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Abstract: Overexpression of lysine specific demethylase 1 (LSD1) has been found in many cancers.
New anticancer drugs targeting LSD1 have been designed. The research on irreversible LSD1 inhibitors
has entered the clinical stage, while the research on reversible LSD1 inhibitors has progressed slowly
so far. In this study, 41 stilbene derivatives were studied as reversible inhibitors by three-dimensional
quantitative structure—activity relationship (3D-QSAR). Comparative molecular field analysis (CoMFA
q> =0.623, r* = 0.987, rére 4 = 0.857) and comparative molecular similarity indices analysis (CoMSIA

q2 = 0.728, 2 = 0.960, r?)re 4= 0.899) were used to establish the model, and the structure—activity
relationship of the compounds was explained by the contour maps. The binding site was predicted by
two different kinds of software, and the binding modes of the compounds were further explored. A
series of key amino acids Val288, Ser289, Gly314, Thr624, Lys661 were found to play a key role in the
activity of the compounds. Molecular dynamics (MD) simulations were carried out for compounds
04, 17, 21, and 35, which had different activities. The reasons for the activity differences were
explained by the interaction between compounds and LSD1. The binding free energy was calculated
by molecular mechanics generalized Born surface area (MM/GBSA). We hope that this research will

provide valuable information for the design of new reversible LSD1 inhibitors in the future.

Keywords: LSD1; molecular inhibitors; stilbene derivatives; molecular docking; 3D-QSAR; molecular
dynamics simulations
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1. Introduction

Epigenetic post-transcriptional modifications of DNA or histone, such as methylation, acetylation,
and phosphorylation, can remodel the chromatin structure (heterochromatin or euchromatin) to
regulate the expression of genes [1,2]. Histone methylation has been considered irreversible. The
discovery of lysine-specific demethylase 1 (LSD1, also known as KDM1A) in 2004 revealed that histone
methylation was a dynamically adjustable process. LSD1 belongs to flavin adenine dinucleotide
(FAD)-dependent amine oxidase family [3], and LSD1 functions as an enzyme that demethylates mono-
and dimethylated histone 3 lysine 4 (H3K4me1l, H3K4me2) and histone 3 lysine 9 (H3K9mel, H3K9me2)
by utilizing its noncovalently bound FAD cofactor, which requires a pair of lone pairs of electrons in the
substrate; therefore, LSD1 cannot act on trimethylated lysine [4]. LSD1 and RE1-silencing transcription
factor corepressor 1 (CoREST) exist together in the form of transcriptional corepressor complexes.
When LSD1 is combined with chromatin, CoREST can keep the overall structure of LSD1 stable [5].
LSD1 can also remove the methyl of nonhistone proteins, such as p53, signal transducer and activator
of transcription 3 (STAT3), E2F transcription factor 1 (E2F1), and DNA methyltransferase 1 (DNMT1),
which shows that LSD1 has an impact on the function of downstream cells [6-10]. The overexpression
of LSD1 has been detected in various solid tumors, including retinoblastoma, non-small cell lung
cancer, prostate cancer, breast cancer, acute myeloid leukemia, and colon cancer [11-16]. LSD1 is not
only an important biological significance, but also a potential drug target for therapy of cancer.

Because LSD1 and monoamine oxidases (MAOs) A and B are homologous proteins, their sequence
similarity reaches 17.6%. Some MAO inhibitors bond covalently with FAD to inhibit the activity of
LSD1, such as tranylcypromine (TCPA), as seen in Figure 1A, phenelzine, as seen in Figure 1B, and
pargyline, as seen in Figure 1C. Unfortunately, these inhibitors had no significant inhibitory effect
on LSD1 and poor selectivity [17]. However, by optimizing the structure of these compounds, LSD1
inhibitors with high activity have been designed, such as ORY-1001, as seen in Figure 1D [18], and
GSK2879552, as seen in Figure 1E [19], which are both TCPA derivatives. At present, they have entered
clinical research and have shown good inhibition of LSD1: ICsy = 18 nM and ICsy = 20 nM, respectively.
These inhibitors mentioned above were irreversible inhibitors, which were characterized by covalent
binding with FAD. At the same time, many reversible LSD1 inhibitors have been reported, which can
be divided into two categories: FAD-competing inhibitors and substrate-competing inhibitors. The
ICsg of GSK-354, as seen in Figure 1F, was 90 nM [20]. In 2017, an inhibitor ICsy = 7.8 nM was reported
and the structure was provided, as shown in Figure 1G [21]. In 2017 and 2018, a series of stilbene
derivatives were reported and evaluated as potential inhibitors for the treatment of acute myelogenous
leukemia (AML). The most active inhibitor IC5y = 121.23 nM is shown in Figure 1H [22,23]. Nowadays,
there is no reversible inhibitor in clinical trials. Therefore, designing new efficient reversible inhibitors
is still a big challenge.
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Figure 1. (A-H) represent structures of several reported lysine specific demethylase 1 (LSD1) inhibitors.
Class H small molecules are the focus of this study.
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In recent years, the rapid development of new drug research depends on computer-aided drug
design (CADD) [24]. 3D-QSAR, molecular docking, and molecular dynamics (MD) are commonly used
in CADD methods. 3D-QSAR can predict the activity of new compounds which contain a common
skeleton. The key groups affecting the activity of compounds are found, which then provide guidance
for the design of new compounds [25]. Molecular docking is often used to explore the binding mode
of ligands and to study ligand-receptor interaction, but receptor flexibility cannot be determined
during molecular docking [26]. However, in the process of MD, ligand and receptor flexibility can
be taken into account, and the stability of the whole complex can also be observed [27]. Therefore,
molecular docking and MD are usually combined to investigate possible bonding modes and detailed
ligand-receptor interactions. At the same time, key amino acids which have important effects on
activity will be found.

This study was mainly focused on the small molecule inhibitor of LSD1. It has been reported
that stilbene derivatives have a significant effect on inhibiting LSD1 [22,23]. We hope to design and
synthesize better LSD1 inhibitors on this basis. We synthesized 11 new stilbene derivatives and tested
their activity using the same investigated enzyme inhibition experiment with LDS1 as the target.
Unfortunately, their activity was not as good as we expected, even lower than the reported small
molecules. In order to find out the reason for the difference of activity of these small molecules, we used
CADD to carry out a series of studies. To explore the structure-activity relationship of these inhibitors,
41 complexes (30 collected from literature [22,23] and 11 newly synthesized) were used for building
the 3D-QSAR model. In a series of stilbene derivatives reported in 2018, the optimal small molecule
binding site in this series was the FAD cavity of LSD1, as determined by enzyme kinetics studies [23].
However, the binding site of a series of compounds reported in 2017 was not found. Because there are
no reports on the crystal structures of such inhibitors, we combined molecular docking and MD to
explore the possible binding mode of such compounds. We hope that a series of studies could find the
key information affecting the activity of such inhibitors and help the development of reversible LSD1
inhibitors in the future.

2. Materials and Methods

2.1. Determination of LSD1 Inhibitor Activity

The ICsy testing of the 11 newly synthesized compounds was carried out in accordance with the
previously reported method [22,23]. Synthetic routes and the characterization data of the compounds
are shown in Supplementary Information S1. LSD1 demethylated its substrate H3K4me?2 to form H3K4
and produced a molecule of hydrogen peroxide. In the presence of fluorescent dye Amplex Red and
horseradish peroxidase (HRP), hydrogen peroxide can oxidize Amplex Red under the action of HRP to
form a molecule of fluorescent Resorufin. Resorufin can be detected at an excitation wavelength of 530
nm and emits at 590 nm. When LSD1 inhibitors restrained the function of LSD1, the production of
hydrogen peroxide decreased, and the production of Resorufin also decreased. Therefore, the inhibition
ability of LSD1 could be judged by detecting the fluorescence intensity. LSD1 at a final concentration of
0.25 uM, and drugs with different concentrations were incubated at room temperature in HEPES buffer
solution with final concentration of 50 mM pH = 7.5 for 10 min. Then the LSD1 substrate H3K4me2
at a final concentration of 25 uM (composed of 21 amino acids, polypeptide modified by the fourth
lysine dimethyl group) was added and incubated at 37 °C for 10 min. Then, DMSO solution with a
final concentration of 10 uM Amplex Red, and HEPES solution with 10 U/mL HRP were added and
incubated at room temperature for 5 min. The fluorescence intensity was detected at 530 nm excitation
wavelength and 590 nm emission wavelength by an enzyme labeling instrument.

