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Abstract: Dual-function chemosensors that combine the capability of colorimetric and fluorimetric
detection of Cu2+ are still relatively rare. Herein, we report that a 3-hydroxyflavone
derivative (E)-2-(4-(dimethylamino)styryl)-3-hydroxy-4H-chromen-4-one (4), which is a red-emitting
fluorophore, could serve as a reversible colorimetric and fluorescence “turn-off” chemosensor for the
detection of Cu2+. Upon addition of Cu2+ to 4 in neutral aqueous solution, a dramatic color change from
yellow to purple-red was clearly observed, and its fluorescence was markedly quenched, which was
attributed to the complexation between the chemosensor and Cu2+. Conditions of the sensing process
had been optimized, and the sensing studies were performed in a solution of ethanol/phosphate buffer
saline (v/v = 3:7, pH = 7.0). The sensing system exhibited high selectivity towards Cu2+. The limit of
naked eye detection of Cu2+ was determined at 8 × 10−6 mol/L, whereas the fluorescence titration
experiment showed a detection limit at 5.7 × 10−7 mol/L. The complexation between 4 and Cu2+ was
reversible, and the binding constant was found to be 3.2× 104 M−1. Moreover, bioimaging experiments
showed that 4 could penetrate the cell membrane and respond to the intracellular changes of Cu2+

within living cells, which indicated its potential for biological applications.
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1. Introduction

Copper is an essential transition element in the human body that plays a critical role in many
biological processes. High concentrations of copper can be found in the liver and brain [1]. Generally,
the copper iron acts as a catalytic cofactor for a variety of metalloenzymes, including cytochrome
oxdidase, superoxide dismutase, and tyrosinase, etc. [2]. However, excessive uptake of copper would
cause liver or kidney damage and is associated with various neurodegenerative diseases, such as
Alzheimer’s disease and Wilson’s disease [3,4]. Copper is normally found as Cu(II) in water, and the
permissible maximum level in drinking water is set at 3 × 10−5 mol/L by the World Health Organization
(WHO) [5]. Yet, due to the increasing discharge of metal waste from industry and agriculture,
copper has been identified as an environmental pollutant [6], so it is highly important to develop
sensitive and selective methods for the detection of Cu2+ in environmental and biological samples.

Traditional analytical methods for the detection of Cu2+ include electrochemical methods
(potentiometry, voltammetry, etc.), inductively coupled mass spectroscopy, atomic absorption
spectroscopy, etc. [7,8]. However, there are plenty of shortcomings in these methods because they are
usually complicated, time-consuming, and costly. In recent years, increased attention has been given
to the development of colorimetric and fluorimetric methods, which exhibit advantages of low cost,
simplicity, convenience, and high sensitivity [9–11]. The colorimetric method allows simple naked-eye
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detection without the use of any expensive equipment, and the fluorimetric method has the ability of
real-time analysis and biological imaging [12]. Both of the methods mostly employ a chemosensor that
undergos a specific interaction with Cu2+ [1,13]. Obviously, compared to the single-functional one,
a chemosensor that combines the capability of colorimetric and fluorimetric detection will be more
desirable [1,2,14]. Though considerable efforts have been made, dual-functional chemosensors for
detection of Cu2+ are still relatively rare.

The 3-hydroxyflavones are the known molecules that undergo an excited-state intramolecular
proton transfer (ESIPT) process [15]. These molecules often exhibit a large Stokes shift upon irradiation
and possess many favorable optical properties, such as good photophysical stability and reasonable
fluorescent quantum yields [16,17]. Plenty of biochemical chemosensors have been developed based
on their molecular scaffold [15,18,19]. However, to the best of our knowledge, the 3-hydroxyflavones
have never been used for the study of sensing Cu2+ before. Herein we report that a 3-hydroxyflavone
derivative (E)-2-(4-(dimethylamino)styryl)-3-hydroxy-4H-chromen-4-one (4), which is a red-emitting
fluorophore, could serve as a reversible colorimetric and fluorescence “turn-off” chemosensor for
detection of Cu2+. The sensing of Cu2+ is rapid and highly sensitive in neutral aqueous solution.
In addition, 4 might be further used in monitoring the intracellular changes of Cu2+ in living cells.

