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Abstract: Janus kinase 2 (JAK2) inhibitors represent a promising therapeutic class of anticancer
agents against many myeloproliferative disorders. Bioactivity data on pIC50 of 2229 JAK2 inhibitors
were employed in the construction of quantitative structure-activity relationship (QSAR) models.
The models were built from 100 data splits using decision tree (DT), support vector machine (SVM),
deep neural network (DNN) and random forest (RF). The predictive power of RF models were
assessed via 10-fold cross validation, which afforded excellent predictive performance with R2 and
RMSE of 0.74 ± 0.05 and 0.63 ± 0.05, respectively. Moreover, test set has excellent performance of
R2 (0.75 ± 0.03) and RMSE (0.62 ± 0.04). In addition, Y-scrambling was utilized to evaluate the
possibility of chance correlation of the predictive model. A thorough analysis of the substructure
fingerprint count was conducted to provide insights on the inhibitory properties of JAK2 inhibitors.
Molecular cluster analysis revealed that pyrazine scaffolds have nanomolar potency against JAK2.

Keywords: tyrosine kinase inhibitors; quantitative structure activity relationship; data mining; Janus
kinase 2

1. Introduction

Cancer exerts a great impact on the quality of life and is a leading cause of death worldwide.
Although cancer chemotherapy, one of the major medical advances in the last few decades, is directed
toward certain macromolecules to treat cancer, it cannot efficiently discriminate between normally
dividing cell and tumor cells, leading to unwanted toxic side effects. However, targets are usually
located in tumor cells, thus providing a high specificity toward tumor cells and broader therapeutic
window with less toxicity is beneficial. Therefore, targeted therapy represents a promising approach
to cancer therapy [1]. Generally an ideal therapeutic target should not only be susceptible to specific
inhibition by small ligands but tumor cells also more dependent on the activity of the target than
normal cells [2].

Janus kinase 2 (JAK2) is a member of the Janus family of tyrosine kinase, which plays an important
role in many cellular signaling pathways [3,4]. It is a nonreceptor tyrosine kinase that relays signals
from cytokine receptors to downstream targets, including the transcription factors STAT3 and STAT5.
When it is activated, this family of enzymes increase tumor cell proliferation and growth, induce
antiapoptotic effects and promote angiogenesis as well as metastasis [5,6]. Therefore, the inhibition of
JAK2 would greatly reduce the activity of tyrosine kinase and compounds achieving such effects are
known as JAK2 inhibitors [7].
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JAK inhibitors are important class of targeted therapy that interfere with specific cell signaling
pathways, which allows target-specific therapy for selected malignancies. Many of the JAK inhibitors
are known to interfere with the JAK-STAT pathways, which have an implication in the treatment
of different types of cancers and inflammatory diseases [8–11]. JAK inhibitors can be found in FDA
approved drugs and clinical trials. For example, Ruxolitinib, an orally bioavailable selective inhibitor
of JAK2, inhibits the proliferation of JAK2 [12]. Lestautinib, an orally bio-available polyaromatic
indolocarbozole alkaloid, is a tyrosine kinase inhibitor that is currently in clinical trials and assigned
Investigational New Drug (IND) number 76431 [13].

Quantitative structure activity relationship (QSAR) is an approach for elucidating the origin of
biological activity with their respective chemical compounds represented as descriptors. The QSAR
models can reveal molecular features that are essential for active compounds and that can subsequently
be used as therapeutic agents [14]. Several QSAR models were developed in the hope to drive the novel
compounds with better properties against kinase [15–22]. To understand the origin and bioactivities
of JAK inhibitors, models were developed with the hope to identify important pharmacophores and
substructures using pharmacophores and 3D QSAR [23–35]. Due to the polypharmacological nature of
compounds, multi-target QSAR models have been also developed to handle the interaction of multiple
targets of JAK inhibitors. Although pharmacophores and 3D QSAR models, as well as multi-target
QSAR models [36,37] and tools [38] are essential in understanding structure-activity relationship of
JAK2 inhibitors, the ability of the those models to predict unknown bioactivity properties depends
largely on the size of training sets. Extrapolation power of the model, where the model predicts
accurately with confidence and credibility, depends on how well the training data represent the
unknown compounds. Therefore, QSAR model will have a small applicability domain and low general
predictability if they are based on a small data set.

