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Abstract: Cancer is one of the foremost causes of death globally and also the major stumbling block
of increasing life expectancy. Although the primary treatment of surgical resection, chemotherapy,
and radiotherapy have greatly reduced the mortality of cancer, the survival rate is still low because of
the metastasis of tumor, a range of adverse drug reactions, and drug resistance. For all this, it is relevant
to mention that a growing amount of research has shown the anticarcinogenic effect of phytochemicals
which can modulate the molecular pathways and cellular events include apoptosis, cell proliferation,
migration, and invasion. However, their pharmacological potential is hindered by their low water
solubility, low stability, poor absorption, and rapid metabolism. In this scenario, the development of
nanotechnology has created novel formulations to maximize the potential use of phytochemicals
in anticancer treatment. Nanocarriers can enhance the solubility and stability of phytochemicals,
prolong their half-life in blood and even achieve site-targeting delivery. This review summarizes the
advances in utilizing nanoparticles in cancer therapy. In particular, we introduce several applications
of nanoparticles combined with apigenin, resveratrol, curcumin, epigallocatechin-3-gallate, 6-gingerol,
and quercetin in cancer treatment.
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1. Introduction

Cancer is nowadays the second leading cause of death, following heart diseases and affecting
people of all ages. The conventional treatment methods against cancer have included surgical
resection, radiotherapy, chemotherapy, and a combination of any of these treatments [1]. Among them,
conventional chemotherapeutics is still the main treatment for many cancers in advanced stages [2].
However, there are challenges associated with the treatment—systemic toxicity, low selectivity, various
adverse reactions, etc. Due to the fact that cancer treatment usually uses compounds that target
fast-dividing cells, it has untoward side effects on normal, fast-dividing cells such as hair follicles and
epithelial cells in the digestive system. Furthermore, one of the aggravating circumstances is that many
cancer cells gradually develop resistance to conventional forms of therapy. To reach the best possible
therapeutic response, novel drugs and delivery strategies need to be designed.

There is a growing body of convincing evidence suggesting that phytochemical components in
food exert anticancer activities in different types of cancer [3]. Phytochemicals, a class of bioactive
molecules that can be obtained from fruits, vegetables, grains, and other plant parts, have been
proven to be suitable candidates for such a therapy. Numerous studies have demonstrated that these
chemopreventive phytochemicals can regulate the cellular and molecular events including apoptosis,
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cell proliferation, cell cycle, DNA repair, differentiation, and metastasis [3–5]. Additionally, many of
these natural products are generally less toxic and well tolerated in normal cells. Compared with
chemotherapeutic drugs, natural products are tolerable in normal cells even at high doses. Despite
tremendous efforts in preclinical settings, the applicability of phytochemicals to humans has met with
only limited success. Among the many reasons, inefficient delivery of promising natural agents to the
target site could likely be the main reason for the clinical failure. This can be related to poor water
solubility of the agents and their chemical instability in the biological environment. Furthermore,
poor pharmacokinetic characteristics of phenolic compounds arising from rapid metabolism, poor
solubility and stability pose different challenges of toxicity, inefficacy, and low tissue distribution.
Thus, the development of novel and effective delivery systems that can ameliorate these setbacks is
imperative for cancer treatment.

Prior studies on nanotechnology-based drug delivery systems used for delivering natural agents
have suggested to us that this technology may have considerable advantages over conventional
therapies for cancer. One advantage of this nanotechnology is that drugs encapsulated in nanoparticles
can be protected from destructive action of external media [6]. Thus, the half-life of the drug in
the systemic circulation can be prolonged. In addition, it is now well established that nanoparticles
can improve the delivery of water-insoluble drugs, enhance the passage of chemotherapeutic agents
across biological membranes [7], enable the drugs to be delivered only to the cancer cells [8], improve
drug distribution, provide sustained release of a drug, and help in delivery of two or more drugs for
combined therapy as compared with the non-encapsulated free drugs [9]. The nanoparticles’ (NPs)
design parameters can be optimized to maximize their performances by modifying their composition,
particle size, morphology, and surface properties, to increase the efficacy of treatment, reduce side
effects, and overcome drug resistance. In this scenario, the development of nanoparticulate-based
drug delivery systems holds promise for cancer therapy, because natural compounds fabricated at
the nanometer scale exhibit drastically altered bioactivities and toxicity. Here, we discuss the recent
updates on how low bioavailability, a major concern with these selected phytochemicals—apigenin,
resveratrol (RES), curcumin (Cur), epigallocatechin-3-gallate (EGCG), 6-gingerol (6G), and quercetin
(Qc)—is being circumvented by synthesizing as nanoformulations. In addition, we summarize several
updates on preparation methods of NPs.