2. Results

2.1. Optimum Conditions for Sensing Process

2.1.1. Effect of Solution

The sensing process can be affected by the aqueous environment in which the complexation
takes place. Therefore, it is necessary to find a suitable medium for the sensing of Cu2+. For this
purpose, various water-miscible organic solvents were evaluated as the reaction solution. The changes
of their fluorescence spectra were analyzed after the addition of Cu2+. As shown in Figure 1a,
compared to dimethyl sulfoxide (DMSO), methanol, and acetonitrile the best fluorescence quenching
efficiency was obtained in ethanol, and the optimal proportion with PBS (pH = 7.0) is 3:7 (Figure S4).
Furthermore, in such solution the complexation took place very quickly (within 1 min), and the formed
product remained stable for at least 20 min (Figure 1c,d). These results indicated that the solution of
ethanol/PBS (v/v = 3:7) was suitable for sensing and was used in all the experiments here presented,
unless otherwise stated.

2.1.2. Effect of pH

The pH value of a solution is another key factor that affects the sensing process.
CH3COOH/CH3COO− buffer solutions of various pH were prepared and mixed with ethanol, in which
the fluorescence response of the chemosensor was analyzed after the addition of Cu2+. It was found
that the fluorescence intensity of 4 and its sensing of Cu2+ were pH sensitive. As shown in Figure 1b,
high fluorescent quenching efficiencies were obtained over the pH range 6–8, yet no considerable
fluorescence changes were observed over other pH ranges. These results suggests that 4 could perform
the sensing of Cu2+ in neutral or near neutral conditions and may be further used for biological
applications, so all of the following experiments were performed in a neutral solution (pH = 7.0),
unless other way stated.

2.2. UV-Vis Measurement and Visual Detection

The UV-Vis spectra of 4 was first investigated in the presence of Cu2+. As shown in Figure 2a,
the free 4 exhibited a strong absorption band at 443 nm. Upon addition of Cu2+, the band disappeared
and a new broad absorption band with a red-shift of 45 nm was observed, which indicated that a new
stable complex product was formed. In the daylight, the process exhibited a distinct color change from
yellow to purple-red, which was clearly visible to the naked eye. Further, to determine the limit of
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visual detection, we had monitored the color changes of 4 upon the addition of various concentrations
of Cu2+. As illustrated in Figure 2b, 4 showed a limit of visual detection for Cu2+ at 8 × 10−6 mol/L.Molecules 2019, 24, x 3 of 11 

 