Here we propose a large-scale QSAR investigation for predicting JAK2 inhibitors.
Several statistical methods were used to build regression models in which inhibitors were represented
as highly interpretable substructure fingerprint descriptors to understand the underlying JAK2
inhibitory activity, which is performed according to the guidelines of Organisation for Economic
Cooperation and Development (OECD) [39]. This may provide important insights into the
structural basis for the inhibition of JAK2, which may aid in the fight against cancer, in particular
myeloproliferative neoplasms.

2. Results

2.1. Chemical Space of JAK2 Inhibitors

In order to provide the chemical space of JAK2 inhibitors, Lipinski’s rule-of-five descriptors are
analyzed. This may provide insights on the origin of inhibitory properties of compounds. Lipinski’s
rule-of-five descriptor consisted of molecular weight (MW), octanol-water partition coefficient (ALogP),
number of hydrogen bond donors (nHBDon) and number of hydrogen bond acceptors (nHBAcc).
Scatter plot of ALogP vs MW of the JAK2 inhibitors coloured by activities is shown in Figure 1. It can
be seen that most of the compounds lie in the space of approximately 300 to 500 Da (MW) and 2.5 to 4
(AlogP). A boxplot of AlogP, nHBAcc, nHBDon and MW broken down by activity group is shown in
Figure 2. Based on the boundaries of the boxes, there is no differences between the three bioactivity
classes for nHBdon and ALogP. However, there is a weak trend of differences between the bioactivity
groups for nHBAcc and MW, suggesting the active bioactivity classes higher nHBAcc and MW values.
The results may suggest that the most desirable region for bioactivity is MW > 400, AlogP < 3 and
nHBAcc > 6 (Figure 2).
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Figure 1. Chemical space of JAK2 inhibitors are shown as actives (green), inactives (red) and
intermediates (blue).
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Figure 2. Box plot of the Linpiski’s descriptors actives (green), inactives (red) and intermediates (blue).

2.2. QSAR Modeling

Usage of substructure fingerprint descriptors allows us to pinpoint the substructures that are
important for modulating activity of JAK2. In order to get rid of the redundancy among the descriptors,
the substructures were filtered using a cutoff threshold set at 0.70. As previously mentioned, the initial
data set was split into a training set and test set, where the former represented 80% of the data set
while the latter constituted the remaining 20% of the data set. To avoid the random seed, data splitting
was performed for 100 iterations where each split was used to create a predictive model. The mean and
standard deviation of the resulting predictive performance (R2, RMSE, r2

m and ∆r2
m) were computed.

QSAR models were developed with various machine learning methods consisting of rule based
models (DT), ensemble models (RF), non-linear models (SVM) and deep learning (DNN). As shown
in the Table 1, the predictive performances of the training set provide R2 of 0.65–0.75. The R2 can
be represented as intuitive metrics for ranking model and for intuitive comparison. The presence of
irrelevant descriptors or overfitted model can be revealed by deterioration of predictive performance
from 10-fold cross validation and a test set. A closer look at the models reveal that the bagging of
trees improves the predictive performance over a single tree by reduction variance of the prediction.
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As seen in the Table 1, the R2 of training set for RF is 0.75 ± 0.02 whereas for DT is 0.65 ± 0.02.
SVM is an non-linear modeling technique which is considered to be powerful and highly flexible.
The R2, RMSE, r2

m and ∆r2
m of the training set for SVM is 0.72 ± 0.02, 0.65 ± 0.02, 0.57 ± 0.04 and