The fluorescence intensity of the tested pore and 100% active pore were compared, and the
inhibition rate of the compound at a specific concentration was calculated according to the following
Equation (1).
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Absorbance of control — Absorbance of the sample

Inhibition(%) = X 100% 1)

Absorbance of the control

All experiments were performed in triplicate.

2.2. Data Sets

The data set included 30 reported compounds [22,23] and 11 newly synthesized compounds.
The structure and activity data of these 41 compounds are shown in Table 1. The 3D structure of all
compounds was established by the Sketch module in SYBYL-X2.0. The range of pICs for data sets was
from 4.443 to 6.917, the active span was large, and the distribution was uniform, which are the basic
requirements of 3D-QSAR modeling. In the process of partitioning the training set and test set, the
value of pICsy should be satisfied: Max (test) < max (training) and min (test) > min (training) [28]. At
the same time, the diversity of substituent groups of compounds in the test set should be considered.
The distribution of pICsy in the test set should be uniform in the whole data set, as seen in Figure S1.
The number of test sets should be 20%—-25% of the whole data set. Based on the above criteria, 32
training sets were used to build the 3D-QSAR model, and nine test sets (22% of the total data set) were
used to test the predictive ability of the model.

2.3. Alignment and Generation of the 3D-QSAR Models

The 3D-QSAR model was built using SYBYL-X2.0. Molecular alignment is generally considered
to be a key factor affecting the stability and predictability of the model. This study used a common
skeleton-based alignment approach. Firstly, Gastieger-Huckel charges were added to all small
molecules to minimize energy under Tripos force field. Using the Powell gradient algorithm, the
maximum number of iterations was set to 1000, and the convergence criterion was limited to
0.001 kcal mol™! A~1. Secondly, compound 04 with the highest activity, as seen in Figure 2A, was
selected as the template molecule. Finally, the remaining small molecules were superimposed on the
common skeleton of the red part of Figure 2A. The alignment results of the training set based on the
common skeleton are shown in Figure 2B.

A B

Figure 2. (A) Structure of compound 04. The red color is the common framework for superposition.

(B) Overlapping results of training set compounds.
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Table 1. The structures and the actual and predicted activities of LSD1 inhibitors by comparative molecular field analysis (COMFA) and comparative molecular

similarity indices analysis (CoMSIA).

No. Xi Ry R R3 Ry Rs Re (I CI\S/E) pICso CoMFA CoMSIA Bll\fll d;ng
H pred res pred res ode
~#_NH,
1* C OH OH H H 1}/ H 0.333 6.478 6315 0.163 6.497 -0.019 I
“OH
“#_NH,
2% C F OH H H ;U/ H 0.245 6.611 6490 0.121 6.289 0.322 I
“OH
~#_NH,
3 C OH H OH H 1}/ H 2.59 5587 5658 -0.071 5.831 -0.244 I
“OH
“#_NH,
4 C OH OH H Br ;\|‘|/ H 0.121 6917 6968 —0.051 6.95 -0.033 I
“OH
#_NH,
5 C OH OH H F 1"/ H 0.192 6.717 6.655 0.062 6.632 0.085 I
“OH
~#_NH,
6 C H OH H H 1}/ H 0.210 6.678 6512 0.166 6.299 0.379 I
“OH
§-OH
7* C OH OH H H H 5’IJI\ 0.739 6.131 6.404 -0.273 6.518 -0.387 I
& NH,
§-OH
8 C F OH H H H ZLJ'\ 0.492 6.308 6.322 -0.014 6.275 0.033 I
& NH,
§-OH
9 C H OH H H H ELJ'\ 0.391 6.408 6.514 -0.106 6.38 0.028 I
& NH,
y-OH
10 * C OH OH H F H A 0.197 6.706 6438 0268 6.717 -0.011 I
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Table 1. Cont.

No. X1 Ry Ry Rs Ry Rs Re (ICI\S/})) pICso CoMFA CoMSIA Bll\f;d:ing
H pred res pred res ode
el
11 C OH OH H Br H L%J\ 0.123 6910 6.886 0.024 7.07 -0.160 I
% NH,
12 C OH H OH H H OH 10.2 4991 4982 0.009 494 0.051 I
Z N
13 C ~ ‘5 OH H H OH H 424 5373 5383 -0.010 5526 —0.153 1II
ZN ~o NHz
14 C ~ \5 OH H H 1,‘/ H 0.72 6.143 6.107 0.036 6.065 0.078 II
~ “OH
Z N N2
15 C < M OH H H 1,‘/ H 1.29 5889 6.188 —-0.299 6.121 —0.232 II
N™ o> “OH
Z N NH,
16 C < M OH H H H EJ\\N”OH 0.92 6.036 6.006 0.030 5.838 0.198 I
N™ o> -
Z "N
17 C ~ ‘j OH H H H NH, 3.57 5447 5432 0.015 5557 -0.110 I
Z N
18 C CJ\ OH H H NH, H 0.859 6.066 5884 0.182 5788 0.278 II
N ~
SN
19 C |/9AJ OH H H NH, H 1.47 5.833 588 —0.047 5945 -0.112 I
HO ~
~4_NH,
20 N N - H H 1“/ H 0.364 6439 6.382 0.057 6.622 -0.183 II
OH on
OH NH,
21 N @g - H H H }zj\\N’OH 0.764 6.117 6.078 0.039 6.022 0.095 II
OH 4 _NH,
22 N /@;E’ - H H 1,‘/ H 0.283 6.548 6.566 —0.018 6.361 0.187 II
E ~ “OH

OH
23 * N Cg’ - H H H NH, 2.96 5529 5901 -0.372 5.667 —0.138 I
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Table 1. Cont.

No. X1 Ry Ry Rs Ry Rs Re (ICI\S/})) pICso CoMFA CoMSIA Bind(iing
M pred res pred res Mode
o
24* C OMe OMe H H H e Aon 4161 5381 5429 -0.048 5.388 —0.007 III
H
(0]
25 C OMe OMe H F H e Aon 3315 5480 5466 0.014 5438 0.042 I
H
(0]
26 C OMe H OMe H H e on 5185 5285 5288 —0.003 5.176 0.109 I
H
(o]
27 C OMe OMe H Br H }{\ANOH 3.979 5400 5534 -0.134 5553 -0.153 III
o
29 C OMe H OMe H H J%LN/OH 0.692 6.160 6.195 -0.035 6.038 0.122 I
H
o
30 C OMe OMe H H H )QKN/OH 0.816 6.088 6.089 —0.001 6.095 —0.007 I
H
o
31* C F H F H H ,‘%LN/OH 1.298 5.887 5875 0.012 5.837 0.050 I
H
o
32 C OMe OMe H Br H }L}LN/OH 0.701 6.154 6.105 0.049 6271 -0.117 III
H
o
34 C OMe OMe H F H ;%kN/OH 0.891 6.050 6.117 -0.067 6.13 —0.080 I
H
N-OH
35 C F F H H H %J\ 16.21 4790 4812 -0.022 4.825 —-0.035 I
- NH,
NH
36 C OH OH H H H ,%}LN/NHz 29.58 4529 4513 0.016 4.531 —0.002 I
H
Z N
38 C qﬂ;\ OH H H OH H 36.09 4443 4464 —0.021 4.405 0.038 I
2N
39 C ~OX OH H H -H NH, 20.14 469 4.674 0.022 4796 —0.100 1I

7 of 28
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Table 1. Cont.

8 of 28

No X1 Ry R, Rs Ry Rs Re (ICI\S/})) pICso CoMFA CoMSIA Binding
M pred res pred res Mode
AN
40 C AO/QS\ - OH H NH, H 18.96 4722 4747 -0.025 4769 —0.047 I
OH
41 N /@;E’ - H H H NH, 9.03 5.044 5052 -0.008 5.052 —0.008 I
F X

No. ICso (HM) PICSO CoMFA CoMSIA E/}nglng
pred res pred Res ode

28 4.666 5.331 5.304 0.027 5395 —0.0635 III

33 1.93 5.888 5.84 0.0482 5.927 —-0.0386 III

37* 10.36 4.985 4.657 0.3282 5128 —0.1426 1

* indicates the compound belongs to the test set. I, I, and III represent the binding modes of the compounds. Newly synthesized compounds have been underlined.