 
Figure 1. Optimum conditions of 3-hydroxyflavone derivative 
(E)-2-(4-(dimethylamino)styryl)-3-hydroxy-4H-chromen-4-one (4) for the sensing of Cu2+. (a) 
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solvents with phosphate buffer saline (PBS) (v/v = 3/7, pH = 7.0). (b) Effects of pH on the fluorescence 
intensities at 617 nm of 20 μM of 4 with or without addition of 1 equiv. Cu2+ in 
ethanol/CH3COOH-CH3COO- solution (v/v = 3/7). Absorbance (c) and fluorescent (d) kinetics data of 
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Figure 1. Optimum conditions of 3-hydroxyflavone derivative (E)-2-(4-(dimethylamino)styryl)-3-
hydroxy-4H-chromen-4-one (4) for the sensing of Cu2+. (a) Fluorescence intensities at 617 nm of 20 µM
of 4 upon addition of 1 equiv. Cu2+ in various organic solvents with phosphate buffer saline (PBS)
(v/v = 3/7, pH = 7.0). (b) Effects of pH on the fluorescence intensities at 617 nm of 20 µM of 4 with or
without addition of 1 equiv. Cu2+ in ethanol/CH3COOH-CH3COO− solution (v/v = 3/7). Absorbance (c)
and fluorescent (d) kinetics data of 20 µM of 4 in the absence or presence of 20 µM Cu2+ in ethanol/PBS
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the absence or presence of Cu2+ (0, 4, 8, 12 μM). Inset: the fluorescence changes of 4 (left) upon 
addition of 20 μM Cu2+ (right) under UV light (λ = 365 nm); (d) Fluorescence changes of 4 in the 
presence of various concentrations of Cu2+ (0, 4, 8, 12 μM). 
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Cu2+ was added (the quenching efficiency was calculated as (I0 − I)/I0 × 100; I0 was the intensity of free 4, I 
was the intensity of 4 upon the addition of Cu2+), which was supposed to be attributed to the 
paramagnetic nature of Cu2+ [20]. In the concentration range of 2–12 μM, when Cu2+ was added, a 
good linear relationship of emission intensity (617 nm) versus the concentration of Cu2+ was 
observed (R2 = 0.9919, y = 89.96 – 6.6x) (Figure 3b). According to the International Union of Pure and 
Applied Chemistry (IUPAC) definition [20–22], the limit of detection (LOD) of 4 was calculated by 
the following equation: LOD = 3σ/k (σ is the standard deviation of the blank, and k is the slope of 
the calibration curve line). The LOD of 4 towards Cu2+ was determined as 5.7 × 10−7 mol/L, which is 
much lower than the permissible maximum level of Cu2+ in drinking water. These results suggest 
that 4 can be potentially employed to detect Cu2+ quantitatively using the fluoremetric method. 

Figure 2. (a) Absorption spectra of 4 (20 µM) in the absence or presence of Cu2+ (20 µM). Inset: the
color changes of 4 (left) upon addition of Cu2+ (right) under daylight; (b) Visible color changes of 4 in
the presence of various concentrations of Cu2+ (0, 4, 8, 12 µM); (c) Fluorescence spectra of 4 (20 µM) in
the absence or presence of Cu2+ (0, 4, 8, 12 µM). Inset: the fluorescence changes of 4 (left) upon addition
of 20 µM Cu2+ (right) under UV light (λ = 365 nm); (d) Fluorescence changes of 4 in the presence of
various concentrations of Cu2+ (0, 4, 8, 12 µM).
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2.3. Fluorescence Measurements

We then analyzed the fluorescence spectra of 4 with the addition of Cu2+. As shown in Figure 2c,d,
the free 4 (20 µM) exhibited a red fluorescence with a maximum emission centered at 617 nm. However,
the fluorescence was gradually quenched when an incremental amount of Cu2+ was added.

We further performed the fluorescence titration experiment. As shown in Figure 3a, when the
addition of Cu2+ exceeded 1 equiv. (20 µM), a decreased saturation curve of fluorescence intensity
was observed (see inset of Figure 3a). The fluorescence quenching efficiency was 90% when 20 µM
Cu2+ was added (the quenching efficiency was calculated as (I0 − I)/I0 × 100; I0 was the intensity
of free 4, I was the intensity of 4 upon the addition of Cu2+), which was supposed to be attributed
to the paramagnetic nature of Cu2+ [20]. In the concentration range of 2–12 µM, when Cu2+ was
added, a good linear relationship of emission intensity (617 nm) versus the concentration of Cu2+ was
observed (R2 = 0.9919, y = 89.96 – 6.6x) (Figure 3b). According to the International Union of Pure and
Applied Chemistry (IUPAC) definition [20–22], the limit of detection (LOD) of 4 was calculated by
the following equation: LOD = 3σ/k (σ is the standard deviation of the blank, and k is the slope of the
calibration curve line). The LOD of 4 towards Cu2+ was determined as 5.7 × 10−7 mol/L, which is
much lower than the permissible maximum level of Cu2+ in drinking water. These results suggest that
4 can be potentially employed to detect Cu2+ quantitatively using the fluoremetric method.Molecules 2019, 24, x 5 of 11 
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Figure 3. (a) Fluorescence titration of 4 upon the addition of Cu2+ (0–40 µM). Inset: The fluorescence
intensity curve of 4 at 617 nm; (b) The linear fluorescence intensity of 4 against the concentrations of
Cu2+; Absorption spectra (c) or fluorescence spectra (d) of 4 in the presence of various metal cations
(20 µM).