0.26 ± 0.01, respectively. Recently, deep learning is an emerging technology in machine perception
and natural language processing. The performance of DNN is higher than DT with R2 of 0.59 ± 0.04
and RMSE = 0.82 ± 0.07. Table 2 showed the MAE of DT, SVM, DNN and RF. It can be seen that the
order of error according to MAE is RF > SVM > DT > DNN for the training set. The error order is
slightly different for the test set which is RF > SVM > DNN > DT. It can be seen that RF model is not
overfitted to the training data which is indicated by the small gap between the training and test set
MAE values. Several QSAR models on JAK2 were performed. The training set of 22, 31, 40, 42, 51 and
161 leads to the R2 of 0.97 [28], 0.97 [23], 0.929 [27], 0.970 [26], 0.93 [25] and 0.869 [24], respectively. It
can be seen that QSAR models built from lower training sets tend to have better performance. On the
other hand, the QSAR built from a large data set using diverse chemical structures will have lower
performance due to confounding factors. Nevertheless, QSAR models built from a large data set may
have implication on the domain of applicability.

Scatter plots of R2 versus Q2 for the Y-permutated (i.e., Y-scrambled) datasets of JAK2 inhibitory
properties is shown in Figure 3. It can be observed that the actual X-Y pair for the QSAR models
of bioactivities (pIC50) is clearly separated from the permutated X-Y pairs, ruling out the chance of
correlation of the QSAR models [40].
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Figure 3. Y-scrambling plot of pIC50 as obtained from QSAR models after feature selection.
The scrambled models in which the pIC50 were randomly shuffled while keeping the descriptor
matrix intact. The scrambled models were coloured as pink while the real model was coloured as
green.
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Table 1. Performance summary of QSAR Models for predicting pIC50 using DT, SVM, DNN and RF.

Models
Training Set 10-Fold CV Test Set

R2 RMSE r2
m ∆r2

m R2 RMSE r2
m ∆r2

m R2 RMSE r2
m ∆r2

m

DT 0.65 ± 0.02 0.72 ± 0.02 0.65 ± 0.02 0.28 ± 0.01 0.45 ± 0.07 0.91 ± 0.06 0.40 ± 0.09 0.20 ± 0.06 0.29 ± 0.05 1.02 ± 0.04 0.28 ± 0.05 0.31 ± 0.05
SVM 0.72 ± 0.01 0.65 ± 0.02 0.66 ± 0.02 0.26 ± 0.01 0.57 ± 0.05 0.80 ± 0.06 0.54 ± 0.04 0.33 ± 0.03 0.58 ± 0.05 0.79 ± 0.05 0.56 ± 0.03 0.33 ± 0.02
DNN 0.59 ± 0.04 0.82 ± 0.07 0.57 ± 0.04 0.32 ± 0.03 0.47 ± 0.07 0.93 ± 0.08 0.43 ± 0.07 0.29 ± 0.08 0.49 ± 0.04 0.90 ± 0.06 0.47 ± 0.04 0.31 ± 0.05
RF 0.75 ± 0.02 0.62 ± 0.02 0.69 ± 0.01 0.24 ± 0.01 0.74 ± 0.05 0.63 ± 0.05 0.67 ± 0.04 0.25 ± 0.03 0.75 ± 0.03 0.62 ± 0.04 0.68 ± 0.03 0.25 ± 0.02
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The models built on JAK2 has an excellent performance for RF as judged from the cross-validation
set and test set. The performance of the cross-validation set is R2 = 0.74 ± 0.05 and RMSE = 0.63 ± 0.05.
For the test set, the RF have higher predictive performance as deduced from R2 (0.75 ± 0.03) and
RMSE (0.65 ± 0.04). The model complies with the requirement of the threshold values proposed by
Tropsha (R2 > 0.6 and Q2 > 0.5) [41]. The margin between the R2 of training set and R2 of test set is
0.00, indicating that the model is reliable and predictive [42]. Figure 4 showed the experimental pIC50

as a function of prediction from RF.

Table 2. MAE of QSAR Models for DT, SVM, ANN and RF.

