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Abstract: Seaweeds are some of the largest producers of biomass in the marine environment and
are rich in bioactive compounds that are often used for human and animal health. Porphyran and
carrageenan are natural compounds derived from red seaweeds. The former is a characteristic
polysaccharide of Porphyra, while the latter is well known from Chondrus, Gigartina, and various
Eucheuma species, all in Rhodophyceae. The two polysaccharides have been found to have anti-cancer
activity by improving immunity and targeting key apoptotic molecules and therefore deemed as
potential chemotherapeutic or chemopreventive agents. This review attempts to review the current
study of anti-cancer activity and the possible mechanisms of porphyran and carrageenan derived from
red seaweeds to various cancers, and their cooperative actions with other anti-cancer chemotherapeutic
agents is also discussed.

Keywords: seaweed; porphyran; carrageenan; anti-cancer

1. Introduction

Cancers are serious diseases of various etiologies, especially that of unhealthy eating habits and
lifestyle. In 2018, about 9.6 million cancer-related deaths and 18 million new cases were estimated
by the World Health Organization (WHO) [1]. Uncontrolled growth, invasiveness, and metastasis
are characteristics of tumor cells evoked by acquired genetic changes [2]. With tumor development,
unbalanced programmed cell death, disordered signaling pathways, angiogenesis, and poor immune
response disrupt various homeostatic pathways. Such deregulated pathways are the main targets
of cancer treatment by chemotherapy [3]. According to the characteristics and stage of the tumor,
combined therapy is applied in cancer treatment including surgery, chemotherapy, radiation therapy,
and immunotherapy. The ultimate aim of all treatments is to destroy the tumor cells in the achievement
of cancer treatment, while avoid damaging normal cells as far as possible. Unfortunately, severe side
effects are often unavoidable, limiting the efficacy of treatment. Chemotherapy is commonly and
effectively used in cancer therapeutics, exerting cytotoxicity on rapidly dividing and proliferating
cells, not only including malignant cells, but also normal cells with high-proliferating potential. Thus,
chemotherapy usually brings serious side effects including anemia, appetite loss, delirium, alopecia,
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peripheral neuropathy, and irreversible damage to vital organs [4]. In addition, drug tolerance is also
an issue in cancer treatment, which would weaken the treatment effects. Targeted therapy could avoid
the side effects in part, but not always completely. Monoclonal antibodies are generally safer than
chemotherapy only with mild allergic reactions such as urticaria for the design of a specifically targeted
treatment to the cancer antigens located on tumor cells. However, severe reactions are still hard to
avoid. For instance, patients who have a high burden of tumor cells in their circulation would face a
high risk of tumor lysis syndrome and other severe complications such as anaphylactic reactions and
myocardial infarction in occasional cases [5]. Therefore, developing low side-effect and better-tolerated
anti-cancer agents is compelling.

Natural products are attractive sources for the development of new medicinal and therapeutic
agents for their cell selective and fewer adverse effects. In this context, it is significant to develop
natural products in cancer treatment. According to reports, natural origins are the main origins for
approved drugs in the treatment of cancer, occupying almost 60% [6]. Though the development of
marine natural products is still in its embryonic stage, it is anticipated that marine natural products will
become an invaluable source for the development of new medicinal and therapeutic agents in cancer
treatment because of their large habitat (covering ~70% of the Earth’s surface), high biodiversity (95%
of world biodiversity), and the specific conditions under which some species live [7,8]. It has great
scope in which discover new anti-cancer medicine for large production, biological activity, and have
unique chemicals. Over the last few decades, pharmaceutical companies and academic institutions
have made significant efforts in deriving and identifying new marine products from marine organisms,
with more than 3000 new anti-cancer compounds [9]. Of particular interest are the products derived
from seaweeds with anti-cancer potential in natural marine products.

