Supporting Information

Towards Covalent Photosensitizer-Polyoxometalate Dyads-Bipyridyl-Functionalized Polyoxometalates and Their Transition Metal Complexes

Andreas Winter ^{1,2}, Patrick Endres ^{1,2}, Erik Schröter ^{1,2}, Michael Jäger ^{1,2}, Helmar Görls ³, Christof Neumann ^{2,4}, Andrey Turchanin ^{2,4} and Ulrich S. Schubert *,^{1,2}

- ¹ Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; andreas.winter@uni-jena.de (A.W.); patrick.endres@uni-jena.de (P.E.); erik.schroeter@uni-jena.de (E.S.); michael.jager.iomc@uni-jena.de (M.J.)
- ² Center for Energy and Environmental Chemistry (CEEC) Jena, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; christof.neumann@uni-jena.de (C.N.); andrey.turchanin@unijena.de (A.T.)
- ³ Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany; helmar.goerls@uni-jena.de
- ⁴ Institute of Physical Chemistry (ICP), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
- * Correspondence: ulrich.schubert@uni-jena.de; Tel.: +49-3641-948201

Table of content:

•	NMR spectroscopy	page 2
•	Mass spectrometry	page 10
•	X-Ray photoelectron spectroscopy	page 15
•	Cyclic and square-wave voltammetry	page 19
•	UV/vis absorption and emission spectroscopy	page 22

1. NMR spectroscopy

Figure SI- 1. ¹H NMR spectrum of **2** (400 MHz, CD₃OD).

Figure SI- 2. ¹³C NMR spectrum of **2** (101 MHz, CD₃OD).

Figure SI- 3. ¹H NMR spectrum of **3** (400 MHz, CD₃CN). Residual diethyl ether (*) and TBA⁺ signals (•) are marked.

Figure SI- 4. ³¹P NMR spectrum of **3** (162 MHz, CD₃CN).

Figure SI- 5. ¹H NMR spectrum of **4** (400 MHz, CD₃CN). The TBA⁺ signals (**♦**) are marked.

Figure SI- 6. ³¹P NMR spectrum of **4** (162 MHz, CD₃CN). The signals arising from an unidentified cluster impurity are marked (*). Note, that this impurity could be removed after the subsequent complexation step (see Figures SI-8 and SI-9).

Figure SI- 7. ¹H NMR spectrum of **5** (400 MHz, *D*₆-DSMO). Residual DMAc (*) and TBA⁺ signals (•) are marked.

Figure SI- 8. ⁹⁵Mo NMR spectra of (TBA)₄[α -Mo₈O₂₆] (a) and **5** (b). The spectra were recorded at 26 MHz in D₂O and D₆-DMSO, respectively. In the case, of [α -Mo₈O₂₆]⁴⁺, an artefact was observed at *ca.* 0 ppm (marked with an asterisk). Only the relevant ppm regime where resonances from {MO} clusters should appear were probed (0 to 200 ppm).

Figure SI- 9. ¹H NMR spectrum of **6** (400 MHz, *D*₆-DMSO). Residual DMAc (*), Et₂O (•) and TBA⁺ signals (•) are marked.

Figure SI- 10. ¹H NMR of **8** (400 MHz, CD₃CN). The TBA⁺ signals (**♦**) are marked.

Figure SI- 11. ³¹P NMR of **8** (162 MHz, CD₃CN).

Figure SI- 12. ¹H NMR spectrum of **9** (400 MHz, CD₃CN). The TBA⁺ signals (**♦**) are marked.

Figure SI- 13. ³¹P NMR spectrum of **9** (162 MHz, CD₃CN).

Figure SI- 14. ¹H NMR spectrum of **10** (400 MHz, *D*₆-DMSO). Residual acetone (•) and TBA⁺ signals (•) are marked.

Figure SI- 15. ¹H NMR spectrum of **11** (400 MHz, *D*₆-DMSO). The TBA⁺ signals (**♦**) are marked.

2. Mass spectrometry

Figure SI- 16. ESI mass spectrum of **2** (positive mode).

Figure SI- 17. ESI mass spectrum of **3** (negative mode).

Figure SI- 18. MALDI-TOF mass spectrum of **3** (negative mode, DCTB as matrix, NaI as ionization salt).

Figure SI- 19. MALDI-TOF mass spectrum of **4** (negative mode, DCTB as matrix, NaI as ionization salt).

Figure SI- 20. ESI mass spectrum of **5** (negative mode).

