which are not included in the training database.

2. Material and Methods

2.1. Micobiology

The strains listed in Table 1 were stored in cryovials containing a cryopreservative (MICROBANK,
Mast Diagnostica, Reinfeld, Germany) at −80 ◦C until further investigation. Four batches of each
strain were cultivated onto culture plates (NCBAGL) produced from nutrient agar (OXOID, Wesel,
Germany) supplemented with 7.5% calf blood (Fiebig-Nährstofftechnik GbR, Idstein, Germany) and
10% glycerol (Merck, Darmstadt, Germany) for 24 h at 37 ◦C. Using a 1 µL inoculation loop, a part of
the cultivated strains was scraped from plates, suspended in 1 mL of 0.9% NaCl solution and heated in
thermomixer at 99 ◦C for 15 minutes under shaking at 400 rpm (MHL23, HLC BioTech, Pforzheim,
Germany. The viability of the bacteria after inactivation was tested by growth control. For this 100 µL
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of each heat inactivated sample was dispensed on NCBAGL plates and incubated for 7 days at 37 ◦C.
The successful inactivation could thus be proven in all samples. The prepared batches were washed
3 times using 500 µL distilled water and centrifuged at 8000× g (Eppendorf 5418, Eppendorf, Hamburg,
Germany) for 5 minutes. Finally, 50 µL of the suspension were applied to a nickel foil, air-dried and
provided to the Raman spectroscopic investigation.

2.2. Raman Spectroscopy

Raman spectra were collected with a Raman microscope (BioParticle Explorer, rap.ID Particle
Systems GmbH, Berlin, Germany). A solid-state frequency doubled Nd:Yag module (Cobolt Samba,
25 mW, Cobolt AB, Solna, Sweden) with an excitation wavelength of 532 nm was used. The laser light
was focused through an 100x objective (Olympus MPlanFLN 100xBD) onto the sample. This result in
a spot size <1 µm laterally so that approximately 7 mW hit the sample.The bacteria were measured
from different regions of the specimens. The Rayleigh scattering was removed by two edge filters after
collecting the 180◦-backscattered light, while a thermoelectrically cooled CCD camera registered the
light (Andor DV401-BV). A single-stage monochromator, consisting of a 920-line/mm grating, diffracted
the backscattered light so that the spectral resolution accounted for about 8 cm−1. The integration
time per Raman spectrum (15 to 3275 cm−1) was 5 seconds. Approximately 50 single-bacteria Raman
spectra were measured per batch (biological replicate) and collected from four separately prepared
batches for further analysis. The evaluation of the classification models was performed by using of
about 20 spectra from other isolates (Table 2).

2.3. Data Pre-Processing

The open source software Gnu R (version R-3.6.0 Vienna, Austria) were used for all
computations [40]. The pre-processing was carried out according to principles investigated in Bocklitz
et al. [41]. The cosmic spike removal was performed according to the reference [42] and the threshold
was set to 10. The used wavenumber positions of the wavenumber standard (4-acetamidophenol)
were 329.2, 390.9, 465.1, 504, 651.6, 710.8, 797.2, 857.9, 968.7, 1105.5, 1236.8, 1278.5, 1323.9, 1371.5,
1561.5, 1648.4, 2931.1, 3064.6, and 3102.4 cm−1. A polynomial of degree 3 was utilized for wavenumber
calibration [43] and the background was subsequently corrected by the SNIP algorithm [44]. The used
wavenumber area was 300 cm−1 to 3100 cm−1 and the wavenumber area between 1800 cm−1 and
2600 cm−1 was excluded (Figure 1). As normalization a vector normalization was applied. Spectra of
burned bacteria or material artefacts were excluded from the respective data set.

The number of spectra of each single batch (overview Figure 2) was reduced from the original
number of recorded spectra to 20 representative spectra. A random sampling without replacement was
performed (user-independent), which selects 3 spectra and merge them to a mean spectrum. This is
done until no single spectrum of the data set is left (depending on the total number of spectra per
batch, the last group of selected spectra may contain only two single cell spectra). After preprocessing
the data were introduced to a Principal Component Analysis (PCA). A PCA score plot visualize the
data’s inherent clusters without prior knowledge about the categorical (species) label. A PCA score
plot of the first principal components was plotted ones for the full data set (including all Burkholderia
species) and in the following for each determined subset (p–ma–thai-complex and c-gla-phy-complex).
For visualization the mean score for each species was calculated and the standard deviation ellipse
was plotted for an overview of the group extend.