Models
Training Set 10-Fold CV Test Set

MAE MAE MAE

DT 0.53 ± 0.02 0.65 ± 0.05 0.76 ± 0.03
SVM 0.42 ± 0.02 0.55 ± 0.04 0.54 ± 0.03
DNN 0.64 ± 0.06 0.71 ± 0.07 0.70 ± 0.05
RF 0.42 ± 0.01 0.43 ± 0.04 0.42 ± 0.02
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Figure 4. Experimental vs Predicted plot of pIC50 as obtained from QSAR models after feature selection.
The training set and test set are shown as blue circles and red circles.

2.3. Interpretation of QSAR Models

The analysis of feature importance for different types of substructure fingerprints provides a
better understanding of the JAK2 inhibitors. Table 3 showed a list of structure fingerprints and their
descriptors that were utilized in the study. The efficient, effective and transparent Gini Index from
RF was used to identity important features based on the predictive performance in Table 1. To avoid
the bias of random seed in evaluating feature importance, the average and standard deviation values
of Gini Index from 100 runs are used in the analysis. When interpreting the Gini Index, the high
values have the most weight in dependent variables (pIC50). From the Figure 5, it can be seen that,
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SubFPC184 (276.48 ± 20.19), SubFPC295 (233.71 ± 17.86), SubFPC301 (230.87 ± 16.51), SubFPC302
(180.49 ± 11.78) and SubFPC214 (136.28 ± 19.00) have the highest values of Gini Index, suggesting
that these substructures in compounds could have substantial impact on potency, based on the QSAR
model. Because the features which have the highest coefficient values have highest weight of increase
in bioactivity value, SubFPC184 (Heteroaromatic) is one of the most important features in determining
potency of JAK2. It can be observed that FDA approved drugs namely Ruxolitinib [43], Tofacitinib [44],
Baricitinib [45], Fedratinib [46], have heteroaromatic pyrimidine ring, suggesting that heteroaromatic is
an important substituent when designing novel drugs as JAK2 inhibitors. The second most important
feature is SubFPC295 which represents C ONS bond in the chemical structures. This feature facilitates
in non-convalent interaction between inhibitors and JAK2 [47]. The third most important feature is
SubFPC301 (1,5-Tautomerizable). Tautomerizable heterocycles have recently emerged as an attractive
class of inhibitors for JAK2. Indeed, Pyrazolo[1,5-a]pyrimidines are important classes of chemical
compounds that display a wide range of biological activities, including ant-cancer by modulating
JAK2 [48]. Lastly, SUBFPC302 (rotatable bond) and SubFPC214 (sulfonic derivative) are important to
consider when designing novel JAK2 inhibitors with high potency.The analysis of a crystal structure
showed that selectivity of protein inhibitors is controlled by a hydrophobic pocket via a rotatable bond
in the compound skeleton [49]. This is in agreement with the fact that all of the clinical approved drugs
that target JAK2 has at least one rotatable bond in their chemical structures.

Table 3. A list of top substructure fingerprints and their descriptions.

Fingerprints Description

SubFPC1 Primary Carbon
SubFPC2 Secondary Carbon
SubFPC3 Tertiary Carbon
SubFPC4 Quaternary Carbon
SubFPC5 Alkene
SubFPC12 Alcohol
SubFPC16 Dialkylether
SubFPC18 Alkylarylether
SubFPC26 Tertiary Aliphalitic Amine
SubFPC28 Primary Aromatic Amine
SubFPC32 Secondary Mixed Amine
SubFPC33 Tertiary Mixed Amine
SubFPC88 Carboxylic Acid derivative
SubFPC99 Primary Amide
SubFPC100 Secondary Amide
SubFPC101 Tertiary Amide
SubFPC133 Nitrile
SubFPC137 Vinylogous Ester
SubFPC143 Carbonic Acid Derivatives
SubFPC171 Arylchloride
SubFPC172 Arylfluoride
SubFPC179 Hetero N basic H
SubFPC180 Hetero N basic no H
SubFPC184 Heteroaromatic
SubFPC200 Sulfon
SubFPC214 Sulfonic Derivative
SubFPC279 Annelated Rings
SubFPC287 Spiro
SubFPC294 Trifluoromethyl
SubFPC295 C ONS Bond
SubFPC301 1,5-Tautomerizable
SubFPC302 Rotatable Bond
SubFPC307 Chiral Center Specified
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Figure 5. Gini Index of RF from selected descriptors.
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2.4. Applicability Domain