Figure SI- 21. ESI Mass spectrum of **6** (negative mode).

Figure SI- 22. MALDI-TOF mass spectrum of **8** (negative mode, DCTB as matrix, NaI as ionization salt).

Figure SI- 23. ESI mass spectrum of **9** (negative mode).

Figure SI- 24. MALDI-TOF mass spectrum of **10** (negative mode, 9-aminoacridine as matrix, NaI as ionization salt).

Figure SI- 25. MALDI-TOF mass spectrum of **11** (DCTB as matrix, KCl as ionization salt).

Figure SI- 26. XP overview spectra of the photosensitizer-POM dyads **8–11** with marked elements.

Figure SI- 27. High resolution XP P 2p and Rh 3d spectra of the photosensitizer-POM dyad 8.

Figure SI- 28. High resolution XP Ir 4f and Mo 3d spectra of the photosensitizer-POM dyad **11**.

Table SI-1. Quantitative analysis of the high-resolution XP spectra of the photosensitizer-POM dyads **8–11** including peak assignment, binding energies and full width at half maximum (FWHM) values obtained from the spectra deconvolution.

Peak assignment	Binding energy, eV	FWHM, eV
	photosensitizer-POM dyad 8	
	Rh 3d5/2	
[(ppy)2Rh]+	310.2	1.1
	P 2p _{3/2}	
P2W15V3O62	134.1	1.2
	W 4f _{7/2}	
P2W15V3O62	36.1	1.0
	photosensitizer-POM dyad 9	
	Ir 4f _{7/2}	
[(ppy)2Ir]+	63.0	1.2
	P 2p _{3/2}	
$P_2W_{15}V_3O_{62}$	134.3	1.2
	W 4f _{7/2}	
$P_2W_{15}V_3O_{62}$	36.4	1.0
	photosensitizer-POM dyad 10	
	Rh 3d5/2	
[(ppy)2Rh]+	309.8	1.0
	Mo 3d5/2	
MnM06O24	232.8	1.1
	Mn 2p _{3/2}	
MnM06O24	642.5	5.0
	photosensitizer-POM dyad 11	
	Ir 4f _{7/2}	
[(ppy)2Ir]+	62.6	1.0
	Mo 3d5/2	
MnM06O24	232.9	1.1

Mn 2p _{3/2}				
MnMo6O24	642.8	4.8		

The peak fitting of the doublets was performed using fixed intensity ratios due to the spin-orbit coupling of the p, d and f photoelectrons, respectively. With respect to the determination of the elemental ratio (see the main manuscript), the following relative sensitivity factors (RSF) were used: 8.39 (Rh 3d_{5/2}), 0.79 (P 2p_{3/2}), 7.78 (Ir 4f_{7/2}), 5.62 (Mo 3d_{5/2}), 9.17 (Mn 2p_{3/2}) and 5.48 (W 4f_{7/2}).

4. Cyclic and square-wave voltammetry

Figure SI- 29. Cyclic (a) and square-wave voltammograms (b) of **3**. CV and SWV were measured at room temperature in degassed CH₃CN containing 0.1 M (TBA)PF₆ (scan rate of 100 mV/s).

Figure SI- 30. Cyclic (a) and square-wave voltammograms (b) of **8**. CV and SWV were measured at room temperature in degassed CH₃CN containing 0.1 M (TBA)PF₆ (scan rate of 200 mV/s).

Figure SI- 31. Cyclic (a) and square-wave voltammograms (b) of **9**. CV and SWV were measured at room temperature in degassed CH₃CN containing 0.1 M (TBA)PF₆ (scan rate of 200 mV/s).

Figure SI- 32. Cyclic voltammogram of **5** measured at room temperature in degassed DMF containing 0.1 M (TBA)PF₆ (scan rates of 100 mV/s).

Figure SI- 33. Cyclic (a and c) and square-wave voltammograms (b) of **6**. CV and SWV were measured at room temperature in degassed CH₃CN containing 0.1 M (TBA)PF₆. Different scan rates were used in the CV measurements in the potential range from –2.25 to 1 V.

Figure SI- 34. Square-wave voltammogram of **10** measured at room temperature in degassed DMF containing 0.1 M TBPF₆ (scan rates of 100 mV/s).

5. UV/vis absorption and emission spectroscopy

Figure SI- 35. UV/vis absorption spectrum of the Rh(III)-containing dyad 8.