2. Advances in Utilizing NPs in Cancer Management and Therapy

With the increasing applications of NPs in cancer treatment and management, research on
green-synthesized NPs has become a hotspot [10]. The conventional methods of generating NPs often
require the use of aggressive chemical reducing agents, which are costly, complex, and can produce
very toxic side-products. Thus, more cost-effective and environmentally benign alternative approaches
which can minimize the risk of contaminating the environment are unequivocally needed. In this
section, we summarize several NPs which are currently being employed for anticancer therapies and
discuss their latest synthetic methods and applications in cancer management.

2.1. Gold NPs (AuNPs)

Au was utilized in infection treatment thousands of years ago in ancient India and China,
and the applications of Au boom up with the development of nanotechnology. AuNPs possess low
cytotoxicity, high surface area to volume ratio and stability, which support them as good candidates
for chemotherapy and immunotherapy in cancer treatment [11]. AuNPs also gained attention as an
ideal contrasting agent in X-ray and CT and emerged as a radiosensitizer for cancer early detection,
diagnostics, and treatment [12,13]. In addition, several studies indicated the intrinsic antitumor
property of AuNPs which can selectively kill cancer cells [14]. AuNPs have caught the attention of
scientists for their use as drug carriers, and consequently their simpler synthesis via green chemistry
has also become foremost importance. In the past, AuNPs were always synthesized by utilizing
chemicals and solvents, which has a negative effect on environment and human health [15]. Recently,



Molecules 2019, 24, 4246 3 of 19

AuNPs synthesized by employing active compounds from plants are reported to be non-toxic towards
normal human cells [16]. Moreover, the synthesis process is simple and environmentally friendly [17].

AuNPs synthesized by using Cur (Cur–AuNPs) are the most studied phytofabricated AuNPs so far
(Figure 1). It has been confirmed that Cur is a well-performing reducing agent to produce functionalized
AuNPs and maintains the stability upon conjugation with AuNPs [18,19]. In addition, Cur–AuNPs
display dominant results in antioxidant properties compared with free Cur and regulate the cancer
immunity to some extent. In vitro experiment of Cur–AuNPs also showed stronger competence in
inducing apoptosis in the colon (HCT-116) and breast (MCF-7) human cancer cell lines than the free
Cur and the 50% inhibiting concentration (IC50) of MCF-7 and MDA-MB 231 cell lines were found
at 10.0 µM [20,21]. Some other phytochemicals can also be involved in reduction of metal ions to
AuNPs in a one-step and eco-friendly synthetic process. Previous studies on AuNPs synthesized with
quercetin as reducing agent (Qc–AuNPs) revealed that Qc–AuNPs inhibit the epithelial–mesenchymal
transition, angiogenesis, and invasiveness via epidermal growth factor receptor (EGFR)/vascular
endothelial growth factor receptor (VEGFR)-2-mediated pathway and induce apoptosis via inhibiting
EGFR/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)-mediated pathway in breast cancer
cell lines (MCF-7 and MDA-MB 231) [22,23]. The underlying mechanism demonstrated that Qc–AuNP
is a facile and economic-promising nanodrug with certain anticancer efficacy. Similarly, the AuNPs
synthesized with EGCG also induced anticancer efficacy and tumor tissue selectivity [24,25]. To dig
out the huge potential of natural anticancer substance, permutation and combination of numerous
phytochemicals and AuNPs were conducted. While various ideal/positive outcomes are exciting,
some inherent properties of the nanoparticle should be noted like the various shapes of AuNPs,
as different particle shape and surface chemistry can affect the cytotoxicity and cellular upatake of
metallic nanorods and nanospheres [26].

Molecules 2019, 24, x FOR PEER REVIEW 3 of 19 

 

chemicals and solvents, which has a negative effect on environment and human health [15]. Recently, 

AuNPs synthesized by employing active compounds from plants are reported to be non-toxic 

towards normal human cells [16]. Moreover, the synthesis process is simple and environmentally 

friendly [17]. 