Seaweeds are widely distributed in cold, temperate, and tropical zones and play vital roles in
sustaining the biodiversity and ecology of marine ecosystems. Several species of economic value such
as Laminaria, Porphyra, and Gracilaria are cultured in the coastal waters of many countries [10]. Seaweeds
are low in lipids, rich in proteins, minerals, vitamins, antioxidants, phytochemicals, polyunsaturated
fatty acids, and are also a source of a vast number of novel compounds with unique health benefits
such as essential amino acids and their proteins as well as essential minerals [11,12]. Epidemiological
studies have shown that a seaweed-rich diet reduces the incidence of obesity, cancer, and heart and
cerebrovascular diseases [13]. A large number of studies have uncovered the anti-cancer activities of
seaweeds and numerous seaweed-derived compounds that have been shown to be effective through
multiple mechanisms such as the inhibition of cancer cell growth, invasiveness and metastasis as well
as by the induction of apoptosis in cancer cells. Some of the substances have been developed into
drugs for cancer treatment [3,14–17]. In recent years, natural compounds extracted from marine algae
have been proposed as effective in inhibiting tumor growth, adhesion, invasion, and migration [15].

Polyphenols and sulfated polysaccharides are the predominant belongings of seaweed, possessing
an array of pharmacological properties [6]. Polysaccharides are found in the intracellular space and in the
fibrillar cell walls of seaweeds [2]. Recently, considerable attention has been focused on polysaccharides
isolated from natural sources. Such polysaccharides, which are the main storage compounds in seaweed,
are polymers of hexoses or other monosaccharides with antioxidant, anti-cancer, anti-coagulant,
and anti-inflammatory properties and are widely included in commercial products [18–20]. Small
differences in structures in these polysaccharides determine their distinctive properties. These large
molecules are divided into either homopolysaccharides or homoglycans and heteropolysaccharides or
heteroglycans. Both are distinguished by a monomeric unit, which is of only one kind in the former
such as cellulose and starch, or two or more kinds in the latter. Additionally, the polymers are divided
into brown, red, green, and blue polysaccharides, according to the type of seaweed from which they are
derived. The former two polysaccharides have attracted more attention and are widely applied. Alginic
acid, fucoidan (sulfated fucose), and laminaran (β-1,3 glucan) are derived from brown seaweed. Agars,
carrageenans, xylans, floridean starch (amylopectin-like glucan), water-soluble sulfated galactans,
and porphyrans are from red algae. Green seaweeds contain sulfuric acid polysaccharides, sulfated
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galactans, and xylans. Seaweed polysaccharides are diverse and characteristic of specific species and
vary with season. Up to 76% of the dry weight is polysaccharide in some genera such as Ascophyllum,
Porphyra, and Palmaria [21]. This review attempts to review the current study of anti-cancer activity
and the possible mechanism of porphyran and carrageenan derived from red seaweeds to various
cancers, and their cooperative action with other anti-cancer chemotherapeutic agents is also discussed.
The keywords, “red seaweed”, “cancer”, “polysaccharide”, “porphyran”, and “carrageenan” were
searched in “Google Scholar” and “Web of Science” in the period between 1980 and 2019.

2. Anti-Cancer Activity from Red Seaweeds

Edible red seaweeds have been considered as a healthy and beneficial food in Asia such as Japan,
China, Thailand, and South Korea for a long time. Red seaweed cultivation has significantly grown
rapidly since the early 20th century due to the continuous increase in demand for food and industry [10].
Kappaphycus, Eucheuma, Gracialria, and Porphyra are the main species largely cultivated in Indonesia and
China. Bioactive compounds of seaweeds are synthesized in accordance with seaweed growth stage
and the ability to interact with environmental changes such as radiation, water pressure, and salinity [7].
Phycobiliproteins, carotenoids, pigments, terpenes, polyphenols, phlorotannins, and polysaccharides
are the major contributors to seaweeds, with various types and amounts in different species [3,11,22].
Terpenes, polysaccharides, and polyphenols are of major interest for their anti-cancer activity [2,3,23].