2.4. Statistical Learning

A support vector machine (SVM was applied for machine learning in combination PCA. For each
classification task an appropriate number of PCs (derived from the PCA objects of the particular
classification levels) were introduced. The first 45 PCs were utilized to train the SVM of model 1,
which separates the data of the B. mallei complex from the other Burkholderia species. The unbalanced
class sizes were considered by a class weighted approach. The SVM model 2.1 was established
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by utilizing the first 40 PCs and SVM model 2.2 by using the first 25 PCs. Each SVM model was
validated by a leave-one-batch-out cross-validation (LOBOCV) [27]. For this purpose, the Raman
data except the data of the batches with the serial number x were used to construct a SVM model.
This model was utilized to predict the classes of the left-out batch series. For example, at the top
level, all 36 Burkholderia strains were included (see Figure 2). Each single batch included 20 spectra.
Therefore, each hold out batch series included 1 batch × 36 strains × 20 spectra = 720 spectra and
the training data 3 batches × 36 strains × 20 spectra = 2160 spectra. Accordingly model 2.1 included
26 strains and model 2.2 10 strains. This method is repeated so that spectra of each batch series are
predicted once. The number of spectra per batch series used for validation purpose should not be
confused with the class size. Raman data of the Burkholderia strains from the evaluation set (Table 2)
were preprocessed separately and rotated into the respective PCA space of model 1, 2.1, and 2.2 before
they were predicted by the respective SVM model.

Table 1. Burkholderia strains used for the training data set, their origin and number of Raman spectra.

Species Laboratory Number Name of Strain Source no. Spectra

B. mallei 211101RR0419 Bogor BfR 261
300102RR0118 ATCC 23344 Typst. BfR 235
061102RR0551 Bfr 237 BfR 229
290103RR0041 Mukteswar BfR 217
080304RR0090 Zagreb BfR 250
041206RR1051 NCTC 10260 IMB 236
041206RR1052 NCTC 10230 IMB 260
041206RR1055 NCTC 120-Lister IMB 266
041206RR1056 NCTC 10247 IMB 220
041206RR1057 BfR M2 IMB 279
240609RR5318 Dubai7 IMB 243
010411RR2811 Bahrain1 FLI 257

B. pseudomallei 041206RR1058 Holland IMB 304
041206RR1059 PITT 521 IMB 315
041206RR1060 PITT 225A IMB 315
041206RR1061 Heckeshorn IMB 313
041206RR1062 NCTC 1688 IMB 297
041206RR1063 EF15660 IMB 314
041206RR1064 PITT 5691 IMB 272
060406RR0740 03-04450 IMB 317
060406RR0745 03-04448 IMB 324
290103RR0046 ATCC 23343 BfR 315
120107RR0019 Bozen MSB 316
250413RR3267 A101-10 RKI 314
081210RR1369 Bp 9/H05410-0490 RKI 333

B. thailandensis 090804RR0288 DSM 13276 DSMZ 250
B. cepacia 130303RR0117 ATCC 25608 DSMZ 271

120707RR0672 DSM 7288 DSMZ 326
B. cenocepacia 180507RR0377 ATCC BAA-245 DSMZ 295

B. dolosa 180507RR0376 DSM 16088 DSMZ 331
030718RR17093 DSM 26124 DSMZ 365

B. multivorans 180507RR0375 DSM 13243 DSMZ 337
B. stabilis 180507RR0378 DSM 16586 DSMZ 318

B. ambifaria 150408RR2192 DSM 16087 DSMZ 331
B. glathei 150408RR2194 ATCC 29195 DSMZ 294

B. phytofirmans 111109RR8565 DSM 17436 DSMZ 332

DSMZ: German Collection of Microorganisms and Cell Cultures, Braunschweig; BfR: Federal Institute for Risk
Assessment, Berlin; IMB: Sanitary Academy of the Armed Forces, Munich; RKI: Project QUANDHIP, Robert Koch
Institute, Berlin; FLI: Friedrich-Loeffler-Institut, Jena, MSB: Medical Service Bozen.
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Table 2. Burkholderia strains used for validation, their origin and number of Raman spectra.