The AD of the QSAR was defined as to assess the credibility of the model via the Williams plot,
shown in Figure 6. The employed data set has in total 2229 compounds, which were partitioned into
two separate subsets. The first subset consisted of 80% of the data set, which is used as training set
while the second, set (20%) is used as a test set. Samples that represent the training set were highlighted
as blue, whereas the test set was colored as red (Figure 6). The h* had a value of 0.034 for the QSAR
model developed using RF. Clearly, it can be observed that almost all of the 2229 compounds are
within the boundaries of applicability domain, indicating that the QSAR model had a well-defined
AD. This may be because the training sample is based on various chemotypes, allowing the model to
predict the test set with validity and credibility. On the other hand, there are a few compounds which
lie outside the applicability domain of the model (Table S1).
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Figure 6. William plot for the QSAR model built using RF in which the horizontal dashed line represent
± 3 standardized residual and vertical dashed line represent warning leverage value (h*) of 0.034.
The blue dots represent training set and the red dots represent test set.

2.5. Molecular Cluster Analysis of JAK2 Inhibitors

To identify privileged scaffolds, cheminformatics approach was utilized to deduce privileged
scaffolds giving rise to high inhibitory activities against JAK2. Privileged substructures are a concept
introduced in which they are capable of making compounds that display potency for more than one
receptor, providing viable alternatives when searching for new receptor inhibitors [50].

Scaffolds analysis is performed with the following steps: (1) compounds are clustered within the
Tanimoto Similarity of 0.80 (2) clusters N > 19 are retained for further analysis (3) mean pIC50 of each
clusters are compared to the mean of JAK inhibitors (4) scaffolds are prioritized in terms of how much
higher mean of the cluster when compared to mean of the dataset. Table 4 showed the mean pIC50 of
each cluster in which cluster 5 and 6 have a nanomolar potency. A few exemplars can be purchased for
each scaffolds for future screening in designing potent drugs candidates against JAK2 (Figure 7).
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Table 4. Summary of the mean and standard deviation of pIC50, MW and AlogP along with their
respective chemical clusters.

Cluster No. pIC50 N MW AlogP

1 7.30 ± 1.12 876 456.11 ± 75.65 3.87 ± 1.16
2 7.57 ± 0.68 491 432.38 ± 58.91 3.59 ± 0.95
3 7.70 ± 0.81 137 455.01 ± 43.35 1.68 ± 0.99
4 6.98 ± 0.52 23 333.59 ± 55.50 2.01 ± 1.01
5 9.76 ± 0.75 58 385.45 ± 33.55 1.11 ± 0.69
6 10.04 ± 0.32 38 461.42 ± 44.55 0.74 ± 0.98
7 6.48 ± 0.41 25 436.48 ± 34.56 2.33 ± 0.95
8 8.12 ± 1.09 25 441.67 ± 24.85 3.78 ± 0.50
9 6.06 ± 0.85 20 287.99 ± 30.95 1.30 ± 1.59
10 6.97 ± 0.44 24 283.09 ± 15.28 1.68 ± 0.48

Figure 7. Scaffold Tree of Cluster 6 having nanomolar potency against JAK2.
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3. Materials and Methods

3.1. Data Set

A data set of inhibitors against the human JAK2 were compiled from the ChEMBL 22 database,
which is comprised of a total number of 6772 bioactivity data points from 3906 compounds [51].
Compounds were treated with the QSAR curation workflow from Fourches et al. [52]. SMILES
notations were treated with the ChemAxon’s Standardizer with the following options: Strip Salts,
Aromatize, Clean 3D, Tautomerize, Neutralize, or Remove explicit hydrogens [53]. IC50 was selected
for further investigation from the initial data set which possess several bioactivity measurement units
(including IC50, Ki, % activity, % inhibition, MIC, EC50 etc) because it constitutes largest subset with
3484 compounds. Moreover, compounds with without reported IC50 values or having lesser/greater
than signs were removed, resulting in 2229 compounds. The workflow for the JAK2 QSAR Modelling
is shown in the Figure 8.