The anti-cancer effects of seaweed could be as nutrients and cytotoxic properties [19]. As a
nutrient source, seaweed limits the development of cancers, probably by enhancing antioxidant
properties. Through the mechanisms of carcinogenesis promoted by oxidative processes, it is obvious
that antioxidants play vital roles in the later stages of cancer development. Thus, antioxidants are
deemed as a feasible manner to regress premalignant lesions and inhibit cancer development [6].
Meanwhile, natural seaweed products have cytotoxic properties when concentrated. Researchers
have reported that a sulfated polysaccharide from Champia feldmannii did not show obvious in vitro
cytotoxicity, but was antitumor against sarcoma 180 in mice, probably associated with its immune
stimulating properties [24]. A sulfated polysaccharide isolated from Gracilaria lemaneiformis exhibited
remarkable anti-cancer and immunomodulatory activities against transplanted H22 hepatoma cells in
ICR (Institute of Cancer Research) mice. Marked inhibition of tumor growth, promotion of splenocyte
proliferation, macrophage phagocytosis, and the level of increments of IL-2 and CD8+ T cells in
blood [25] were all affected. The in vitro and in vivo anti-cancer studies of the sulfated polysaccharide
isolated from C. feldmannii was carried out in Swiss mice. Though the in vitro cytotoxicity of the
polysaccharide was not significant, the in vivo anti-cancer effect was measurable. The increased
immune stimulation including increasing both the production of specific antibodies and the production
of OVA-specific antibodies as well as inducing a discreet hyperplasia of lymphoid follicles of the
white pulp in the spleen, were associated with anti-cancer activity [24]. Anti-cancer effects were also
demonstrated in the polysaccharides derived from other seaweeds, especially fucoidan from brown
seaweeds. The anti-cancer activity of fucoidans has been reported in many types of cancers such as
lung cancer [26,27], gastric cancer [26], breast cancer [28], and liver cancer HepG2 cell [29]. In the
following section, porphyran and carrageenan, the polysaccharides derived from red seaweeds, are
described in detail.

Anti-cancer activity has also been proven in other compounds. Terpenes and their derivations,
halogenated monoterpenes, are compounds of seaweeds, usually as secretin outside the cell to defend
against environmental stress with high anti-cancer activity. The halogenated monoterpene halomon
[6(R)-bromo-3(S)-bromomethyl)-7-methyl-2,3,7-trichloro-1-octene] was the first monoterpene isolated
from Portieria hornemannii [30] with sub-micromolar activity (IC50 ≤ 0.9 µM) against at least one cancer
cell line including renal-, brain-, and colon-derived solid tumor cell lines [31]. Other halogenated
monoterpenes isolated from the red seaweeds Plocamium suhrii and Plocamium cornutum, showed
greater antiproliferative activity on an esophageal cancer cell line (WHCO1) when compared with
cisplatin, well-known as an anti-cancer drug [32]. Phenolic compounds are composed of a single
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aromatic ring and possess large, broad biological activities due to the ring bearing one or more hydroxyl
groups [4,33]. Bromophenols, polyphenolics compounds with one or more bromine substituents,
are most commonly found in red seaweeds [34]. A polyphenol-rich extract from Eucheuma cottonii
was proven to have selective cytotoxicity in estrogen-dependent MCF-7 and estrogen-independent
MB-MDA-231 human breast-cancer cells (IC50 values of 20 and 42 µg/mL, respectively) depending on
dose. Polyphenol showed anti-cancer activity by inducing apoptosis, downregulating the endogenous
estrogen biosynthesis, and improving antioxidative status [35]. Additionally, polyphenols from red
seaweed Corallina officinalis have been applied in nano-biotechnology and biosynthesized to gold
nanoparticles as a reducing and stabilizing agent. The gold nanoparticles showed cytotoxic activity
against MCF-7 cells depending on the dose of gold nanoparticles and the polyphenol content [36].
Pheophorbide a (Pa) is a product of chlorophyll breakdown, having been applied in the photodynamic
therapy of cancer as a chlorine-based photosensitizer [37]. Pa-mediated photodynamic therapy (PDT)
was used in treating 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorobol-13-acetate
(TPA)-induced mouse papillomas with marked downregulation of proliferating cell nuclear antigen
expression [37]. The Pa isolated from Grateloupia elliptica was proven to have specific anti-cancer activity
toward various cancer cells lines including B16-BL6, HeLa, SiHa, SK-OV-3, and U87MG cells, especially
in U87 MG glioblastoma cells [6]. The Pa induced G0/G1 arrest of U87 MG cells in the absence of direct
photo-irradiation, causing late apoptosis and DNA degradation under dark conditions. These results
suggest that Pa isolated from G. elliptica is a potential glioblastoma-specific anti-cancer agent without
side effects on normal cells.