 

Figure 1. Phytofabricated metal nanoparticles (NPs) synthesized by employing active compounds 

from plants (e.g., curcumin, quercetin, and epigallocatechin-3-gallate (EGCG)) as reducing agent. 

The synthetic process is simple and environmentally friendly. The Au nanospheres have a diameter 

between 1 and 100 nm and the length of Au nanorods range from 15 to 60 nm. 

AuNPs synthesized by using Cur (Cur–AuNPs) are the most studied phytofabricated AuNPs so 

far (Figure 1). It has been confirmed that Cur is a well-performing reducing agent to produce 

functionalized AuNPs and maintains the stability upon conjugation with AuNPs [18,19]. In addition, 

Cur–AuNPs display dominant results in antioxidant properties compared with free Cur and 

regulate the cancer immunity to some extent. In vitro experiment of Cur–AuNPs also showed 

stronger competence in inducing apoptosis in the colon (HCT-116) and breast (MCF-7) human 

cancer cell lines than the free Cur and the 50% inhibiting concentration (IC50) of MCF-7 and 

MDA-MB 231 cell lines were found at 10.0 μM [20,21]. Some other phytochemicals can also be 

involved in reduction of metal ions to AuNPs in a one-step and eco-friendly synthetic process. 

Previous studies on AuNPs synthesized with quercetin as reducing agent (Qc–AuNPs) revealed that 

Qc–AuNPs inhibit the epithelial–mesenchymal transition, angiogenesis, and invasiveness via 

epidermal growth factor receptor (EGFR)/vascular endothelial growth factor receptor 

(VEGFR)-2-mediated pathway and induce apoptosis via inhibiting EGFR/phosphatidylinositol 

3-kinase (PI3K)/protein kinase B (Akt)-mediated pathway in breast cancer cell lines (MCF-7 and 

MDA-MB 231) [22,23]. The underlying mechanism demonstrated that Qc–AuNP is a facile and 

economic-promising nanodrug with certain anticancer efficacy. Similarly, the AuNPs synthesized 

with EGCG also induced anticancer efficacy and tumor tissue selectivity [24,25]. To dig out the huge 

potential of natural anticancer substance, permutation and combination of numerous 

phytochemicals and AuNPs were conducted. While various ideal/positive outcomes are exciting, 

some inherent properties of the nanoparticle should be noted like the various shapes of AuNPs, as 

different particle shape and surface chemistry can affect the cytotoxicity and cellular upatake of 

metallic nanorods and nanospheres [26] . 

 

 

Figure 1. Phytofabricated metal nanoparticles (NPs) synthesized by employing active compounds
from plants (e.g., curcumin, quercetin, and epigallocatechin-3-gallate (EGCG)) as reducing agent.
The synthetic process is simple and environmentally friendly. The Au nanospheres have a diameter
between 1 and 100 nm and the length of Au nanorods range from 15 to 60 nm.

2.2. Silver NPs (AgNPs)

Similar to AuNPs, AgNPs are also exhibiting antibacterial, antimicrobial, and anticancer activities
with extensive uses in medicine [27]. Compared to Au, Ag is a more accessible metallic material for
cancer treatment. Researchers are enthusiastic in green synthesis, and it is shown that plant extracts
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as both reducing and stabilizing agents can be adapted to synthesize AgNPs [28]. Green synthesis
of AgNPs using phytochemicals has several advantages such as cost-effectiveness, eco-friendliness,
and biocompatibility [29]. Different from the green synthesis of AuNPs, the research of AgNPs
emphasize the synthesis of AgNPs itself, namely plant extract is usually considered as the reducing
agent in the synthesis of AgNPs but is not concerned about the bioactive compounds present in the
end-product. AgNPs without combining phytochemicals still show excellent anticancer properties
through green synthesis. For example, there was no obvious evidence confirming the phytochemicals
contributed the anticancer effect of the AgNPs synthesized by Piper longum leaf extracts in Hep-2 cell
lines [30]. However, the role of phytochemicals in AgNPs should not be ignored as some clues indicate
the bioactive compound could bind to the end-product AgNPs [31]. Though the anticancer properties
of AgNPs have been proven, the composition of AgNPs influences the stability, interaction, and toxicity,
etc. As for the phytochemicals conjugated AgNPs, besides the anticancer efficacy, the interaction
between AgNPs and serum protein is interesting. Both Cur and EGCG-coated AgNPs can be conjugated
on serum protein as a loose complex, which turns out to be a stable and potential biosensor [32]. Each
element in this complex has cancer therapeutic ability.