Species Laboratory Number Name of Strain Source no. Spectra

B. mallei 040203RR0053 M1 BfR 28
041206RR1054 ATCC 23344Typst. IMB 36
251109RR8925 ATCC 23344Typst. RKI 21
081210RR1381 ATCC 23344 Typst. RKI 23
010411RR2812 010411RR2812 FLI 42
010411RR2813 010411RR2813 FLI 26
040411RR2899 040411RR2899 FLI 30
040411RR2900 040411RR2900 FLI 40
100713RR4351 NCTC 10245 RKI 25
150614RR6088 M3 BfR 68
150614RR6089 U5 BfR 24

B. pseudomallei 120214RR5392 VB976100 VML 302

DSMZ: German Collection of Microorganisms and Cell Cultures, Braunschweig; BfR: Federal Institute for Risk
Assessment, Berlin; IMB: Sanitary Academy of the Armed Forces, Munich; RKI: Project QUANDHIP, Robert
Koch Institute, Berlin; FLI: Friedrich-Loeffler-Institut, Jena VML: Vet. Med. Laboratory GmbH, Ludwigsburg;
MSB: Medical Service Bozen.

3. Results

3.1. Data Management

The results of the Raman measurements are summarized in Figure 1. For each Burkholderia
species a mean spectrum is shown. The standard deviation is drawn as the grey zone around each
spectrum to visualize the within species variation. Noticeable are the spectra of B. mallei, B. pseudomallei,
B. phytofirmans, and B. thailandensis. They exhibit the combined appearance of signals around 843,
1050, 1450, and 1735 cm−1 which are typical for Polyhydroxybutyrat (PHB), an intracellular storage
material [45]. The signals of PHB were observed with different extents in the single cell Raman spectra
of nearly every Burkholderia species (Figure S1). Overall irregularities like the appearance of PHB
were equalized to some extend by summarizing the data of single cells within one culture batch to
subsets of merged spectra by a randomized procedure described in the section material and methods
(also visualized in the supporting information Figure S2). The reduced data matrices were used for
an optimized training of the classifier. Such a data management makes the introduced approach
reproducible and more robust against biological variations.

3.2. Classification Workflow for Burkholderia’s Raman Data

A prerequisite for machine learning and statistic modeling on Raman spectral data is a database
containing validated reference spectra of bacterial cells exhibiting phenotypic variations. Different
number of strains was available during the study for the representation of the Burkholderia species.
The target species B. mallei and B. pseudomallei were available with a representative number of strains.
For the remaining species one to two strains were included into the training (Table 1). For each strain,
four independently cultivated batches were measured to include the variances from different culture
plates and from day to day. The workflow for the data collection is visualized in Figure 2.

A task-oriented and hierarchically organized classification workflow for Burkholderia’s Raman
data previously described by Stöckel et.al [25] was developed further in the present study. As a first
step a PCA was applied to examine if the data contains inherent clusters. The PCA as an unsupervised
data analysis tool finds the main axes of variance within a data set without prior knowledge about the
categorical label. The PCA reduces the dimensionality of the Raman data by calculating a new set of
principal components (PCs) to minimize redundant information without loss of spectral information.
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Figure 2. Hierarchically organized classification workflow for Burkholderia’s Raman data. Model 1
includes all Raman data and separate the p–ma–thai-complex (includes B. mallei, B. pseudomallei, and B.
thailandensis) from other Burkholderia species. The dataset is split at the following level. Model 2.1
includes the Raman data of the p–ma–thai-complex and differentiates between the three species. Model
2.2 classifies the data of c-gla-phy-complex and differentiates between the cluster of B. cepacia-complex
and non-pathogen Burkholderia species B. phytofirmans. Each Burkholderia species was represented by
at least one strain and from each strain 4 batches were measured to provide biological and technical
independent data sets for validation.
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The PCA score plot in Figure 3A shows the two directions of largest variance in the data and
provides a valuable insight into the nature of Burkholderia’s Raman data. Literally, data with similar
spectral phenotypes cluster together. The spread of the data points of each Burkholderia species was
visualized by one times the standard deviation ellipse as an overview. The colors code the different
complexes of the genus Burkholderia [6,15,46]. The obligate pathogen species of the B. mallei-complex
are highlighted in red. The facultative pathogen species of the B. cepacia-complex are shown in blue and
the non-pathogen B. phytofirmans, B. glathei, and B. thailandensis are represented by green. The PCA
score plot shows that each species overlaps with other species, which was expected for bacteria of
one genus.