Molecules 2019, 24, 4479 9 of 28

In this study, comparative molecular field analysis (CoMFA) and comparative molecular similarity
indices analysis (CoMSIA) were used to establish 3D-QSAR models. CoMFA includes steric and
electrostatic fields, which are calculated by Lennard-Jones and Coulombic potential functions. The
superimposed molecule was placed in a three-dimensional space consisting of cube lattice (edge
length = 2 A). The structure of molecule was calculated by using SP* hybrid carbon atom (van der
Waals radius = 1.52 A, net charge was + 1.0) as the probe atom. During the whole process, the energy
cut-off value was set to 30 kcal/mol [29]. CoMSIA described the structural characteristics of molecule
by calculating steric field, electrostatic field, hydrophobic field, hydrogen bond acceptor field, and
hydrogen bond donor field parameters. The best COMSIA model can be obtained by combining
different fields. Like in COMFA, a SP? hybrid carbon atom is used as probe atom in the calculation
of steric and electrostatic fields. Hydrophobic parameters, hydrogen bond acceptor parameters, and
hydrogen bond donor parameters are set to +1 when calculating other fields. In the calculation
process, the attenuation factor was set to 0.3. There is no need to set an energy cut-off value, because a
Gaussian function is used to evaluate the distance between probe atom and each atom in molecule
in CoMSIA [30]. As mentioned above, CoMSIA is an extension of CoMFA, and the principles are
basically the same; both are forms of QSAR (quantitative structure analysis relationships). They differ
only in the implementation of the fields. The following assumptions should be satisfied in application:
1) There is no covalent bond between the small molecule and the receptor; 2) The change of binding
affinities of small molecules is related to molecular properties, represented by fields.

2.4. CoMFA and CoMSIA Statistical Analysis

Using partial least squares (PLS) regression analysis, we constructed linear a correlation between
descriptors (independent variables) of the 3D-QSAR model and the pICsy (dependent variables).
Cross-validation correlation coefficient > and optimum number of components (ONC) were obtained
by leave-one-out (LOO) cross-validation [31]. g2 is used to evaluate the internal validation ability of
the model. Generally, g> > 0.5 is acceptable. The calculation equation(2) is as follows [32]:

2
q2 _ - Z(Yl - Ypred) (2)

Z(Yi - ?)2

where y; and y, .4 represent the experimental and predicted values in the training set, respectively.
y is the average value of the whole training set. Based on obtained ONC, the noncross-validation
correlation coefficient r?, F-statistic values (F), standard error of estimate (SEE), and the contribution of
each field to the establishment of the model are further calculated by noncross-validation analysis. The
external prediction ability of the model can be preliminarily evaluated by calculating the predictive
correlation coefficient (1'2re q)- r2re 4 > 0.6 means the model may have good prediction ability. The
calculation equation(3) is as follows [25]:

PRESS
2 —
Tored = 1- SD 3)

The PRESS represents the sum of squares of the difference between the experimental value and
the predicted value in the test set. SD is the sum of squares of the difference between the experimental
values of compounds in the test set and the average values in the training set.

However, rl%re 4 > 0.6 is only the premise that the model has good external validation. The real

external prediction ability needs evaluation of some external validation parameters, such as R?, k,
K, Ré, R%, and r2,. R? represents the correlation coefficients (not passing through the origin) between
experimental values and the predicted values in the test set. R(z) and k are the correlation coefficients of
the experimental value (X) and predicted value (Y) and the slope of regression line (passing through
the origin). Ré and k’ are the correlation coefficients of the predicted value (Y) and experimental value
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(X) and the slope of regression line (passing through the origin). The calculation equations(4-9) are as
follows [33]:

[Z (Yobs - m)(Ypred B %)]2

R® = — —— )
Z(Ypred - Ypred)2 X Z(Yobs - Yobs)2

kK — m"bs—Xszred) (5)

Z(Ypred)

Z(Yobs X Ypred)

k = ———= 6
Z(Yobs>2 ©
Rg - Z(Yobs -kXx Ypred)2 (7)

Z(Yobs - %)2
2
Y(Yoreq —k XY,
R?2 = 1- (Ypred X_(’bsz) ®)
Z(Ypred - Ypred)

2 = sz(l—w/Rz—Rg) 9)

In the above formulas, Yops and Ypreq represent the experimental and predicted values in the test

set. Yops and % are the average values of the experimental and predicted values in the test set.

The robustness of 3D-QSAR model can be verified by a Y-randomization test [34]. In the case of
independent variable X, matrix unchanged, and randomly shuffled dependent variable Y, this process
repeats many times, and new q? and r? values are recorded. If the values of g% and r? are very low,
then the establishment of the model is not accidental and has strong robustness.

2.5. Molecular Docking

Before molecular docking, it is important to select the appropriate crystal structure. LSD1-CoREST
complexes, including FAD and histone H3 (PDB ID: 2V1D, resolution: 3.1 A), were used in this study.
In order to obtain more reliable results, we chose MOE.2015 [35] and Glide of Maestro (Schrodinger
LLC, New York, NY, 2014-2) for docking. For Glide docking, firstly, we deleted crystal water from the
PDB file and added hydrogen atoms to the entire complex. Then, we performed energy minimization.
The stereochemical parameters of the model used for docking were evaluated using a Ramachandran
plot and the overall goodness factor (G-factor) was obtained by Procheck [36]. In addition, verify
3D [37] and ERRAT [38] were used to evaluate the model (http://services.mbi.ucla.edu/saves/). Then,
we used the prepared PDB file to generate the receptor-grid file. For the FAD site, we set FAD as
the center and generated a box with side lengths of 20 A x 20 A x 20 A. For substrate site, we set
histone H3 as the center and generate a box with a side length of 20 A x 20 A x 20 A. Finally, 41 small
molecules after minimizing energy were docked to the FAD-binding site and substrate-binding site,
separately. The standard precision mode (SP) was chosen, considering docking accuracy. Each small
molecule was set to generate 20 poses, and the top ten poses by Glide score were saved for further
study. The detailed process of MOE2015 is described in Supplementary Information S2.

2.6. Molecular Dynamics Simulations

In order to further explore ligand-receptor interaction and binding modes, 50 ns MD was
performed on the docking results of compounds 04, 17, 21, and 35. MD was performed using AMBER
14 software package [39]. The antechamber module was used to generate ligand parameter files.
Amberff10 force field was used for protein and GAFF force field was used for small molecules. The
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TIP3P water model was added and the margin was set to 8 A. We checked the total charge of the
whole system and added Cl™ to make the system appear electrically neutral. The topology file of
the complex was generated in a water environment. After energy minimization, heating in an NVT
ensemble (from 0 K to 300 K in 250 ps) and balancing 50 ps in an NPT ensemble (300 K, 1 atm) were
carried out. Eventually, 50 ns MD was performed using the NPT ensemble (300 K, 1 atm).

2.7. Binding Free Energy Calculations

Binding affinity between small ligands and receptors can be evaluated by binding free energy. In
this study, the binding free energy is calculated by the molecular mechanics/generalized Born surface
area (MM/GBSA) method using AMBER 14 software. The structures were extracted from the last 2 ns
trajectory file every 10 ps, and a total of 200 conformations were extracted for the calculation of binding
free energy (AGy;ug). The calculation equations(10-12) are as follows [28]:

AGpiyg = AGcomplex_(AGprotein+AGligand) (10)
= AEgs + MGy — TAS (11)
AEgas = AEuw + AEg, AGsol = AGgp + AGsa (12)

where AGeomplexs AGprotein, and AGjigand represent the total binding energy of complex, protein, and
ligand in solvent. AE,s is the interaction energy between the protein and ligand in gas phase, which can
be further decomposed in to AE, 4 (van der Waals energy) and AEgc(electrostatic energy). AGg,) stands
for free energy of solvation, and can be obtained by AGgg(polar solvation energy) and AGga (nonpolar
solvation energy). Then, AGgp is calculated by the generalized Born (GB) approximation model. TAS
is the entropy contribution. Because the calculation of this value is time-consuming and difficult to
obtain accurately, the calculation of this term is often discarded [40].