2.3. Other Metal NPs

Other metals like copper and platinum are also adapted as raw materials to construct the
phytochemical-inert metal NPs [33]. However, most of these products lack inspiring findings on
the respective cytotoxicity effect. The nanotoxicity of metal NPs should be noted even though some
researchers claim that there is negligible nanotoxicity for metal NPs. Nevertheless, the application of
metal NPs should be cautious in vivo, as the toxicity especially for the Au and Ag mainly results from
tissue accumulation, so the long-term toxicity should be considered seriously.

2.4. Plant-Derived Edible NPs

Previous studies suggest that nanosized edible particles from plant cells may be exosome-like,
which could serve interspecies communication roles, exert anti-inflammatory properties, and function
against cancers [34,35]. In comparison with exosome derived from mammalian cells, plant-derived
edible NPs show an economic advantage in scaling up for mass production [36]. As it is well known,
biocompatibility and safety are the major barriers between laboratory and clinic in nanomedicine.
Plant-derived edible NPs exhibit an unique advantage in these aspects, as they are consisting of
high levels of lipids, few proteins, RNAs, which made them one of the safest therapeutic NPs [37].
Ginger is an ideal natural source to gain edible NPs. Zhang et al. found that the NPs isolated
from ginger with abundant 6-gingerol (6G) and 6-shogaol, perform ideal stability, tissue selectivity,
anti-inflammatory effect, and cancer therapy potential in mice [38]. It should be reminded that NPs by
oral administration can also distribute into other organs by the circulation rather than simply binding
to gastrointestinal tract cells. These NPs can protect the liver from alcoholic damage in mice, which
is significant for hepatocellular carcinoma. Besides, the edible NPs isolated from Citrus limon are
efficient in the inhibition of the growth of tumor in the leukemia mice model [39] (Figure 2). It should
also be noted that harvesting of edible NPs in high yield and quality is difficult. However, recent
extraction and purification techniques have shown promise, such as isosmotic buoyant density and
isosmotic cushion ultracentrifugation, equilibrium density gradient ultracentrifugation, and differential
ultracentrifugation plus density gradient centrifugation [40].
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Figure 2. Exosome-like edible nanoparticles were isolated from representative plant (e.g., lemon).
Edible nanoparticles can be isolated from plants using filtration and centrifugation.

2.5. Plant Lipid-Derived NPs

Lipid NPs generated from edible plants can be used as nanocarriers of chemical drugs other than
their inherent compounds. Using sonication, lipids extracted from plants can form nanostructures
in which chemotherapeutic agents or phytochemicals can be embedded [41]. Lipid NPs are easily
biodegradable and without biohazards to the environment, representing a novel and natural delivery
system. Lipid NPs isolated from plants can deliver drugs to a specific location of the human
body [42]. The most studied plant is grapefruit, and the grapefruit-derived lipid NPs have been
demonstrated to deliver therapeutic agents in mouse CT26 and human SW620 colon cancer models [43]
(Figure 3). Research shows ginger has a high proportion of lipid [44]. Data from the literature shows
that lipid-derived NPs loaded with chemical drugs also display excellent advantages over artificial
NPs in cancer therapy. Delivering doxorubicin by lipid-derived NPs had more efficiency than free
doxorubicin [45]. With the process of geno-therapy, the cancer-suppression effect of siRNA has become
a hot area. The natural lipid carriers loaded with the miRNA-18a also performed well in inhibition of
liver cancer metastasis to normal tissues [46]. The natural lipid NPs are also considered as an ideal
carrier for siRNA delivery. Loading of CD98-siRNA into lipid NPs can target it specifically to gut tissues
by oral administration, reduce the expression of CD98 and show promise for immunoregulation [47].
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Though it is a promising approach for drug delivery to utilize NPs derived from plant, more details
should be noted as the complex constituents and interaction of the plant bioactive and therapeutic
agents are not negligible. As drug-metabolizing enzymes have a great influence on pharmacokinetics, a
large amount of therapeutic agents, including chemical drugs and plant constituents, can act as agonist
or inhibitor of these enzymes. Thus, consideration should be undertaken on whether the metabolizing
processes would be changed when the drug-loaded NPs are established with plant and chemicals
drugs. For example, the furanocoumarins abundant in grapefruit are potent inhibitors of cytochrome
P450s, important enzyme families in drug metabolism [48]. If drug-loaded NPs are constructed by
grapefruit, it is likely to influent the drug’s plasma concentration and bioavailability. A case in point is
the combination of the grapefruit component with tyrosine kinase inhibitors (e.g., erlotinib, nilotinib),
which could increase the risk of adverse reaction like Torsades de pointe or bone marrow suppression
for the persistent higher plasma drug concentration. Similar effects also exist in many other plants and
drugs like Saint-John’s Wort, ginseng, paclitaxel, etc. [49]. As a result, the interaction of the constituents
should be taken seriously to avoid aggravating side effects and optimizing the administration strategies.
We hereby attempt to perform a SWOT (strengths, weaknesses, opportunities, and threats) analysis of
the phytofabricated NPs (Figure 4).
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3. Phytochemicals Conjugated with NPs as Nanomedicine