3. Porphyran

Porphyran is a characteristic polysaccharide of Porphyra, also a red seaweed. Various species are
“Nori”, which is marketed in sheets of dried seaweed and is popular in East and Southeast Asia as well as
globally, especially as a wrap for sushi. Porphyran is a galactose, highly substituted by the 6-O-sulfation
of L-galactose units and 6-O-methylation of d-galactose units (Figure 1) [38,39]. Various methods
including hot water extraction, radical degradation, and ultrasonic treatment have been used to extract
porphyrans from red seaweeds. Porphyrans have been reported to be hypolipidemic, anti-cancer,
and anti-inflammatory in human beings. Porphyran inhibits NO production in macrophages by
blocking NF-B activation in the mouse macrophages of RAW264.7 cells that were stimulated with
lipopolysaccharides. This may explain some of the anti-inflammatory effects of porphyran [40]. It has
been reported that porphyrans have the potential to prevent hyperlipidemia due to its excellent
antioxidant activities in mice [14]. Previous studies have shown that porphyrans inhibited lipid
synthesis in HepG2 cells and also decreased apolipoprotein B100 secretion, realizing its hypolipidemic
effect [41]. Oral porphyran alleviates liver damage induced by the high-fat diet of ICR mice, implicating
the use of porphyran as a dietary hypolipidemic component [42]. Furthermore, porphyran was proven
to be effective and potential in anti-cancer by various studies (Table 1, Figure 2).

Generally, porphyran is non-toxic on normal cells, although toxic for cancer cells, and induces
cell death in a dose-dependent manner [43]. In vitro anti-proliferative activity of crude and purified
porphyran, also in a dose-dependent manner, was reported in HT-29 colon cancer cells and AGS
gastric cancer cells. The polysaccharide portion of the crude porphyran was thought to account for
anti-proliferative activity via apoptosis, as indicated by increased caspase-3 activity [44]. The anti-cancer
activity of porphyran against Ehrlich carcinoma and Meth-A fibrosarcoma has been demonstrated
in mice tumor models [45,46]. Similar results have been reported in cancer cells of AGS and HT-29,
the proliferation of which was arrested by Porphyran-chungkookjang, prepared by adding 5% (w/w)
porphyran into fermented Bacillus subtilis [47]. The methanol extract of porphryan-chungkookjang showed
higher anti-cancer effects than the chungkookjang.
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Figure 1. Typical repetitive structures in porphyran [38]: (a) G-A; (b) G-A2M; (c) G-L6S; (d)
G6M-A. G: 1,3-linked β-d-galactose; A: 1,4-linked 3,6-anhydro-α-l-galactose; A2M: 1,4-linked
2-O-methyl-3,6-anhydro-α-l-galactose; L6S: 1,4-linked α-l-galactose 6-sulfate; G6M: 1,3-linked
6-O-methyl-β-d-galactose.
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One study revealed that AGS gastric cancer cells were effectively controlled by porphyrin, which
decreased cell proliferation and induced apoptosis. Negative regulation of IGF-IR phosphorylation and
activation of caspase-3 is a porphyran effect [47]. Other investigations showed that a polysaccharide
from Porphyra yezoensis arrested the cancer cell cycle at either the G0/G1 or G2/M check points [48].
Cell proliferation was also inhibited in the HeLa line, which were induced by porphyran. The cell
cycle was blocked in the G2/M phase by regulating and controlling the expression of p21, p53, cyclin
B1, and CDK1 [49].

