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1. NMR spectroscopy 

 

Figure SI- 1. 1H NMR spectrum of 2 (400 MHz, CD3OD). 

 

 

Figure SI- 2. 13C NMR spectrum of 2 (101 MHz, CD3OD). 
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Figure SI- 3. 1H NMR spectrum of 3 (400 MHz, CD3CN). Residual diethyl ether (*) and TBA+ signals () 

are marked. 

 

 

Figure SI- 4. 31P NMR spectrum of 3 (162 MHz, CD3CN). 
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Figure SI- 5. 1H NMR spectrum of 4 (400 MHz, CD3CN). The TBA+ signals () are marked. 

 

 

Figure SI- 6. 31P NMR spectrum of 4 (162 MHz, CD3CN). The signals arising from an unidentified 

cluster impurity are marked (*). Note, that this impurity could be removed after the subsequent 

complexation step (see Figures SI-8 and SI-9). 
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Figure SI- 7. 1H NMR spectrum of 5 (400 MHz, D6-DSMO). Residual DMAc (*) and TBA+ signals (•) are 

marked. 

 

 

Figure SI- 8. 95Mo NMR spectra of (TBA)4[α-Mo8O26] (a) and 5 (b). The spectra were recorded at 26 

MHz in D2O and D6-DMSO, respectively. In the case, of [α-Mo8O26]4+, an artefact was observed at ca. 0 

ppm (marked with an asterisk). Only the relevant ppm regime where resonances from {MO} clusters 

should appear were probed (0 to 200 ppm). 
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Figure SI- 9. 1H NMR spectrum of 6 (400 MHz, D6-DMSO). Residual DMAc (*), Et2O (•) and TBA+ 

signals () are marked. 

 

 

Figure SI- 10. 1H NMR of 8 (400 MHz, CD3CN). The TBA+ signals () are marked. 
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Figure SI- 11. 31P NMR of 8 (162 MHz, CD3CN). 

 

 

Figure SI- 12. 1H NMR spectrum of 9 (400 MHz, CD3CN). The TBA+ signals () are marked. 
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Figure SI- 13. 31P NMR spectrum of 9 (162 MHz, CD3CN). 

 

 

Figure SI- 14. 1H NMR spectrum of 10 (400 MHz, D6-DMSO). Residual acetone (•) and TBA+ signals () 

are marked. 
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Figure SI- 15. 1H NMR spectrum of 11 (400 MHz, D6-DMSO). The TBA+ signals () are marked. 
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2. Mass spectrometry 

 

Figure SI- 16. ESI mass spectrum of 2 (positive mode). 

 

 

Figure SI- 17. ESI mass spectrum of 3 (negative mode). 

 



 
11 

 

 

Figure SI- 18. MALDI-TOF mass spectrum of 3 (negative mode, DCTB as matrix, NaI as ionization 

salt). 

 

 

Figure SI- 19. MALDI-TOF mass spectrum of 4 (negative mode, DCTB as matrix, NaI as ionization 

salt). 
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Figure SI- 20. ESI mass spectrum of 5 (negative mode). 

 

 

Figure SI- 21. ESI Mass spectrum of 6 (negative mode). 
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Figure SI- 22. MALDI-TOF mass spectrum of 8 (negative mode, DCTB as matrix, NaI as ionization 

salt). 

 

 

Figure SI- 23. ESI mass spectrum of 9 (negative mode). 
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Figure SI- 24. MALDI-TOF mass spectrum of 10 (negative mode, 9-aminoacridine as matrix, NaI as 

ionization salt). 

 

 

Figure SI- 25. MALDI-TOF mass spectrum of 11 (DCTB as matrix, KCl as ionization salt). 
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3. X-ray photoelectron spectroscopy 

 

 

 

Figure SI- 26. XP overview spectra of the photosensitizer-POM dyads 8–11 with marked elements. 
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Figure SI- 27. High resolution XP P 2p and Rh 3d spectra of the photosensitizer-POM dyad 8.  
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Figure SI- 28. High resolution XP Ir 4f and Mo 3d spectra of the photosensitizer-POM dyad 11. 
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Table SI-1. Quantitative analysis of the high-resolution XP spectra of the photosensitizer-POM dyads 

8–11 including peak assignment, binding energies and full width at half maximum (FWHM) values 

obtained from the spectra deconvolution. 

 

Peak assignment Binding energy, eV FWHM, eV 

photosensitizer-POM dyad 8 

Rh 3d5/2 

[(ppy)2Rh]+ 310.2 1.1 

P 2p3/2 

P2W15V3O62 134.1 1.2 

W 4f7/2 

P2W15V3O62 36.1 1.0 

photosensitizer-POM dyad 9 

Ir 4f7/2 

[(ppy)2Ir]+ 63.0 1.2 

P 2p3/2 

P2W15V3O62 134.3 1.2 

W 4f7/2 

P2W15V3O62 36.4 1.0 

photosensitizer-POM dyad 10 

Rh 3d5/2 

[(ppy)2Rh]+ 309.8 1.0 

Mo 3d5/2 

MnMo6O24 232.8 1.1 

Mn 2p3/2 

MnMo6O24 642.5 5.0 

photosensitizer-POM dyad 11 

Ir 4f7/2 

[(ppy)2Ir]+ 62.6 1.0 

Mo 3d5/2 

MnMo6O24 232.9 1.1 
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Mn 2p3/2 

MnMo6O24 642.8 4.8 

 

The peak fitting of the doublets was performed using fixed intensity ratios due to the spin-orbit 

coupling of the p, d and f photoelectrons, respectively. With respect to the determination of the 

elemental ratio (see the main manuscript), the following relative sensitivity factors (RSF) were used: 

8.39 (Rh 3d5/2), 0.79 (P 2p3/2), 7.78 (Ir 4f7/2), 5.62 (Mo 3d5/2), 9.17 (Mn 2p3/2) and 5.48 (W 4f7/2). 
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4. Cyclic and square-wave voltammetry 

 

 

Figure SI- 29. Cyclic (a) and square-wave voltammograms (b) of 3. CV and SWV were measured at 

room temperature in degassed CH3CN containing 0.1 M (TBA)PF6 (scan rate of 100 mV/s). 

 

 

 

Figure SI- 30. Cyclic (a) and square-wave voltammograms (b) of 8. CV and SWV were measured at 

room temperature in degassed CH3CN containing 0.1 M (TBA)PF6 (scan rate of 200 mV/s). 
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Figure SI- 31. Cyclic (a) and square-wave voltammograms (b) of 9. CV and SWV were measured at 

room temperature in degassed CH3CN containing 0.1 M (TBA)PF6 (scan rate of 200 mV/s). 

 

 

 

Figure SI- 32. Cyclic voltammogram of 5 measured at room temperature in degassed DMF containing 

0.1 M (TBA)PF6 (scan rates of 100 mV/s). 
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Figure SI- 33. Cyclic (a and c) and square-wave voltammograms (b) of 6. CV and SWV were measured 

at room temperature in degassed CH3CN containing 0.1 M (TBA)PF6. Different scan rates were used in 

the CV measurements in the potential range from –2.25 to 1 V. 
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Figure SI- 34. Square-wave voltammogram of 10 measured at room temperature in degassed DMF 

containing 0.1 M TBPF6 (scan rates of 100 mV/s). 

 

 

5. UV/vis absorption and emission spectroscopy 

 

Figure SI- 35. UV/vis absorption spectrum of the Rh(III)-containing dyad 8. 

 