Due to the clusters shown in the PCA plot, classes with shared spectral characteristics are grouped
together under consideration of their diagnostic relevance. B. pseudomallei, B. mallei, and B. thailandensis
were pooled and labelled as p–ma–thai-complex [15]. The species of the B. cepacia-complex pooled
together with B. glathei and B. phytofirmans and joined to the ce–gla–phy-complex. Consequently, the
first classification task was to differentiate between the major spectral classes of the dataset. In a
next step the sub classes for the supervised machine learning were compiled. The PCA-score plot in
Figure 3B show that the data of the p–ma–thai-complex fall into three clusters of the particular species.
Therefore, the model 2.1 differentiates between the three species of the p–ma–thai-complex. In Figure 3C
the PCA-score plots of the second data-subset are shown. The species of the B. cepacia complex cluster
with B. glathei and the cluster of B. phytofirmans appears apart. Data of the B. cepacia-complex and
B. glathei were pooled to a new joined class. Model 2.2 was trained to separate the joined cepacia
complex from B. phytofirmans. Since the differentiation between the species of the B. cepacia-complex
and B. glathei was not of interest, the separation of the species of the B. cepacia-complex was not further
carried out. In summary, sub-classes are grouped following a narrowing path on classification. For
each level a specific classification model was trained based on the data of the joined classes. A given
decision on one level leads down to different classification paths.

The SVM is an efficient machine learning algorithm for Raman spectral data in combination with
a dimensionality reduction technique like PCA. PCA reduces the number of features by choosing the
most important ones that still represent a maximal part of the entire dataset. The cumulative explained
variance of the principal components (PCs) for the top- and sub level data sets were examined and
shown in the supporting information (Figures S3–S5). Less than 200 PCs of the 627 dimensions explain
90% of the data’s variance (the 627 dimensions derived from the 627 wavenumbers per spectrum).
Within these 200 PCs the best number was screened for SVM input and adjusted depending on the
complexity of the classification task. To prevent overfitting, the performance of each PCA-SVM model
was optimized and tested by applying a leave one batch out cross validation (LOBOCV). This procedure
provides biological and technical independent data sets for validation to get an idea of the model’s
reliability. Model 1 gave the highest validation accuracy by introducing the first 45 PCs (the data set
at the top level contained 2880 spectra). The complexity of the classification tasks decreased with
each level in a hierarchically organized classification approach. The p–ma–thai-complex included
2000 spectra. Here, the classification result was best when 40 PCs were introduced. The ce–gla–phy-data
set comprises the smallest number of strains and contained 880 spectra. Here 25 PCs were sufficient
for classification.
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Figure 3. The PCA score plot shows the two directions of largest variance in the data and provides a
valuable insight into the nature of Burkholderia’s Raman data. The spread of the data points of each
Burkholderia species was visualized by the standard deviation ellipse for an overview. The colors codes
the Burkholderia complexes. The obligate pathogen species of the B. mallei-complex are highlighted in
red. The facultative pathogen species of the B. cepacia-complex are shown in blue and the non-pathogen
B. phytofirmans, B. glathei, and B. thailandensis are visualized in green. A: The panel shows the whole
Burkholderia data set (Model 1). B: Score plot of the p–ma–thai complex show three clusters (Model 2.1).
C: Score plot of the remaining Burkholderia species (Model 2.2).

3.3. Hierarchical Classification

The confusion table of model 1 (Table 3) shows that 95.5% of the p–ma–thai-complex and 83.4%
of the ce–gla–phy-complex were predicted correctly. The result reveal that model 1 is sensitive
for the recognition of the p–ma–thai-complex with a considerably low false negative rate of 4.5%.
The false positive rate of the p–ma–thai-complex examined by the LOBOCV was 16.6%. That means
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that more spectra of the ce–gla–phy-complex were misclassified by the model and therefore the
specificity for the targets of the p–ma–thai-complex diminish. B. phytofirmans could be identified
as an important interfering species because its spectral phenotype shows a strong overlap with B.
pseudomallei (Figure 2A).