There is growing evidence that the biological activities of polysaccharides are dependent on
their molecular weight, conformational state, chemical components, and glycosidic bonds [50,51].
Molecular weight is especially important because it is related to viscosity, water-solubility, conformation,
and other basic properties of polysaccharides [38,52]. Lower molecular weight porphyrans have
a higher antioxidant activity [39,53]. Although discolored due to a lack of nutrients that reduces
their commercial value considerably, in cultured P. yezoensis, a higher level of porphyran was found
in the discolored organisms. It has greater ROS-scavenging activity, likely due to the lower mean
molecular mass of the porphyran [54]. Additionally, oligo-porphyran, the acid hydrolysis product of
porphyran, has the potential to prevent and treat various pathologies such as Parkinson’s disease and
acute renal failure. Previous studies have suggested that oligo-porphyran protects renal morphology
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and function in rats with renal impairment [39]. They also ameliorate neurobehavioral defects
by regulating the PI3K/Akt/Bcl-2 pathway in Parkinsonian mice [55]. The anti-cancer response to
porphyran shows varying results. For example, porphyran derived from P. yezoensis was degraded by
gamma irradiation so that the exposure dose of irradiation was higher and the molecular weight of
porphyrans lower [49]. No significant changes in the contents of sulfate, monosaccharide composition,
and 3,6-anhydroanhydro-α-L-galactose were detected in the three polysaccharides. These inhibited
the cancer cell lines of HeLa and Hep3B more effectively than the degraded products. This discovery
contradicts other studies that concluded that lower molecular weight porphyrans exert more anti-cancer
activity [38]. The relationship between the molecular weight of porphyrans and their anti-cancer
activity along with their conformation should be studied further.

Table 1. Anti-cancer activity and possible mechanisms of porphyran.

Source Target Type of Activity Possible Mechanisms References

P. yezoensis

Mice implanted with
Ehrlich carcinoma and
Meth A fibrosarcoma

Appreciable inhibition of
tumor growth

Not referred
[45,46]

AGS and HT-29 cancer
cells Antiproliferation [47]

SGC-7901 and 95D
cancer cell lines [38]

Hep3B cells
Antiproliferation and

cell cycle blocked in the
G2/M phase

Upregulation of p21 and
p53, while negatively

regulating cyclin B1and
CDK1

[49]

HO-8910, MCF-7, K562,
and SMMC-7721 cells

Antiproliferation and
cell cycle arrested at the
G0/G1or the G2/M check

points

Not referred [48]

HT-29 colon cancer
cells and AGS gastric

cancer cells

Antiproliferation and
apoptosis induced

Increasing caspase-3
activity [44]

Commodity
provided by Korea
Bio Polymer (KBP)

company

AGS human gastric
cancer cells.

Negatively regulating
IGF-IR phosphorylation
and inducing caspase-3

activation

[43]

4. Carrageenan

Carrageenan is a highly sulfated polysaccharide found in Chondrus, Gigartina, and various Eucheuma
species in the red algal family Rhodophyceae [38]. It is widely used in food and pharmaceutical
industries as a stabilizer, a gelling agent, thickener, binder, and additive [56]. D-galactopyranosyl
with one or two sulfate groups is the base unit of carrageenans, linked via alternated (1→3)-β-d-and
(1→4)-α-d-glucoside (Figure 3) [56–58]. The number and position of the sulfate groups divide
carrageenans into α-carrageenan, β-carrageenan, γ-carrageenan, δ-carrageenan, θ-carrageenan,
ι-carrageenan, κ-carrageenan, λ-carrageenan, µ-carrageenan, and ν-carrageenan (Figure 3), and
of these, κ-, ι-, and λ-carrageenans, are of commercial significance [59]. Acidic hydrolysis is effective in
analyzing their structures through reductive hydrolysis [60,61], and enzymatic hydrolysis is preferred
in industrial production [62]. Although carrageenan is generally regarded as safe [38], its consumption
is reported to cause colitis [63–65]. It is also reported to induce paw edema and pleurisy in experimental
rats, which is widely used to study anti-inflammatory activity and the mechanisms involved in
inflammation [66–70]. Carrageenan induces thrombosis in a tail thrombosis model and is frequently
used to study the mechanisms of antithrombosis and thrombolysis in small laboratory animals [71–73].
Growing evidence suggests the anti-cancer ability of carrageenan (Table 2, Figure 2).
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carrageenan and λ-carrageenan inhibited human cervical carcinoma cells by not only arresting the 
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Natural anti-cancer defense mechanisms in the host play an important role in cancer treatment
combined with a variety of therapeutic approaches including new anti-cancer drugs that enhance
immunity [74]. Seaweed polysaccharides are reported to regulate immune responses by activating
immune cells and other generalized immune responses. Immunomodulating activity induced by
carrageenan has been studied in the treatment of tumors by several researchers. λ-carrageenan was
reported to inhibit tumor growth in B16-F10- and 4T1-bearing mice through intratumoral injection [75].
Meanwhile, immune response to the tumor was enhanced by promoting tumor-infiltrating M1
macrophages in the spleen, which secreted higher levels of IL17A in the spleen and TNF-α in the tumor.
Humoral and cell-mediated immunity in S180-bearing mice was also reported to be enhanced by
carrageenan oligosaccharides extracted from Kappaphycus striatum and led to potent tumor therapeutic
activity [76].