3. Results and Discussion

3.1. Statistical Results of COMFA and CoMSIA

To obtain the statistically best QSAR model, it is often necessary to adjust different field
combinations (one or more) to establish multiple models, calculate their statistical parameters, and
select the best COMFA and CoMSIA models. The stepwise development [41] of the CoOMFA model and
several CoMSIA models using different combinations of fields are shown in Table 2. It is generally
believed that the model with q? > 0.5 has good internal verification ability. The g = 0.33 of COMFA-E
(only using electrostatic field to build the model) indicated that it did not have good internal verification
ability. The g% = 0.547 and 1*}2)re 4 = 0.77 of CoMFA-S (only using stereo field to build models) showed

that COMFA-S had good internal verification and external prediction ability. However, the q> and
rére 4 of COMFA-SE (combined with stereo and electrostatic fields) was considerably improved. The
cross-validated coefficient g = 0.623, and the predictive correlation coefficient rf)re 4 = 0.857. The model
also had larger noncross-validated coefficient r2 = 0.987, lower SEE = 0.091, and F = 265.466. The
contributions of electrostatic field and steric field were 38.6% and 61.4%, respectively. To sum up,
CoMFA-SE was chosen as the final CoOMFA model.

The g2 of COMSIA-SHAD and CoMSIA-SEHA were close, 0.728 and 0.726, respectively, indicating
that they had good internal verification ability. However, the 1"2re 4 of COMSIA-SHAD was higher
than that of CoMSIA-SEHA (0.899 and 0.835, respectively), which indicated that CoMSIA-SHAD had
stronger external prediction ability. The model had larger r* = 0.960, lower SEE value = 0.154, and
F value = 126.052. The contributions of steric, hydrophobic, and H-bond acceptor and donor fields
were 9.7%, 26.6%, 29.9%, and 33.9%, respectively. It showed that the H-bond donor field played an
important role in this model. In conclusion, CoMSIA-SHAD was chosen as the final CoMSIA model.
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Table 2. Statistical parameters of CoMFA and CoMSIA models. S—Steric, E—Electrostatic,
H—Hydrophobic, A—H-bond acceptor, D—H-bond donor.

Contributi
@ ONC g2 4 SEE  FValue ontributions
s E H A D
CoMFA-S 0.547 0781 077 0342 51718 1 ] - - -
CoMFA-E 0.33 0993 0692 0071 340959 1 - - -

0.987  0.857  0.091 265.466 0.386  0.614

CoMFA-SE 0.623 - - -
0962  0.800 0.151 129.944 - 0.276 0.214 0.226  0.283

CoMSIA-EHAD  0.674
CoMSIA-SHAD  0.728 0.960 0.899  0.154 126.052 0.097 - 0.266 0299  0.339
CoMSIA-SEAD  0.639 0942 0803  0.182 110.417 0.094  0.326 - 0.254  0.325

CoMSIA-SEHD  0.700
CoMSIA-SEHA  0.726
CoMSIA-ALL 0.704

0937  0.819 0.190 100.367 0.090  0.329 0.239 -
0977  0.835 0.120 174.365 0.098 0.325 0.258 0.319 -
0.945 0.820 0.178 114.875 0.075 0.262 0.193 0.206  0.264

0.342

B OV = U1 U1 O N

Although r}%re 4 > 0.6 for COMFA-SE (hereafter referred to as CoMFA) and CoMSIA-SHAD

(hereafter referred to as CoMSIA), according to Tropsha [42], good r}%re 4 is only a prerequisite, and a
series of external prediction parameters are needed to evaluate the true external prediction ability. The
external predictive parameters of the model and the criteria to be met are shown in Table 3. When
the model satisfied condition 1, condition 2a or 2b, condition 3a or 3b, condition 4a or 4b, condition
5, and condition 6, it can be evaluated that the model has strong real external prediction ability. r2,
denotes the approximation degree of the experimental and predicted values in the test set. CoMFA fit
each criterion. CoMSIA did not meet condition 4b, but satisfied condition 4a and other conditions.
Therefore, both CoOMFA and CoMSIA had good external prediction ability.

Table 3. Results of external validation parameters for CoMFA and CoMSIA.

Condition Parameters Threshold Value CoMFA CoMSIA

1 R? >0.6 0.855 0.861
2a R? Close to value of R? 0.851 0.857
2b Rg Close to value of R? 0.847 0.755
3a k 0.85 <k <1.15 1.001 0.983
3b k 0.85 <k’ <1.15 0.998 1.010
4a (R* -R2)/R? <0.1 0.005 0.005
4b (R? - Rg) /R? <0.1 0.009 0.123

5 | R3—R3 | <0.3 0.004 0.102

6 2 >0.5 0.799 0.804

The predicted values of CoMFA and CoMSIA models for training set and test set are shown in
Table 1. The scatter plots of actual pICsy and predicted pICsy are shown in Figure 3. It can be seen
from the figure that the black solid cubes and the red solid dots are close to the straight line Y = X. The
actual value of the whole data set had a good linear relationship with the predicted value.

In addition, the robustness of the model was evaluated by Y-randomization testing. With the
original independent variable X matrix unchanged, the dependent variable (pICsy) was randomly
shuffled 10 times, and the details of randomly shuffled pICsg values are shown in Table S1. If the g?
and 12 of these new models are very low or negative, it is not accidental that the final models have
high g2 and r?. The Y-randomization test results of COMFA and CoMSIA models are shown in Table 4.
The g2 and r? of the new model were very low, which showed that the previous final model has
good robustness.
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Figure 3. Plots of experimental activities against predicted activities by the optimal CoMFA model (A)

and CoMSIA model (B).

Table 4. q2 and r? values after several Y-randomization tests.

CoMFA CoMSIA
Iteration q2 r2 q2 r2
Random_1 0.040 0.436 —0.052 0.466
Random_2 0.158 0.49 —0.003 0.435
Random_3 0.258 0.475 0.163 0.419
Random_4 0.086 0.401 0.071 0.35
Random_5 -0.113 0.484 -0.227 0.465
Random_6 0.262 0.484 0.317 0.505
Random_7 0.003 0.364 0.093 0.459
Random_8 —0.206 0.459 -0.271 0.497
Random_9 -0.131 0.423 -0.178 0.377
Random_10 —0.425 0.382 —0.627 0.454

3.2. CoMFA Contour Maps

The 3D-QSAR model not only has the ability of prediction, but also can provide contour maps.
It is more convenient to study the relationship between structure and activity of compounds to find
the key groups affecting the activity, and to provide guidance for the design of new inhibitors in
the future. The contour maps of each field are displayed using the StDev*Coeff function, and the
visualization contribution of favorable and unfavorable regions is 80% and 20%, respectively. To
explain the contour maps more clearly, the structure with the highest activity, compound 04, was
inserted into all contour maps.

In the steric contour maps of CoMFA, the yellow block showed that reducing the volume of
substituted groups contributed to the increase of activity, while the green color block showed that
increasing the volume of the substituted groups was beneficial to the increase of activity. As shown
in Figure 4A, a medium-sized green color block appeared at the R, of compound 04, suggesting
that an appropriate addition of substituents here would be beneficial to the improvement of activity.
For example, compounds 1 and 3 had hydroxyl substitution at R;, and compound 1 had a hydroxyl
substitution at Ry, while compound 3 had no hydroxyl substitution at R, and a hydroxyl substitution at
R3, so the activity of compound 1 (pICsp = 6.478) was higher than that of compound 3 (pICsq = 5.587).
Compound 24 and compound 26 had methoxy substitution at R, and compound 24 had methoxy at
Ry, but for compound 26, there was no methoxy substitution at Ry, methoxy substitution at R3, so the
activity of 24 (pICsp = 5.381) was higher than that of 26 (pICsg = 5.285). The presence of a green block
at R4 indicated that increasing the volume here would increase the activity; for example, the activities
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of compound 04 (R4 = Br, pICsg = 6.917) and compound 05 (R4 = F, pIC50 = 6.717) were higher than
compound 1 (R4 = H, pICsp = 6.478). Compound 10 (R4 = F, pICsy = 6.706) and compound 11 (R4 = Br,
pICsp = 6.910) had higher activities than compound 7 (R4 = H, pICsp = 6.131). A larger green block
appeared at Rs, indicating that the addition of larger substituents would improve the activity. For
example, R5 of compound 13 (pICsy = 5.373) was a hydroxyl group, while the R5 of compound 14
(pICsg = 6.143) was an amidoxime, so the activity of compound 14 was higher than that of compound
13. Compound 15 (pICs = 5.889) had amidoxime at Rs, and compound 37 (pICsy = 4.443) had hydroxyl
at Rs, so the activity of compound 15 was higher than that of compound 37. A large yellow block
appeared around R;, which indicated that the substituents in R; should not be too large, otherwise
the activity would be reduced. For example, the R; of compound 2 (pICsp = 6.611) was F, the R; of
compound 14 (pICsp = 6.143) was pyridine, and the Ry of compound 15 (pICsy = 5.889) was pyrimidine,
so the activity of compound 2 was higher than that of compounds 14 and 15. The R; substituents of 39
(pICs50 = 4.696) and 40 (pICsy = 4.722) were larger, so their activities were lower.

|

Figure 4. CoMFA contour maps were based on compound 04 as the reference. (A) Steric contour
map. The green and yellow indicate that bulky groups are favored and disfavored, respectively. (B)
Electrostatic contour map. The blue and red indicate that electropositive groups were favored and
disfavored, respectively.