The confusion table of model 2.1 (Table 4) shows the result for differentiation between the three
species of the p–ma–thai-complex. Sensitivities of 91.4% and 91.9% for B. mallei and pseudomallei were
reached respectively. For B. thailandensis 65% spectra were correctly classified. Misclassifications of
B. thailandensis are mainly due to the confusion with B. mallei but not vice versa. In contrast, the
confusion of B. thailandensis with B. pseudomallei was insignificant.

The confusion table of model 2.2 (Table 5) summarizes the differentiation between data of the
joined B. cepacia-B. glathei class (99.2% sensitivity) and B. phytofirmans (91.2% sensitivity).

Table 3. Results of the Leave one Batch Out cross-validation of Model 1.

True

Model 1 p–ma–thai-complex 1 c-gla-phy-complex 2

Identified as
p–ma–thai-complex 1 1986 133

c-gla-phy-complex 2 94 667

Sensitivities in % 95.5 83.4
1 Burkholderia p–ma–thai-complex (includes B. mallei, B. pseudomallei and B. thailandensis). 2 Burkholderia
c-gla-phy-complex (includes B. cepacia-complex, B. glathei, B. phytofirmans).

Table 4. Results of the Leave one Batch Out cross-validation of Model 2.1.

True

Model 2.1 B. mallei B. pseudomallei B. thailandensis

Identified as

B. mallei 877 80 23

B. pseudomallei 54 956 5

B.thailandensis 29 4 52

Sensitivities in % 91.4 91.9 65

Table 5. Results of the Leave one Batch Out cross-validation of Model 2.2.

True

Model 2.2 joined cepacia complex 3 B. phytofirmans

Identified as
joined cepacia complex 3 714 7

B. phytofirmans 6 73

Sensitivities in % 99.2 91.3
3 Burkholderia joined cepacia complex (includes species of the B. cepacian complex and B. glathei).

3.4. Identification of New Strains

After training and validating the classification performance of the models, their generalizability
was evaluated. Raman data of new B. mallei and B. pseudomallei strains were recorded, which were not
taken into account for the training. The pre-processing and the exclusion of artefacts were performed
in the same way like for the training data. The only exception was the averaging procedure, which was
only performed for an optimized training approach. For an overview the spectra of the test strains are
plotted in Figure 4. The new data were predicted by model 1 and model 2.1 and the results presented
in Tables 6 and 7.
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According to the predictions performed by model 1 the majority of all spectra were put correctly
into the joined class of the p–ma–thai-complex (Table 6). Ten of the twelve strains were properly
identified with sensitivities ranging between 94% and 100%. A higher number of spectra were recorded
for the strain 14RR5392, an isolate originated from a Green Iguana in Prague [47]. Four independent
biological replicates were tested here and 95% of the data were correctly predicted by model 1.
The lowest sensitivities achieved by model 1 ranged between 80% and 90% (strain 06RR1054 with
88.9% and 11RR2812 with 83.3% correctly identified spectra). Raman data which were assigned to the
p–ma–thai complex by model 1, were introduced to model 2.1 for species determination. The results
are shown in Table 7. It is noteworthy that none of spectra was misclassified as B. thailandensis.
Misclassifications occur only infrequently between B. mallei and B. pseudomallei. For ten of the twelve
strains the sensitivities ranged between 90% and 100%. The lowest level of identification accuracy
was found for the B. mallei strain 10RR1381 with 87% accuracy. However, one should note that the
classification outcome refers to the classification of single cells representing only a small percentage
of the biomass of one culture or batch. The results reveal the strength of Raman spectroscopic based
identification that only a small number of representatives (or a minimum of biomass) already reveal
the identity of the specimen with a high level of accuracy.
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Table 6. Results of the identification of unknown Burkholderia strains. Results of model 1 summarized
as confusion-table of the strain label versus the predicted classes.

True

Model 1

03
R

R
00

53

06
R

R
10

54

09
R

R
89

25

10
R

R
13

81

11
R

R
28

12

11
R

R
28

13

11
R

R
28

99

11
R

R
29

00

13
R

R
43

51

14
R

R
53

92

14
R

R
60

88

14
R

R
60

89

Identified as
p–ma–thai-complex 1 28 32 20 23 35 25 29 40 25 287 64 24

c-gla-phy-complex 2 0 4 1 0 7 1 1 0 0 15 4 0

Sensitivities in % 100 88.9 95.2 100 83.3 95.2 96.7 100 100 95 94.1 100
1 Burkholderia p–ma–thai-complex (includes B. mallei, B. pseudomallei, and B. thailandensis). 2 Burkholderia
c-gla-phy-complex (includes B. cepacia-complex, B. glathei, B. phytofirmans).