The selective cytotoxic effects of carrageenans on cancer cells have been demonstrated in several
investigations. Such studies have shown that concentrations of 250–2500 µg/mL of both κ-carrageenan
and λ-carrageenan inhibited human cervical carcinoma cells by not only arresting the cell cycle at
specific phases, but also by delaying the time of it [56]. κ-carrageenan delayed the cell cycle in the
G2/M phase while λ-carrageenan delayed both G1 and G2/M phases. However, κ-selenocarrageenan
(i.e., κ-carrageenan with selenium) is anti-proliferative on the human hepatoma cell line. It blocks the
cell cycle in the S phase [77]. However, native ι-carrageenan showed no significant anti-proliferation
in the human osteosarcoma cell line in either in vitro or in vivo assays. Degraded ι-carrageenan [78]
suppressed tumor growth, induced apoptosis, and arrested the G1 phase, which improved the survival
rate of tumor-bearing mice. Downregulation of the Wnt/β-catenin signaling pathway was responsible
for that.
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Table 2. Anti-cancer activity and possible mechanisms of carrageenans.

Source Target Type of Activity Possible Mechanisms References

λ-carrageenan
purchased from
Sigma-Aldrich

B16-F10 and 4T1
bearing mice

Inhibition of tumor
growth and improving

immune system

Increasing the number of
tumor-infiltrating M1

macrophages, DCs, and more
activated CD4+ CD8+ T

lymphocytes and enhancing the
secretion of IL17A in spleen and
significantly increase the level of

TNF-α in tumor

[75]

Carrageenan
oligosaccharides

derived from
Kappaphycus

striatum

S180-bearing mice

Increase macrophage
phagocytosis, the form of

antibody secreted by spleen cells,
spleen lymphocyte proliferation,

NK cells activity, serumal IL-2 and
TNF-a level

[76]

κ-carrageenan and
λ-carrageenan

purchased from
Sigma-Aldrich

HeLa cells
Cell cycle delayed in

G2/M phase or in both
G1 and G2/M phase

Not referred [56]

κ-selenocarrageenan
consisted of

selenium and
κ-carrageenan

HepG2 cells Cell cycle delayed in S
phase

Upregulating Cyclin A and chk2
protein and down-regulating
Cdc25A and cdk2 expression.

[77]

ι-Carrageenan
Human

osteosarcoma cell
line

Apoptosis induced and
Cell cycle delayed in

G1 phase

Downregulation of the
Wnt/β-catenin signaling pathway

through suppressing LRP6
expression and phosphorylation

[78]

κ-carrageenan
oligosaccharides
prepared from

κ-carrageenan with
enzyme

MCF-7 xenograft
tumor

Antiproliferation and
anti-angiogenic

Negative regulation of human
VEGF, bFGF, bFGFR, and CD105 [79]

Angiogenesis plays a vital role in cancer development. Therefore, anti-angiogenic activity
is widely explored in cancer treatment. As they have better anti-angiogenic activity than the
standard compound, suramin, carrageenans have been defined as angiogenesis inhibitors [70,80,81].
The anti-angiogenic activity of κ-carrageenan oligosaccharides was shown in ECV304 cells and the
CAM (Chicken chorioallantoic membrane) model to inhibit the proliferation, migration, and tube
formation of cells [79]. Moreover, the oligosaccharides inhibited new blood vessel formation with
the negative regulation of human VEGF, bFGF, bFGFR, and CD105 in MCF-7 xenograft tumors.
The negative effect on tumor blood vessel endothelial cell differentiation was also demonstrated
in human umbilical vein endothelial cells and were affected by λ-carrageenan oligosaccharides at
relatively low concentrations (150–300 µg/mL) [82] by the downregulation of intracellular matrix
metalloproteinase (MMP-2) expression.