ChEMBL

22

Initial 

data set

Selected 

data set

Final 

data set

Bioactivity data of 

JAK2 inhibitors

6,772 bioactivity 

data

3,484 compounds

Bioactivity 

measured by IC50
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no IC50, no SMILES notation and 

redundant bioactivity values

Data Splitting

Training 
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Test Set

2,229 compounds

Construct QSAR 

models 

Applicability 

domain 

assessment

Predict pIC50

Evaluate 

statistical 

parameters

Molecular 

Scaffold 

Analysis Important 

features

N

N N
H

Figure 8. Workflow for the JAK2 QSAR Modelling.

3.1.1. Description of Compounds

Understanding biological, chemical and physical properties of chemical compounds is a central
issue in pharmaceutical bioinformatics. With what accuracy this bioactivity can be predicted solely
depends on how chemical compounds are described. Several molecular descriptors have been
introduced with the aim of finding the most suited descriptors to relate these properties [54–58]. Here,
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substructure fingerprint [59] count was utilized to describe the JAK2 inhibitors using PaDEL-Descriptor
software [60].

3.1.2. Feature Selection

Collinearity is a condition where a pair of descriptors have a substantial correlation with each
other. In general, it is desirable to avoid data with highly correlated predictors. Not only do redundant
predictors frequently add more complexity to the model than the information they provide to the
model, which adds computational cost and time, but they also over-fit the model [61,62]. Over-fitting
means the model will usually have poor accuracy when predicting a new sample. Additionally,
it also affects the interpretation of descriptors because the resulting coefficient estimates or feature
usages are highly unstable [63]. In general, a Pearson’s correlation coefficient of 0.7 is an indicator
of high collinearity among predictors [64]. Thus, cor function from the R package stats was used to
calculate correlations among descriptors. To obtain filtered descriptors with all pairwise correlations
less than 0.7, the findCorrelation function from the R package caret with a cutoff at 70% was used [65].
The remaining descriptors used in the study are shown in the Figure 9.
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Figure 9. Intercorrelation matrix of the descriptors utilized for constructing the predictive models.
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3.1.3. Data Splitting

To avoid the bias that may arise from a single split when creating training models [66], predictive
models were constructed from each of the 100 independent data splitting and the mean and standard
deviation values of statistical parameters were reported. The dataset was randomly split (80%/20%)
into training and independent test set. The sample function from the R base package was used to split
the data [67]. Briefly, the sample function from R based is utilized to provide index numbers of rows
for 80% as a training index from the whole data set. To obtain the training set, the training data index
obtained from the sample function is utilized as index number to extract rows using brackets while the
remaining rows (20%) were used as testing set.

3.1.4. Multivariate Analysis

Supervised learning enables the model to make prediction about unseen or future data by learning
from labeled training data. Regression models were constructed for the prediction of the continuous
response variables as a function of predictors.

Decision Tree (DT) is a rule-based algorithm in which construction involves top steps, which are
growing and pruning. Growing starts from root node which are branches out to form internal nodes.
Internal nodes represent descriptors, branches describe descriptors value sand leaf nodes represent
dependent variables (i.e., pIC50). The tree is reduced to a set of rules, which are eliminated via pruning
for simplification. Advantage of pruning is that it reduces the complexity of the formed free and
reduces the chance of over fitting. The rpart function from the R package rpart was used to build the
QSAR models [68].

Support vector machine (SVM) is a machine learning that can be used to perform both
classification and regression in which kernel function is used to map the data into high dimensional
feature space. Commonly used guassian radial basis was used to build the model. The svm function
from R package e1071 was utilized to build QSAR models [69].