When the addition of Cu2+ exceeded 1 equiv., a decreased saturation curve of fluorescence intensity
was observed (see inset of Figure 3a). The binding constant obtained from the Benesi–Hildebrand plot
of 1/(I − I0) versus 1/[Cu2+] was found to be 3.2 × 104 M−1 (Figure S5).

2.4. Selectivity of Detection

To evaluate the selectivity of the sensing system, the UV-Vis and fluorescence spectra of 4 were
measured in the presence of Cu2+ as well as other common metal irons, including Al(III), Ca (II),
Co(II), Fe (III), K(I),Mg(II), Mn(II), Na(I),Ni (II), Pb (II), Sn (II), Sb (III), and Zn (II). As shown in
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Figure 3c–d, upon the addition of metal ions, except Cu2+, there were no considerable changes in the
optical spectra of 4, although Ni2+ induced a slight effect on its absorption and fluorescence intensity.
The color and fluorescence of the chemosensor remained almost unchanged (Figure 4). In addition,
an interference study was performed to further investigate the selectivity of the sensing system towards
Cu2+. As shown in Figure 5, the UV-Vis and fluorescence spectra of 4-Cu2+ were hardly affected in
the presence of other metal ions (20 µM). These results clearly indicate that 4 exhibits a high sensing
selectivity towards Cu2+.Molecules 2019, 24, x 6 of 11 
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Figure 5. (a) Fluorescence intensities at 617 nm of 20 µM of 4 in the presence of Cu2+ (20 µM) before
or after adding 1 equiv. of EDTA. (b) Job’s plot according to the method of continuous variation.
The molar ration of 4 changed from 0.1 to 0.9 while keeping the total concentration of 4 and Cu2+ at
40 µM.

2.5. Reversibility

The binding reversibility of 4 was estimated with the help of EDTA. As shown in Figure 5a, 85% of
the fluorescence intensity of 4 (20 µM) was quenched in the presence of 1 equiv. Cu2+. After the addition
of EDTA at the same concentration, more than 70% of fluorescence intensity was restored. However,
the restored fluorescence was turned off again when adding another 1 equiv. Cu2+. These results
suggest that the complexation between 4 and Cu2+ is reversible, and the chemosensor could be reusable
for further analytical tests.

2.6. Interaction Mechanism of 4 with Cu2+

To study the interaction mechanism of 4 with Cu2+, the method of continuous variation (Job’s plot)
was first employed. The molar ration of 4 changed from 0.1 to 0.9 while keeping the total concentration
of 4 and Cu2+ at 40 µM. The concentration of the 4-Cu2+ complex was calculated by the equation:
[4-Cu2+] = ∆I/I0 × [4] (I0 was the fluorescent intensity of free 4, ∆I = |I − I0|, I was the fluorescent
intensity of 4 upon the addition of Cu2+) [23]. The Job’s plot was plotted between [4-Cu2+] versus [4].
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As shown in Figure 5b, the maximum value of [4-Cu2+] in the Job’s plot appeared at the molar ration
of 0.7, which indicated the 2:1 binding stoichiometry between 4 and Cu2+.