3.1. Apigenin

Apigenin (4′, 5, 7,-trihydroxyflavone) is a popular member of flavones because of its low intrinsic
toxicity and striking oxidation resistance, anti-inflammatory, and anti-carcinogenic properties [50].
Apigenin exerts its anticancer effect by inducing cell apoptosis and autophagy, modulating cell cycle,
inhibiting cell migration and invasion, and induction of immune responses [51]. Studies assayed in
head and neck squamous cell carcinoma, glioblastoma cells, and triple-negative breast cancer cells
respectively demonstrate that apigenin shows selective cell cytotoxicity to cancer stem cells which are
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closely associated with cell proliferation, metastasis, and drug resistance of cancer [52–54]. However,
according to the biopharmaceutics classification system, apigenin was categorized as a Class II drug
because of its low solubility which greatly holds back its use in clinical settings [55]. Hence, in order to
attain a better bioavailability, a new formulation is necessary.

In a study, apigenin was loaded with poly(lactic-co-glycolide acid) (PLGA) NPs and the
anti-carcinogenic effect was evaluated in benzo[a]pyrene and ultraviolet-B induced mouse skin cancer
model. Results demonstrated that it showed better effects than free apigenin by reducing tissue damage
and frequency of chromosomal aberrations and inducing mitochondrial apoptosis [56]. In another
study, an apigenin–phospholipid phytosome (APLC) was designed to improve solubility, dissolution,
in vivo bioavailability, and antioxidant potential of apigenin. Compared with pure apigenin, APLC
was found to be over 36-fold higher than that of the aqueous solubility of apigenin, and improved
the oral bioavailability and restoration of all carbon tetrachloride-elevated rat liver function marker
enzymes [57]. Apigenin NPs produced by the liquid antisolvent precipitation technique was assayed in
a rat model. The experimental results showed that the solubility, dissolution rates, oral bioavailability,
and antitumor effect of the apigenin NPs are higher than the raw apigenin. In addition, there is no
toxic effect on the organs of rats [58].