The contour maps of CoOMFA electrostatic field are shown in Figure 4B. Blue indicated that the
introduction of electropositive group was beneficial to the increase of activity, while the introduction
of an electronegative group in a red region was favorable for increasing activity. There was a large
blue block at Ry, which indicated that the introduction of electropositive group could improve the
activity. For example, the R; of compound 18 (pICsy = 6.066) was replaced by pyrimidine, the two
N atoms of pyrimidine ring were covered by blue, and the R; of compound 19 (pICsq = 5.833) was
replaced by hydroxyl pyridine, a strong electronegative group, so the activity of compound 18 was
higher than compound 19. There was a blue block at R4, which indicated that introducing a strong
electropositive group here was beneficial to the increase of activity. The strong electronegative oxygen
atom on the carbonyl of Ry of 25 (pICsy = 5.480), 26 (pICsg = 5.285), and 27 (pICsp = 5.400) touched the
blue block, so their activities were not high. There was a red block near Rs, which indicated that the
introduction of electronegative groups here would increase the activity. For example, R5 of compound
41 (pICsg = 5.044) was replaced by —H, and its activity was low. R5 of compound 22 (pICsy = 6.548) was
replaced by amidoxime. The hydroxyl on amidoxime touched a red block, so the activity of compound
22 was higher than that of compound 41. The R5 of compounds 4 (pICsg = 6.917), 5 (pICsp = 6.717),
and 6 (pICsy = 6.678) with higher activity were replaced by amidoxime, and the hydroxyl groups on
the amidoxime were all near the red color block.

3.3. CoMSIA Contour Maps

The steric contour map of CoMSIA is shown in Figure 5A, which is similar to the conclusion of
CoMFA: the proper increase of the volume of R, and Rs substituents was beneficial to the increase of
activity. The contour map of the CoMSIA hydrophobic field is shown in Figure 5B. The yellow part
indicates that hydrophobic substituents would improve the activity, while the white area indicates that
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hydrophilic substituents would be beneficial to the activity. A yellow color block around R; indicates
that introducing hydrophobic substituents here is beneficial to the increase of activity; for example,
compound 2 (pICsy = 6.611, Ry = F) had higher activity than compound 1 (pICsy = 6.478, Ry = OH). The
R; of compound 14 (pICsg = 6.143) was a pyridine ring, and that of compound 15 (pICsg = 5.889) was a
pyrimidine ring, so the activity of compound 14 was higher than that of compound 15. The presence of
a yellow block at R4 indicated that the introduction of hydrophobic groups could improve the activity,
such as 4 (pICsp = 6.917, R4 = Br), 1 (pICs¢ = 6.478, R4 = H), 25 (pICsp = 5.480, R4 = F), 24 (pICsp = 5.381,
R4 = H). A small white block appeared near R5 and R4, which indicated that adding hydrophilic
groups in these positions would be beneficial to increase activity. Hydroxyl and amino groups at
the end of amidoxime are hydrophilic groups. Therefore, when amidoxime was substituted at Rs or
R, the activity was better, such as in compound 2 (pICsp = 6.611) and compound 4 (pICsy = 6.917),
which had amidoxime structure at their R5 sites, and compound 11 (pICsy = 6.910) and compound 16
(pICs0 = 6.036), which had amidoxime structures at Rg.

| ] : o s A B
e . Cr W . 0T
Fan § g 5 B¢

Figure 5. COMSIA contour maps were based on compound 04 as a reference. (A) Steric field. The green
and yellow blocks indicate that bulky groups are favored and disfavored, respectively. (B) Hydrophobic
field. Yellow blocks indicate that hydrophobic groups increase activity; white blocks indicate that
hydrophilic groups increase activity. (C) Hydrogen bond donor field (displayed as line). Cyan blocks
indicate that H-bond donor groups increase activity; purple blocks indicate that H-bond donor groups
decrease activity. (D) Hydrogen acceptor field. Magenta blocks indicate that H-bond acceptor groups
increase activity; red blocks indicate that H-bond acceptor groups decrease activity.

As shown in Figure 5C, the CoMSIA hydrogen bond donor contour map showed that adding
hydrogen bond donor groups in the cyan part was beneficial to improve the activity, while purple
indicated that hydrogen bond donor groups in this position would hinder the activity. Because the
cyan block was wrapped by the purple block, the display mode was set to line shape for convenience
of observation. A cyan block at R; indicated that introducing a hydrogen bond donor group at this
position would be beneficial to improving activity. Compounds 5 (pICsy = 6.717) and 14 (pICsq = 6.143)
had no hydrogen bond donor group at Ry, so their activities were not high. There was a cyan block
near Rs, which indicated that introducing a hydrogen bond donor group at this position would be
beneficial to the improvement of activity. Compounds 4 (pICsy = 6.917), 22 (pICsp = 6.548), and 6
(pICsp = 6.678) with amidoxime structure are found at Rs, so they had higher activity. The amino group
in amidoxime just touched the cyan block, which may be the reason why compounds 4 and 6 had
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higher activity. The R; and R4 were surrounded by a purple block, which indicated that introducing
a hydrogen bond donor field into these positions was not conducive to the increase of activity. For
example, compounds 35 (pICsq = 4.790), 37 (pICsp = 4.985), and 39 (pICsg = 4.696) had H-bond donor
groups at R¢, while the substituent of Ry and R4 in compound 36 (pICsy = 4.529) had H-bond donor
groups. However, according to the H-bond donor field contour map, the presence of H-bond donor
groups at R; or Rg was not conducive to the activity of the compound, so their activities were low.
These examples mean that if the positions of H-bond donor groups in the compounds conform to the
positions given by the H-bond donor field contour map, the activities of these compounds were very
high. On the contrary, if the H-bond donor groups appeared in the position which was not conducive
to the activity suggested by the H-bond donor field contour map, the activity of these compounds
would suddenly decline. These analyses explained why the contribution of H-bond donors was the
highest in Table 2, because the H-bond donor group had an important influence on the activity of
this series of compounds. As shown in Figure 5D, the magenta block indicated that the hydrogen
bond receptor group had a positive effect on this position, while the red block indicated that the
hydrogen bond receptor group had a negative effect on this position. One magenta block appeared at
Ry, suggesting that the addition of hydrogen bond receptor groups here would increase activity. For
example, compound 26 (pICsy = 5.285) had —H at R, and compound 24 (pICsy = 5.381) had a methoxy
group at R, so the activity of compound 24 was higher than that of compound 26. A red color block
appeared around Rg, which indicated that adding a hydrogen bond acceptor group was not conducive
to the improvement of activity. For example, the hydroxyl group at Rg of compound 12 (pICsp = 4.991)
and carbonyl group at Rg of compound 28 (pICsp = 5.331) touched red blocks, so their activities were
not high.

