Supporting information

Synthesis and pharmacological evaluation of hybrids targeting opioid and neurokinin receptors

Karol Wtorek^a, Anna Adamska-Bartłomiejczyk^a, Justyna Piekielna-Ciesielska^a, Federica Ferrari^b, Chiara Ruzza^b, Alicja Kluczyk^c, Joanna Piasecka-Zelga^d, Girolamo Calo'^b, Anna Janecka^{a *}

^aDepartment of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland

^b Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy

^cFaculty of Chemistry, University of Wroclaw, Wroclaw, Poland

^dInstitute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Head of Research Laboratory for Medicine and Veterinary Products, Lodz, Poland.

Contents

Physicochemical characterization of analogs 2-7 (Table S1)	.p. S2
High resolution MS spectra (Fig. S1-S6)	p. S3
Concentration-response curves of hybrid analogs 2-7 in the functional assay (Fig. S7)	p. S10

Table S1. Physicochemical characterization of hybrids 2-7.

No.	Sequence			m/z	m/z
		Molecular	Molecular	calcul. for	found for
		Formula	Weight	[M+2H] ²⁺	[M+2H] ²⁺
2	H-Tyr-[D-Lys-Phe-Phe-Asp]-Asn-D-Trp-Phe-D-Trp-Leu-Nle-NH2	C84H102N16O14	1559.8075	780.3953	780.3904
3	H-Tyr-[D-Lys-Phe-Phe-Asp]-D-Trp-Phe-D-Trp-Leu-Nle-NH ₂	C80H96N14O12	1445.7048	723.3739	723.3701
4	H-Tyr-[D-Lys-Phe-Phe-Asp]-Gln-Phe-Phe-Gly-Leu-Met-NH ₂	C73H94N14O14S	1423.6779	712.3470	712.3422
5	H-Tyr-[D-Lys-Phe-Phe-Asp]-Phe-Phe-Gly-Leu-Met-NH ₂	$C_{68}H_{86}N_{12}O_{12}S$	1295.5486	648.3177	648.3129
6	H-Tyr-[D-Lys-Phe-Phe-Asp]-Phe-Gly-Leu-Met-NH ₂	C59H77N11O11S	1148.3748	574.7835	574.7780
7	H-Tyr-[D-Lys-Phe-Phe-Asp]-Gly-Leu-Met-NH ₂	$C_{50}H_{68}N_{10}O_{10}S$	1001.2009	501.2493	501.2438

Figure S1. High resolution MS spectrum of peptide H-Tyr-(D-Lys-Phe-Phe-Asp)-Asn-D-Trp-Phe-D-Trp-Leu-Nle-NH₂ (analog 2). In inset, fragment of the experimental spectrum is compared with the simulated isotopic profile calculated for the expected molecular formula of protonated species $[M+2H]^{2+}$ (bottom panel).

Figure S2. High resolution MS spectrum of peptide H-Tyr-(D-Lys-Phe-Phe-Asp)-D-Trp-Phe-D-Trp-Leu-Nle-NH₂ (analog 3). In inset, fragment of the experimental spectrum is compared with the simulated isotopic profile calculated for the expected molecular formula of protonated species $[M+2H]^{2+}$ (bottom panel).

Figure S3. High resolution MS spectrum of peptide H-Tyr-(D-Lys-Phe-Phe-Asp)-Gln-Phe-Gly-Leu-Met-NH₂ (analog 4). In inset, fragment of the experimental spectrum is compared with the simulated isotopic profile calculated for the expected molecular formula of protonated species $[M+2H]^{2+}$ (bottom panel).

Figure S4. High resolution MS spectrum of peptide H-Tyr-(D-Lys-Phe-Phe-Asp)-Phe-Phe-Gly-Leu-Met-NH₂ (analog 5). In inset, fragment of the experimental spectrum is compared with the simulated isotopic profile calculated for the expected molecular formula of protonated species $[M+2H]^{2+}$ (bottom panel).

Figure S5. High resolution MS spectrum of peptide H-Tyr-(D-Lys-Phe-Asp)-Phe-Gly-Leu-Met-NH₂ (analog 6). In inset, fragment of the experimental spectrum is compared with the simulated isotopic profile calculated for the expected molecular formula of protonated species $[M+2H]^{2+}$ (bottom panel).

Figure S6. High resolution MS spectrum of peptide H-Tyr-(D-Lys-Phe-Phe-Asp)-Gly-Leu-Met-NH₂ (analog 7). In inset, fragment of the experimental spectrum is compared with the simulated isotopic profile calculated for the expected molecular formula of protonated species $[M+2H]^{2+}$ (bottom panel).

Figure S7. Concentration response curves of EM-2 (1) and analogs 2-7 in calcium mobilization experiments.