The biological activities of sulfated polysaccharides are a function of structural features such as
the amount and position of sulfation and molecular weight. That is, the chemical modification of
carbohydrates leads to variations in their biological activities [83]. For example, λ-carrageenan can be
degraded into five products, all with different molecular weights and all showing anti-cancer effects,
probably through immunomodulation. Lower molecular weight products, 15 and 9.3 kDa, showed
higher anti-cancer and immunomodulation effects [83]. Selective chemical sulfation in the carrageenan
backbone plays a measurable effect on its anticoagulant activity, which would be promoted by the
substitution by sulfate at C6 of β-d-Galp and C2 of 3,6-anhydro-α-d-Galp units [84]. Another example,
sulfate at C2 of the β-d-GalAp units, showed a more positive effect on the anticoagulation than at C4.
Additionally, the partially oxidized molecule promoted the anticoagulant effect of the κ-carrageenan
derivative more than the fully oxidized molecule [85]. Anti-cancer and immunomodulation activities



Molecules 2019, 24, 4286 9 of 14

of κ-carrageenan oligosaccharides from Kappaphycus striatum were enhanced by sulfation, acetylation,
and phosphorylation where the sulfated derivative was the most effective. Chemical modifications
also promoted oxidant activity by κ-carrageenan oligosaccharides [86].

5. Combination with Conventional Anti-Cancer Drugs

Toxicity analyses have proven that polysaccharides are potent anti-cancer agents and effective
adjuvants in cancer immunotherapy. 5-Fluorouracil (5-Fu), a thymidylate synthase inhibitor, has been
widely used to treat cancer for several decades. However, it is limited by undesirable side effects [87–89].
When the drug was fixed at the 6-position with low molecular weight porphyran in order to obtain
a water-soluble macromolecule prodrug, it led to a slow release of 5-Fu and prolonged the duration
of anti-cancer activity and reduced the side effects [88]. The mixture and conjugate enhanced the
anti-cancer activity of 5-Fu and immunocompetence recovered the damage in transplanted S180 tumor
mice. The medical effect of the λ-carrageenan on anti-cancer activity and immunosuppression by 5-Fu
were explored on transplanted S180 tumor mice [90]. Though the individual use of the λ-carrageenan
sample or 5-Fu at low dose only exerted low anti-cancer activity, a mixture of the two samples at the
same dose increased the activity. Meanwhile, λ-carrageenan enhanced immunocompetence that had
been damaged by 5-Fu by increasing the weight of the spleen, activating lymphocyte proliferation,
recovering the level of TNF-α, and reactivating the decreased spleens and white pulps. Similar research
supports this result in H-22 tumor mice [91].

Gold nanoparticles (AuNPs) have been widely used in catalysis, photothermal therapy,
and targeted drug delivery [92]. The κ-carrageenan oligosaccharide was reported as a reducing
and capping agent to prepare AuNPs, which showed significant cytotoxic activities to HCT-116
and MDA-MB-231 cells [93]. Furthermore, maghemite nanoparticles have been reported to be
electrostatically entrapped by ι-carrageenans in the sulfate groups [94]. In vitro anti-cancer efficacy of
the biocompatible ι-carrageenan-γ-maghemite nanocomposite was demonstrated in the human colon
cancer cell line by inducing cell apoptosis by following the ROS-mediated mitochondrial pathway,
combined with downregulation of the expression levels of mRNA of XIAP and PARP-1, and the
upregulation of caspase3, Bcl-2, and Bcl-xL.

6. Conclusions

The ideal cancer treatment eradicates tumor cells without damage to healthy tissues. Due to the
side effects of current treatments, more attention is being paid to the selective toxicity of seaweed
polysaccharides that are nontoxic to normal cells, but toxic to tumor cells. Several in vitro and in vivo
studies have demonstrated that porphyrans and carrageenans have strong anti-cancer properties.
Moreover, when combined with conventional drugs, these polysaccharides not only showed more
effective anti-cancer activity, but also enhanced immunocompetence that had been damaged by drugs
such as by increasing the weight of the spleen, activating lymphocyte proliferation, recovering the
level of TNF-α, and reactivating the decreased spleens and white pulps.
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