The main structure-activity relationship (SAR) information found in 3D-QSAR is summarized in
Figure 6. For Ry, the electropositive groups with small volume and weak polarity should be introduced
in the future compounds. If a larger volume group is introduced to Ry, the activity might increase. It
was found that H-bond donor groups and H-bond acceptor groups were encouraged at R,. Hydrogen
and oxygen in hydroxyl groups can be used as H-bond donors and acceptors. Therefore, it is a
good choice to introduce hydroxyl or carboxyl groups into R,. The optimization proposal of Ry is to
introduce hydrophobic groups with large volume. In the existing compounds, Ry is generally replaced
by a halogen. In the next design, we break this limitation and try esters and nitro structures. Rs
should introduce large-volume, electronegative, hydrophilic H-bond donor groups. The amidoxime
structure of this series of compounds can meet these requirements very well, so we can retain this
structure in the future optimization, and try to introduce new structures, such as acylamide, carboxyl,
etc. For Rg, it is recommended to introduce electropositive and hydrophilic groups, and amino groups
could be introduced. We hope that these suggestions for structural changes can provide new ideas for
drug designers.

Electropositive, hydrophilic

Bulky groups are unfavorable. groups are favorable.

Electropositive, hydrophobic

groups are favorable.

Bulky, H-bond donor
and acceptor groups
are favorable,

Figure 6.

Bulky, electronegative,
hydrophilic and H-bond
donor groups are favorable,

Bulky, hydrophobic
are favorable.

Structure—activity relationship (SAR) information obtained from three-dimensional

quantitative structure-activity relationship (3D-QSAR) study.
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3.4. Bonding Site Prediction

Results and detailed analysis of the Ramachandran plot, verify 3D, and ERRAT used to test
protein structure are shown in Supplementary Information 53. Enzyme kinetics studies were carried
out on compound 22, which is the most active of a series of compounds reported in 2018 [23]. It was
proved that the binding site of these compounds was in the FAD region, while the binding sites of
other compounds are not clear. Therefore, we need to determine the binding site in the FAD region
or substrate region. The locations of these two regions are shown in Figure 7. Previous studies have
shown that it is unreliable to evaluate binding affinity of ligand and receptor by docking score, and the
correlation between them was very low [43]. However, it is reliable to predict the binding site of a
small molecule by its docking score, and ligand scores at the correct binding site are better than those
at the wrong site [44].
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Figure 7. Binding site of flavin adenine dinucleotide (FAD) and histone H3 in LSD1.

In order to get more credible results, Glide and MOE2015 were selected for the docking work.
Before docking, FAD was extracted from the crystal structure (PDB: 2V1D), and then docked with two
kinds of software to observe whether docking results can reproduce the crystal pose. When Glide was
used, the root mean square deviation (RMSD) of the original crystal structure and docking result was
0.407 A. When MOE2015 was used, the RMSD of the original crystal structure and docking result was
0.644 A. Low RMSD indicated that the results were reasonable. The binding site of compound 22 in
the FAD region justified by enzyme kinetics studies was selected as a reference. Compound 22 was
docked in the FAD region and the substrate region using Glide and MOE2015, respectively. Among the
remaining compounds, compound 04, with the highest activity, was selected as the representative for
binding site prediction. Similarly, compound 04 was docked in the FAD region and substrate region
using two different kinds of software. Each docking result generated 20 poses, and the scores of the
top five were recorded. The docking scores are shown in Table 5. For compound 22, the top five scores
of compound 22 in the FAD region and substrate region were —11.07 to —9.037 and —6.514 to —6.233,
respectively, by Glide. The top five scores of compound 22 in the FAD region and substrate region by
MOE2015 were —9.143 to —8.704 and —6.224 to —5.844, respectively. Both tools showed that compound
22 displayed lower scores in the FAD region. The results illustrated that the FAD region was more
likely to be the binding site than the substrate region, which was also consistent with the results of
enzyme kinetics studies. For Glide, the top five scoring ranges of compound 04 in the FAD region and
substrate region were —9.132 to —8.724 and —6.364 to —5.315, respectively. For MOE2015, the top five
scoring ranges of compound 04 in the FAD region and substrate region were —7.738 to —7.547 and
—5.481 to —5.259, respectively. The two kinds of software showed that compound 04 scored lower in
the FAD region. This indicated that for other compounds, the FAD region was more likely to be the
binding site. This prediction was validated by calculating the binding free energy.
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Table 5. Docking scores of compounds 04 and 22 in the FAD and substrate regions calculated by Glide

and MOE2015.
Glide FAD Substrate
Top 5 04 22 04 22
1 -9.132 ~11.070 ~6.364 —6.514
2 -9.108 -9.503 ~5.691 —6.406
3 ~8.967 -9.125 ~5.459 —6.249
4 -8.775 -9.102 ~5.389 —6.234
5 ~8.724 -9.037 -5.315 -6.233
MOE2015 FAD Substrate
Top 5 04 22 04 22
1 ~7.738 -9.143 —5.481 —6.224
2 ~7.680 -8.922 ~5.475 —6.040
3 ~7.611 -8.905 ~5.434 ~5.898
4 ~7.571 -8.894 ~5.341 ~5.856
5 —7.547 -8.704 ~5.259 —5.844

3.5. Exploration of Binding Mode

Based on the above analysis, all compounds were docked in the FAD region and their possible
binding modes were explored. In order to increase the reliability of the results, two kinds of software
were used. In all the docking results, there were mainly two opposite orientations, named type A and
type B, respectively, as shown in Figure 8. This series of small molecules all contained ring A and
ring B, as seen in Table 1. In order to be easy to express, compound 04 with the highest activity was
displayed and FAD was used as a reference. Figure 8A shows the orientation of type A, and ring A of
04 overlapped with the triple-ring structure of FAD. Figure 8B shows the orientation of type B, and
ring B of 04 overlapped with the triple-ring structure of FAD. Therefore, for all compounds, if ring
A and the FAD triple-ring structure overlap, they were classified as type A, and if ring B and FAD
triple-ring structure overlap, they were classified as type B.

A B

Ring A
Ring.B . B 1 FAD

) p FAD ’ | AL

F ==

Figure 8. Two different binding orientations, with FAD shown as a yellow stick as a reference. (A)
Compound Type A:04 represented by green sticks. (B) Compound Type B:04 represented by cyan sticks.

In order to determine which orientation to use for the next study, the docking results of the top
10 for all compounds were recorded. The results of Glide, as shown in Table 6, recorded the times of
occurrence of type A and type B, respectively, in the top 10, and recorded the highest scores belonging
to type A or type B. The total number of type A and type B of some compounds was less than 10. This
was because there were a few other orientations in the top 10, such as compounds 12 and 20. However,
these were rare orientations, so they were not recorded. In all 41 compounds, 31 compounds had more
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type A orientations in their top 10 conformations, and some compounds were all type A orientation in
their top 10 conformations, such as compounds 13, 16, and 17. There were two compounds in the top
10 with the same frequency of type A and type B. Only eight compounds in the top 10 showed more
type B, but type A always appeared in the top 10. The top conformation of 30 compounds were in
type A orientation; moreover, type B was not found in the top 10 conformations of 19 compounds.
The docking results of compounds 04, 05, and 10 with high activity in type B are shown in Figure S5.
These compounds did not even form H-bonds with surrounding amino acids, which was difficult to
explain because they have high activity, indicating the irrationality of type B. It can be concluded that
type A is the favored orientation of the compounds. Therefore, when choosing the docking results
of all compounds for further research, one should ensure that the conformation with the best score
belongs to type A orientation. The result of docking using MOE2015 is shown in Table S3. Therein, the
top conformations of 30 compounds belonged to type A, the top conformations of five compounds
belonged to neither type A nor type B, and only the top conformations of six compounds belonged to
type B, which indicated that type A was most likely to be the true orientation of the compounds.

Table 6. Glide docking results. The second and third columns mean the number of type A and B in the
top 10 conformations of all compounds. The last column includes the best scores and the type.

No. Type A Type B Best Score
1 3 7 B -9.220
2 2 8 A -9.400
3 2 8 B -9.658
4 7 3 A -9.454
5 4 6 A -9.490
6 6 4 A -9.093
7 6 4 B -9.237
8 6 4 B -9.137
9 6 4 B -8.444
10 6 4 B -9.333
11 9 1 A -9.093
12 4 5 B -9.173
13 10 0 A -9.995
14 9 1 A -10.978
15 8 2 A -10.873
16 10 0 A -10.325
17 10 0 A -9.473
18 4 6 A -9.370
19 2 8 B -9.784
20 8 0 A -11.204
21 10 0 A -10.870
22 7 3 A -11.07
23 9 0 A -9919
24 10 0 A -9.153
25 10 0 A -10.109
26 10 0 A -9.887
27 10 0 A -9.427
28 10 0 A -9.223
29 10 0 A -9.147
30 10 0 A -9.538
31 9 1 A —8.953
32 10 0 A -9.461
33 9 1 A -9.628
34 10 0 A -9.741
35 10 0 A —8.568
36 5 5 B -8.977
37 10 0 A -9.563
38 10 0 A -9.709
39 1 9 B -9.164
40 5 5 B -8.675
41 10 0 A -9.281
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The best docking structures of all compounds selected according to the above criteria are shown
in Figure S6. They all entered FAD binding site well. The A ring was near the $sheet region, and
the B ring was near the « helical region, and the linker in the middle was located in the coil region.
However, by observing their overlap, it was found that although the orientations of these compounds
were identical, there were still some differences in their binding modes.