1H-NMR titration experiments were then performed to further investigate the binding mode
of 4 with Cu2+. As shown in Figure 6, the free chemosensor 4 displayed a sharp peak at 9.37 ppm,
which was assigned to the proton of the hydroxyl group. Upon the addition of 0.5 and 1 equiv.
Cu2+ to the solution of 4 in DMSO-d6, the peak of the hydroxyl proton was getting broad and almost
disappeared, which suggested that the hydroxyl group of 4 was involved in the coordination with Cu2+.
Peaks of other groups started to combine after the addition of Cu2+, indicating that the coordination
product has a more rigid and complicated structure [24].Molecules 2019, 24, x 7 of 11 
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2.7. Bioimaging Experiments

Common fluorescent probes of Cu2+ show emission within the green spectral region (below
600 nm), which coincides with that of many endogenous chromophores in biological systems,
while probes with longer wavelength excitation and emission would bring lower background
fluorescence, deeper penetration, and less phototoxicity. Therefore, red-emitting fluorescent probes will
be more suitable for bioimaging [25]. To confirm that 4 could perform the sensing of Cu2+ in biological
systems, we then evaluated its sensing ability in living cells. Because copper tends to accumulate in the
liver cells and leads to toxicity [26], we choose the human liver cancer cells HepG2 for the bioimaging
experiments. First, to determine the cell permeability of 4, HepG2 cells were incubated with 10 µM of
4 for 15 min at 37 ◦C and were then washed with PBS. As shown in Figure 7b, cells treated with vehicle
did not show any fluorescence emission, while cells treated with 4 exhibited distinct red fluorescence
(Figure 7d). However, after incubation with 20 µM Cu2+ for 15 min, the intracellular fluorescence
almost disappeared (Figure 7f). These results indicate that 4 is cell-permeable and could respond to the
intracellular changes of Cu2+.
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3. Materials and Methods

All commercial reagents and solvents were purchased from vendors and were used without further
purification or distillation. Synthetic reactions were monitored by thin-layer chromatography (TLC)
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on a glass plate coated with silica gel with fluorescent indicator (GF254). Column chromatography
was performed on silica gel (200–300 mesh). 1H-NMR and 13C-NMR spectra were recorded using
tetramethylsilane (TMS) as an internal standard with a Burker Biospin Ultrashield 400 NMR system
(Rheinstetten, Germany)). High resolution mass spectra (HRMS) were recorded on an Agilent
Technologies 6530 Q-TOF (Santa Clara, CA, USA). UV-Vis spectra was recorded using a UV2600
spectrometer (Shimadzu, Japan). Fluorescence spectral studies were performed using an F-4500
fluorescence spectrophotometer (Hitachi, Japan) equipped with a quartz cell of 10 mm path length.

3.1. Synthesis of (E)-2-(4-(dimethylamino)styryl)-3-hydroxy-4H-chromen-4-one (4)

The synthesis of 4 is illustrated in Scheme 2. A mixture of 4 mmol (0.54g) 2′-hydroxyacetophenone
(1), 6 mmol (1.05g) 4-dimethylaminocinnam- aldehyde (2), and 4 mL 60% Potassium hydroxide
(KOH) in 10 mL ethanol was heated at 60 ◦C. The reaction progress was monitored by TLC until
completed. After being cooled to room temperature, the mixture was diluted with ice cold water
and then neutralized with 5% HCl. The precipitate formed was then filtered off and then purified by
column chromatography. The intermediate (3) was obtained as black powder (0.4g), yield 51%.
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Scheme 2. The synthesis of 4.

Compound 3 (1 mmol, 0.307g) and 20% NaOH (6 mL) were stirred in 10 mL methanol. Then 30%
H2O2 (5 mL) was slowly added under an ice water bath, and the resulting mixture was kept stirred at
room temperature for 2 h. When the reaction was completed, the methanol was removed in vacuum
and the residue was diluted with water. After being neutralized with 5% aqueous HCl, the mixture
was extracted with ethyl acetate three times. The organic layer was combined and washed with
excess water and then dried over anhydrous sodium sulfate. After removal of the organic solvent in
vacuum, the crude product was purified by column chromatography to give 4 as a red powder in
13.3% yield. 1H-NMR (400 MHz, DMSO-d6) δ 9.37 (s, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 23.9 Hz,
2H), 7.55 (d, J = 7.7 Hz, 2H), 7.50–7.39 (m, 2H), 7.12 (d, J = 16.0 Hz, 1H), 6.76 (d, J = 7.7 Hz, 2H),
2.99 (s, 6H). (Figure S1, Supplementary Information). 13C-NMR (100 MHz, DMSO-d6) δ 171.84, 154.55,
151.43, 148.02, 137.56, 134.48, 133.64, 125.19, 124.65, 123.81, 122.66, 118.40, 112.57, 110.77. (Figure S2,
Supplementary Information). HRMS calculated for C19H17NO3, [M + H]+: 308.1281, found 308.1294.
(Figure S3, Supplementary Information)