Table 7. Data identified by model 1 as p–ma–thai-complex were introduced to model 2.1 for species
identification.

True

Model 2.1

03
R

R
00

53

06
R

R
10

54

09
R

R
89

25

10
R

R
13

81

11
R

R
28

12

11
R

R
28

13

11
R

R
28

99

11
R

R
29

00

13
R

R
43

51

14
R

R
53

92

14
R

R
60

88

14
R

R
60

89

Identified as
B.mallei 28 32 20 20 31 23 29 40 24 24 63 24

B. pseudomallei 0 0 0 3 4 2 0 0 1 263 1 0

B. thailandensis 0 0 0 0 0 0 0 0 0 0 0 0

Sensitivities in % 100 100 100 87 88.6 92 100 100 96 91.6 98.4 100

4. Discussion

The concept of Raman spectroscopic differentiation of bacteria combines the physical recording of
bacterial Raman spectra with supervised machine learning on validated reference spectra. Stöckel et al.
reported that a single SVM was not capable of discriminating the Raman data of B. mallei and
B. pseudomallei alongside other Burkholderia and Pseudomonas species [25]. Therefore, the Raman spectra
of B. mallei and B. pseudomallei were pooled together and treated as a joined class. A top-level SVM
separated this joined class from the remaining species and a sub-level SVM exclusively performs on
data of B. mallei and B. pseudomallei for definitive species separation. Identification accuracies of more
than 90% could be achieved on the spectra level. The hierarchically organized classification workflow
for Raman data of Burkholderia previously described by Stöckel et.al [25] was further developed in the
present study.

For an optimal supervision of the learning process, data’s inherent clusters were considered for
the compilation of joined classes. Valuable insights into the nature of the Burkholderia’s Raman data
are provided and information about the interfering species are delivered. By applying a LOBOCV,
a realistic estimation of the strength and limits of Burkholderia species identification based on Raman
spectroscopic data can be elucidated. The strength of the method is exhibited by the high sensitivities
for the identification of the target species B. mallei and B. pseudomallei which follows the results of
Stöckel et al. This is supported by the identification of the new and not referenced B. mallei and B.
pseudomallei strains. The sensitives for the identification of the new Burkholderia strains reached for ten
of the twelve strains between 90% and 100%. The results of the present study provided independent
evidence of reproducibility for the classification and identification of B. mallei and B. pseudomllei
based on Raman data. However, the quality of a classifier is also dependent on the specificity for the
identification of a target species. The in comparison more frequently occurring misclassification of
the ce–gla–phy-complex as B. mallei related agents at the top-level limits the reliability of the model.
It is suggested that the misclassified class might be not sufficiently represented in the training data
set and therefore model 1 insufficiently captures the underlying pattern of the data. This also applies
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to B. thailandensis which was represented by only one strain at the level of model 2.1. An increased
classification accuracy is expected by a proper representation of the species-specific spectral phenotype.
Even it is essential to have B.thailandensis in the database, it is important to mention that the bacterium
is not an expected contaminant in sample material for clinical diagnostics, and any misclassifications
could be not over-interpreted.

In contrast, model 2.1 perfectly predicts the classes for B. mallei and B. pseudomallei in the training
and generalizes to the new strains that hasn’t been utilized before.

To address a specific diagnostic, the problem of sample size planning and the compilation of
training data for machine learning has to be optimized so that the differences between species with a
similar spectral phenotype can be properly modelled. The present study highlighted the potential of
a machine learning-based Raman spectroscopic assay as a microbial diagnostic tool. It was shown
that the performance of the method for the identification of B. mallei and B. pseudomallei could be
reproduced by an independent laboratory and with independent measurement equipment.

As a next step, the model transferability for bacterial Raman data has to be optimized. With a
view to multicenter identification purposes established database can then be shared between different
laboratories. Once the access to a comprehensive bacterial Raman data collection is provided,
task-specific compilations of data subsets can be used to answer new upcoming diagnostic questions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/24/4516/s1.
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