According to the superposition of all small molecules, the binding modes of these compounds
can be divided into three categories, expressed as I, II, and I1I, respectively. The categories of each
compound are indicated in Table 1. Figure 9B-D show the binding modes of categories I, II, and III,
respectively. For convenience of observation, the compounds with the highest activity (compounds
04, 22, and 29) of the three binding modes are displayed in Figure 9A. The individual docking results
of compounds 04, 22, and 29 are shown in Figure S7. Although their orientations were identical, the
locations of ring A and ring B were different, which also led to the formation of different interactions
between them and the protein. Ring A of compound 04 was surrounded by hydrophobic amino acids
Pheb538, Leu659, Trp751, Tyr761, and the B ring was surrounded by hydrophobic amino acids Val 288,
Ala809, Val811. Oxygen and hydrogen on the amidoxime group formed H-bonds as H-bond acceptor
and donor with Val288 and Gly314, respectively. In addition, oxygen on the hydroxyl of ring A formed
an H-bond as a H-bond acceptor with Lys661. Compared with compound 04, phenol attached to
ring A of compound 22 and fluorine was added to para-position of the hydroxyl group. This new
structure occupied the cavity formed by Phe538, Leu659, Trp751, and Tyr761, which resulted in ring A
being squeezed into the vicinity of Ala331, Tyr761, and Ala809 in space. Thus, ring B also extended
near Val288, Ser289, Gly315, and Thr624 and formed H-bonds with Thr624. The volume of ring A in
compound 29 was larger than that of ring A of compound 04. Moreover, the substitution position on
ring B changed from the meta- to para-position, which indicated that more space was needed in the
hydrophobic pocket. Finally, the positions of ring A and ring B changed a lot, and the carbonyl on Rg
formed an H-bond as an H-bond acceptor with Ser289. Another H-bond was formed between Thr624
and the hydrogen of the hydroxyl group, which acted as an H-bond donor.

Based on the above analysis, 15 compounds with substituent volume of ring A similar to that of
compound 04 and small substituent volume of ring B (e.g., amidoxime, hydroxyl) were classified as
Category I, as shown in Figure 9B. These compounds were easily formed H-bonds with Val288, Ser289,
Gly314, and Lys661. These amino acids may have an important effect on the activity. For example,
both 03 and 04 formed H-bonds with Val288 and Gly314. The hydroxyl groups at R, of 04 formed
H-bonds with Lys661. There was no H-bond acceptor group at R, of 03, which may be the reason why
the activity of 03 (pICsg = 5.587) was lower than 04 (pICsp = 6.917). Although the hydroxyl group at R3
of 12 formed an H-bond with Leu659, because of its long interaction distance (2.587 A) and there were
no other H-bonds, the activity was not high (pICsy = 4.991). The meta-substitution of amidoxime at
ring B usually formed two H-bonds with Val288 and Gly314, and the para-substitution of amidoxime
at B ring formed one H-bond with Ser289. This explained why the meta-substitution of amidoxime at
B ring was more active than the para-substitution of amidoxime at B ring; for example, compound 01
(meta-substitution of amidoxime at B ring) formed H-bonds with Val288 and Gly314, while compound
07 (para-substitution of amidoxime at B ring) did not form H-bonds with Val288 and Gly314, but
only one H-bond with Ser289. Therefore, the activity of 01 (pICsg = 6.478) was higher than that of 07
(pICs0 = 6.131). For the same reason, the activity of compound 2 (pICsp = 6.611) was higher than that
of compound 8 (pICsy = 6.308). Compounds 35 (pICsy = 4.790) and 37 (pICsy = 4.985) did not form
H-bonds with the surrounding amino acids, so their activity was very low.
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Figure 9. (A) Three binding modes for the three most active compounds; 04 is green, 22 is purple, and
29 is orange. (B) Superposition of 15 compounds in Category I. (C) Superposition of 15 compounds in
Category II. (D) Superposition of 11 compounds in Category IIL
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Fifteen compounds with new ring structures attached to the A ring were classified as category II
because they had similar interactions with proteins, as shown in Figure 9C. These compounds easily
formed H-bonds with Ser289, Gly314, and Thr624. It was found that the activities of the compounds
with para-substituted amino at B ring were not high. For example, compounds 17 (pICsg = 5.447) and
23 (pICsp = 5.529) had para-substituted amino groups on the B ring and formed only one H-bond with
Ser289. Therefore, their activities were low. More hydrogen bonds were formed when the compounds
were para-substituted at the B ring by amidoxime. For example, compounds 16 (pICsg = 6.036) and
21 (pICsp = 6.117) were para-substituted by aminoxime at ring B. Both of them formed H-bonds
with Ser289 and Thr624, which may be the reason why their activities increased. Compounds 39
(pICs0 = 4.696) and 40 (pICsy = 4.722) had low activities, because their newly introduced pyridine rings
had extra structure, which was too large to enter the cavity formed by Phe538, Leu659, Trp751, and
Tyr761. This led to the rotation of the rotational bonds between the pyridine rings and the A rings, and
placed the pyridine near Ala331, Val333, and Lys661. The region was very close to the binding site,
indicating that compounds 39 and 40 were not closely bound to proteins, which may be the reason for
their poor activity. Therefore, when a new ring structure was introduced into the A ring, the addition
of more groups in the new ring structure was not conducive to the improvement of activity.

Eleven compounds with larger substituted groups on the A ring than compound 04 and larger
para groups at the B ring were classified as category III. As shown in Figure 9D, these compounds
easily formed H-bonds with Ser289 and Thr624. Compared with category I, the substituents on the
B ring of these compounds were larger, so they extended and formed H-bonds with Thr624. As
H-bond acceptors and donors, carbonyl and hydroxyl groups in R4 were very important. For example,
compound 32 (pICsp = 6.154) not only formed H-bonds with Ser289 and Thr624, but also formed
an H-bond with Lys611, so compound 32 had high activity. This was because the position of Rj
was replaced by a methoxy group. Oxygen, as an H-bond acceptor, formed an H-bond with Lys611.
Compound 28 (pICsy = 5.331) formed H-bonds with Lys611, but not with Ser289 and Thr624, so its
activity was low.

By observing the docking results, the R5 of compounds 1, 2, 4, 5, and 6 with high activity were
aminoxime, and the hydroxyl, as an H-bond donor, formed H-bonds with Gly314. Similarly, Rs of
compounds 20 and 22 with higher activity were replaced by aminoxime, in which the hydroxyl and
amino groups formed H-bonds with Thr624 as H-bond donors. However, compounds 35 and 37
with lower activity did not have H-bond donor groups in Rs, so they did not form H-bonds with the
surrounding amino acids. This showed that for the possible H-bonds predicted in the H-bond donor
field contour map, H-bonds were indeed formed in the molecular docking results, and the activities
of these compounds were relatively high, while those compounds that did not form H-bonds at the
predicted positions had relatively low activity. This evidence proves that H-bond donor groups have a
great influence on the activity of this series of compounds from the perspective of molecular docking,
and explains why H-bond donors had the highest contribution rate in the CoMSIA model.