3.2. Spectral Measurements

Generally, the stock solutions of 4 were prepared in ethanol. The metal salts, i.e., CuSO4,
Al(NO3)3, CoCl2, CaCl2, FeCl3, KCl, MgSO4, MnCl2, NaCl, NiCl2, PbCl2, SbCl3, SnCl2, and ZnCl2
were of analytical reagent grade and used without further purification. The stock solutions of metal
ions (10 mM) were prepared in distilled water and diluted to the desired concentrations. For the
optical measurements, 4 was diluted to 20 µM in an ethanol with phosphate buffer saline (PBS) or
CH3COOH-CH3COO− buffer solution. For the reversibility study, Ethylenediaminetetraacetic acid
(EDTA) was heated until completely dissolved in ultrapure water, and the stock solution was prepared
at 10 mM. The UV-Vis and fluorescence spectra of the chemosensor in the absence or presence of
various guests were recorded at room temperature. The slit size for excitation and emission was 10 nm.
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3.3. Cell Culture

Human liver carcinoma cell lines (HepG2) were grown in Dulbecco’s modified eagle’s medium
(DMEM) containing L-glutamine supplemented with penicillin (100 U/mL), streptomycin (100 ug/mL),
and 10% (v/v) heat-inactivated fetal bovine serum (FBS) in a humidified atmosphere of 5% CO2 and
95% O2 at 37 ◦C. First, the cells were incubated with 10 µM of 4 for 15 min at 37 ◦C. Then the cells were
washed with PBS three times and then captured under a fluorescence microscope. Then 2 equivalents
of Cu2+ were added in the growth medium for 15 min at 37 ◦C. After being washed with PBS three
times, the cells were captured under the fluorescence microscope again. All the pictures were captured
using the EVOS FL fluorescence microscope (Thermo Fisher, USA).

4. Conclusions

In summary, we have found that the 3-hydroxyflavon derivative 4, which is a red-emitting
fluorophore, could serve as a reversible colorimetric and fluorescence “turn-off” chemosensor for
Cu2+. In the ethanol-PBS solution (v/v = 3:7, pH = 7.0), 4 showed a rapid color change from yellow to
purple-red upon the addition of Cu2+, and its fluorescence was quenched simultaneously. The limit
of naked eye detection for Cu2+ was observed at 8 × 10−6 mol/L, and a lower detection limit was
determined as 5.7 × 10−7 mol/L from the fluorescence titration experiment, both of which were much
lower than the permissible maximum level of Cu2+ in drinking water. The sensing of Cu2+ by 4 was
highly selective and was not influenced even in the presence of other metal ions. Furthermore, 4 was
cell-permeable and could respond to the intracellular changes of Cu2+, which indicated its potential
for biological applications.

Supplementary Materials: The following are available online: Figure S1: 1H-NMR (400 MHz) spectrum of
4 in DMSO-d6; Figure S2: 13C-NMR (100 MHz) spectrum of 4 in DMSO-d6; Figure S3: HRMS spectrum of 4.
Figure S4: Fluorescence spectra of 4 (20 µM) upon the addition of Cu2+ (20 µM) in ethanol/PBS solution of various
proportions; Figure S5: The Benesi–Hildebrand plot of 1/(I − I0) versus 1/[Cu2+]. I0 was the intensity of free 4,
I was the intensity of 4 upon the addition of Cu2+.
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