Deep neural network (DNN) is a method that imitate human brain comprising networks of
interconnected neurons that function in relaying message in the form of electrochemical signals. DNN
maps inputs to a target through a deep sequence of simple data transformations. The sequential model
from R package keras was used to build QSAR models [70].

Random forest (RF) is an ensemble model that is comprised of multiple decision trees. Optimal
tuning parameters (i.e., mtry) for RF were obtained by training the model with different ranges
accompanied with 10-fold cross-validation. The randomForest function from the R package randomForest
is used [71].

3.2. Validation of QSAR Models

Model validation is an essential process for assessing the performance of the predictive model.
The following statistical metrics were used to evaluate the performance of the QSAR models: coefficient
of determination (R2) [72], root mean squared error (RMSE) [73], r2

m [74] and ∆r2
m [74] as well as mean

absolue error (MAE) [75]. The R2 and RMSE are commonly utilized metric to assess the model
performance. r2

m and ∆r2
m metrics were used to verify the robustness of the proposed QSAR model

where an acceptable QSAR model should give r2
m > 0.5. Furthermore, 10-fold cross-validation, test set

validation and Y-scrambling test were used to verify the predictive performance of the QSAR models.
The 10-fold cross-validation technique is one of the most frequent statistical evaluation in which

10 percent of data is left out as a test set while the remaining data is used to build model (Q2) [76].
This process is iterated until all the data has been left out as a test set. Y-scrambling test was
also undertaken to assess the relationship between R2 and Q2 to rule of the possibility of chance
correlation [40]. The original Y-dependent variable (i.e., pIC50) was randomly shuffled with respect to
their associated independent variables (i.e., fingerprint descriptors).
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3.3. Applicability Domain Analysis

The applicability domain is an essential concept in QSAR which can be used to estimate the
uncertainty in prediction of a particular molecule based on the distance to the compounds used to
build the model [77]. Leverage approach was utilized to identify whether a new compound will
lie within or outside the domain, which was previously described [78]. The leverage is the distance
between a molecule and the centroid of the space of training set. If a compound has standardized
error of greater than 3 or less than -3 or higher than h∗ then the prediction the compound is unreliable.
The h∗ can be computed using the following equation:

h∗ =
3(p + 1)

n
(1)

where p is the number of substructure fingerprint count and n is the number of samples in the
training set.

3.4. Molecular Cluster Analysis

Binning clustering was utilized to cluster compounds in which the Tanimoto similarity cutoff
is set at 0.8 to ensure that similar chemotypes are clustered in each group. The cmp.cluster function
from the R package ChemmineR was employed to cluster the chemical structures [79]. Singletons were
excluded as they do not provide information. The top cluster biased towards activity is annotated
based on the Murcko Framework and displayed using the Scaffold Hunter [80].

4. Conclusions

Computational approaches for predicting the activities of JAK2 inhibitors can facilitate drug
discovery efforts by saving cost and time. QSAR modeling was performed using the substructure
fingerprint descriptors as an input to determine the importance on the inhibitory properties of the JAK2,
which provided excellent predictive performance for both cross-validation and the test set. By utilizing
the Gini Index of RF, heteroaromatic substituents (i.e. heteroaromatic ring, 1,5-tautomerizable
hetrocyclis and rotatable bond) are shown to have significant weight in improving the potency of the
JAK2 inhibitors. Molecular cluster analysis revealed that pyrazine scaffolds have nanomolar potency
against JAK2. Such insights can provide a better understanding of the origin of the JAK2 inhibitory
properties and may be used as a reference for designing novel modulators.
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Abbreviations

The following abbreviations are used in this manuscript:

JAK2 Janus Kinase 2
QSAR Quantitative Structure-Activity Relationship
DT Decision Tree
SVM Support Vector Machine
DNN Deep Neural Network
RF Random Forest
RMSE Root Mean Square Error
CV Cross Validation
OECD Organisation for Economic Cooperation and Development
MW Molecular Weight
ALogP Octanol-Water Partition Coefficient
nHBDon Number of Hydrogen Bond Donors
nHBAcc Number of Hydrogen Bond Acceptors
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