3.6. MD Simulations and Binding Free Energy Calculation

In order to further study the detailed interaction between ligands and receptor, and to verify the
reliability of the results of molecular docking, compounds 04, 17, 21, 35 with large activity range were
selected for molecular dynamics simulation of 50 ns. The results of their docking were taken as the
initial conformations. From the 50 ns MD process, the RMSD values for C of each complex are shown
in Figure 10. After a short period of time, the four systems reached equilibrium. Compounds 04, 17,
and 21 fluctuated in the range of 1.3-2.3 A until 50 ns, while compound 35 fluctuated in the range
of RMSD from 1.4 to 2.7 A. The RMSD of compound 35 fluctuated around 36 ns. The superposition
of the initial conformation of compound 35 and the conformation at 36 ns is shown in Figure S8.
The surrounding residues only formed an H-bond (Glu801=0--HO, bond length 1.705A) with the
amidoxime connected to the B ring in the ligand, which might not be able to fix the position of the
ligand, so the position of ring A changed greatly. At the same time, the polarity of compound 35 was
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strong, and there were polar amino acids around it, such as Thr, Ser, Asn, and Glu, which could also
change of the position of the ligand. The activity of compound 35 was lower than that of the other
three compounds, which could be the reason why the RMSD value of compound 35 fluctuated greatly.
The temperature versus time plot is shown in Figure S9.

RMSD(A)

T T T % 1
] 10,000 20,000 30,000 40,000 50,000
Time(ps)

Figure 10. Root mean square deviation (RMSD) values of the complexes during 50 ns molecular
dynamics (MD) simulations.

As shown in Figure 11, for a clearer comparison of ligand-receptor interactions before and after
MD, the docking conformations of compounds 04, 17, 21, and 35, and the corresponding average
structure during the MD equilibrium stage were superimposed. The docking result of compound 04,
seen in Figure 11A, showed that the small molecule formed H-bonds with Val288 (Val288-NH---O,
bond length 1.742 A) and Gly314 (Gly314=0---HO, bond length 1.970 A). Although these two H-bonds
disappeared during the MD process, new H-bonds were formed with Gly315 (Gly315=0--HO, bond
length 1.706 A) and Glu801 (Glu801=0---HN, bond length 2.004 A). In addition, Br on the A ring
formed a halogen bond with Ser760 (bond length 2.392 A). The docking result of compound 17, seen in
Figure 11B, showed that no H-bond was formed between the small molecule and the surrounding
amino acids, while after MD, the result showed that compound 17 formed H-bonds with Val288
(Val288-NH--N, bond length 2.235 A) and Ser289(Ser289-0O---HN, bond length 1.884 A). The docking
result for compound 21, as seen in Figure 11C, demonstrated that small molecule formed H-bonds with
Ser289 (Ser289-O--HN, bond length 2.047A) and Thr624 (Thr624=0---HO, bond length 2.390A). During
MD simulations, although compound 21 lost the H-bond with Thr624, it formed a shorter H-bond
with Gly315 (Gly315 = O--HN, bond length 1.956A). In addition, the hydroxyl of amidoxime, as an
H-bond acceptor and donor, formed two H-bonds with Ser289. Compound 35 is shown in Figure 11D.
The small molecule did not form any H-bonds with the surrounding amino acids, and only formed
an H-bond with Glu801 (Glu801 = O--HO, bond length 2.089 A) during the MD process. By MD
analysis, compounds 17 and 35 formed fewer H-bonds and longer bond lengths, which indicated that
the binding of these two small molecules with the protein was not close. However, compounds 04
and 21 formed more H-bonds and shorter bond lengths, and a halogen bond was formed between
compound 04 and Ser760. This result demonstrated that the binding of compounds 04 and 21 with the
protein was relatively stable.

From the above analysis, the binding affinity of compounds 04, 17, 21, and 35 with LSD1 can
be roughly judged. However, the binding affinity of small molecules with LSD1 was quantified by
calculating the binding affinity. Therefore, the MM/GBSA method was used to calculate the binding
free energy, as shown in Table 7.
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Figure 11. Superposition of the docking structures and MD average structures of compound 04 (A), 17
(B), 21 (C), and 35 (D). Carbon atoms of docking result and MD average structures are shown in green
and cyan, respectively. H-bonds from docking and MD are shown as red dashed lines and purple
dashed lines, respectively. Halogen bonds are represented by orange dotted lines.

Table 7. Binding free energies of ligand—protein complexes.

AEe AEyqw AGgp AGgp AGgq AGping

No. kcal mol—1 kcal mol—1 kcal mol—1 kcal mol—1 kcal mol—1 kcal mol—1 PICs
LSD1-04 —28.5803 -51.8392 45.2379 —-6.0145 39.2235 —41.1960 6.917
LSD1-17 —14.5346 —45.4670 34.5108 -5.5613 28.9496 —31.0520 5.447
LSD1-21 -16.5911 —50.1944 37.4930 -6.2235 31.2696 —35.5160 6.117
LSD1-35 —15.5150 —38.2128 30.7264 -5.0611 25.6653 —28.0625 4.790

The binding free energies of compounds 04, 17, 21, and 35 with LSD1 were —41.196 kcal mol?,
-31.052 kcal mol ™!, —35.516 kcal mol ™!, and —28.063 kcal mol~!, respectively. The more negative the
binding free energies of compounds, the better the experimental activity of the compounds. The van
der Waals energy AE,4,, contributed most to the free energy, indicating that hydrophobic interaction
played an important role in the binding process. In addition, electrostatic interaction AEele also
contributed greatly to the binding free energy. The polar solvation energy AGgp was positive, which
indicated that it is disadvantageous to binding free energy, and the value of Ggg was larger. This
may be due to the large binding pocket and the exposure of ligands to solvents. However, nonpolar
solvation energy AGga was negative, which meant that it was good for binding free energy. Previous
studies have shown that there is a significant correlation between binding free energy and experimental
activity [45]. In this study, the binding free energies of the compounds were arranged in the same order
as pICsg: 04 (pICsp = 6.917) > 21 (pICsp = 6.117) > 17 (pICsg = 5.447) > 35 (pICs5¢ = 4.790). The binding
free energy was calculated on the basis of the docking results. The pICsy rank was consistent with the
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rank of binding free energy, which showed that the pose of ligands after docking was very close to the
real binding mode, and verified that the previous selection of binding site was correct.

4. Conclusions

In this study, 41 stilbene derivatives were collected and synthesized, and a series of 3D-QSAR
modeling, molecular docking, and molecular dynamics simulations were carried out. Firstly, COMFA
(q2 = 0.623,r}2)re 4 = 0.857) and CoMSIA (q2 = 0.728,1'}7;re q = 0.899) models were constructed using the
lowest energy conformation. The models had good internal verification ability and external prediction
ability. In order to further evaluate the external prediction ability of the models, Tropsha and Roy
criteria were used to evaluate the models. Statistically, our model was reliable and could be used
to predict the unknown activity of stilbene derivatives to reduce experimental losses. At the same
time, the contour maps were obtained, which reasonably explained the relationship between the
structure and activity of the compounds, and summarized the key information. Secondly, the binding
site of compounds was predicted by double software docking. On this basis, the binding modes of
the compounds were explored and classified into three categories. Furthermore, the reasons for the
differences in activity were explained. The hydrophobic amino acids Phe538, Leu659, Trp751, Tyr761,
Ala809, and Val811 played important roles in the stability of small molecules in the binding pocket,
and amino acids Val288, Ser289, Gly314, Thr624, and Lys661 played key roles in the formation of
H-bonds. Finally, compounds 04, 17, 21, and 35, with a large activity range, were selected for MD. The
interactions between those compounds and LSD1 were observed before and after MD. The reason for
the poor activities of compounds 17 and 25 was explained. A halogen bond between compound 04
and Ser760 was also observed. The rank of binding free energies calculated by MM/GBSA coincided
well with experimental activity, which indicated that the predictions of the binding site and binding
mode were reasonable. We hope that this study will provide guidance and help for the design of new
reversible LSD1 inhibitors.

Supplementary Materials: The following are available online, S1: Compound Characterization Data, Figure S1:
3D-QSAR Histogram of activity data distribution, S2: MOE2015 docking process, Table S1: Randomizations
of biological activity for the Y-random test, S3: Structural validation, Figure S2: Ramachandran plot, Table S52:
Residues falling in the core region of the Ramachandran’s plot, Figure S3: Verify 3D plots for model, Figure
S4: ERRAT result for model, Figure S5: Docking results of the compound 04(A), 05(B) and 10(C) under type B,
Table S3: MOE2015 docking results, Figure S6: All compounds were docked into the FAD-binding site, Figure S7:
Docking results of the compound 04(A), 22(B) and 29(C) with LSD1, Figure S8: The superposition of the docking
structure and structure of compound 35 in 36ns MD, Figure S9: Temperature fluctuation plot in MD.
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