3.2. Resveratrol (RES)

Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a non-flavonoid polyphenol, is a phytoestrogen that
attracts significant attention from researchers for its potent effects of anti-oxidant, anti-inflammatory,
and anticancer properties in many cancers [59–61]. In addition, it is more striking in reversing drug
resistance and the sensitizing of cancer cells for chemotherapy and radiotherapy [62,63]. However,
it is a pity to know that the poor water solubility and rapid metabolism of RES in the intestine and
liver results in low bioavailability of less than 1% which hinders its pharmacological potential [64–66].
In this scenario, the development of nano-engineered systems to solve this problem is needed. In a
study, non-small cell lung carcinoma cells were studied in Swiss albino mice after the administration of
gelatin NPs-loaded RES (RES–GNPs). Research found that RES–GNPs enhanced anticancer efficacy
of RES by inducing cell cycle arrest in the G0/G1 phase [67]. In another work, a transferrin-targeted,
RES-loaded liposome (Tf–RES–L) was produced to treat glioblastoma. Since transferrin is up-regulated
in glioblastoma, this makes Tf–RES–L able to be site-specifically targeted. In vitro experiments showed
the stability, excellent drug loading capability and prolonged drug-release time of Tf–RES–L while
in vivo studies exerted better anticancer effect and higher survival rate in mice [68]. Similarly, in
prostate cancer cells, RES-loaded PLGA mediated programmed cell death by promoting cell arrest
at G1/S phase of cell cycle [69]. Moreover, RES was loaded with AuNPs (RES–AuNPs) and the
anti-hepatoma efficacy was evaluated in vitro and in vivo. RES–AuNPs was proven to remarkably
inhibit tumor growth, promote tumor apoptosis and decrease the expression of vascular endothelial
growth factor (VEGF) in xenograft studies. Both in vitro and in vivo studies showed ameliorative
potential in antitumor effects compared to pure RES which may be due to the higher concentration of
RES in mitochondria with the help of AuNPs [70].

3.3. Curcumin (Cur)

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a bioactive
compound extracted from the root of the turmeric plant. It has been used in medical treatment
for centuries because of its anti-oxidative, anti-inflammatory, analgesic, antiseptic, and antimalarial
properties [71–73]. Cur is famous throughout these years as it can be a potent chemosensitizer against
chemoresistance by modulating multiple cell signaling pathways and cause cell apoptosis [74–76].
Nonetheless, numerous formulations need to be done to improve its low bioavailability caused by
low water solubility, low stability, poor absorption, and rapid systemic metabolism [77–79]. Since it
is known that combinatorial strategies can usually obtain an optimized effect, a co-delivery system
of doxorubicin and Cur in pH-sensitive NPs was constituted with an amphiphilic poly copolymer.
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The experiments in human liver cancer SMMC 7721 cells exerted enhanced cellular internalization of
drugs and a high rate of cancer cell apoptosis [80]. Similarly, a single walled carbon nanotubes-based
drug delivery system which was modified with alginate and chitosan got the same result in human
lung adenocarcinoma (A549) cells [81]. Furthermore, researchers created an ideal delivery system of
Cur by loading it with D,L-PLGA NPs and coated it with chitosan and PEG to obtain an optimum
therapeutic effect. In vitro, cellular studies reveal that the migration and invasion ability of metastatic
pancreatic cancer are reduced which means that the novel formulation revealed superior cytotoxicity
and apoptosis-inducing ability [82].

3.4. (−)-Epigallocatechin-3-gallate (EGCG)

EGCG ((−)-cis-3,3′,4′,5,5′,7-hexahydroxy-flavane-3-gallate) is the most abundant phytochemical in
green tea, which influences the proliferation, growth, and metastasis of tumors. Research evidence from
in vitro and in vivo studies demonstrate the potential of this particular natural compound in preventing
or interfering with many forms of cancers, which include but are not limited to skin and lung cancers.
Nevertheless, these in vitro and in vivo encouraging results have not been reproduced in the clinic.
This is mostly due to its short half-life and poor systemic absorption resulting in low bioavailability.

Fortunately, the utilization of nanotechnology can improve the pharmacokinetic and
pharmacodynamic profiles of conventional therapeutic formulations. A study with EGCG-loaded lipid
nanocapsules was performed to enhance its stability in the plasma [83]. Different approaches have
been used to improve the bioavailability by encapsulating EGCG with polylactic acid and polyethylene
glycol (PLA–PEG) NPs [84]. PLA–PEG NPs encapsulated EGCG retained its biological activity with
over a ten-fold dose advantage in exerting anticancer effects in vitro in 22Rν1 prostate carcinoma cell
line as well as in vivo in athymic nude mice implanted with human prostate cancer cells.

A group studied excellent anti-proliferative and pro-apoptotic effects of EGCG-chitosan NPs on
human melanoma in vitro and in vivo [85]. It was found that EGCG encapsulated in chitosan NPs, in
comparison to native EGCG, showed a marked induction of apoptosis in Mel 928 human melanoma
cells with about eight-fold better efficacy. Chitosan-based nano-formulation containing EGCG was
also observed to have a substantial improvement of therapeutic benefit against melanoma tumors
compared to the native agent in a mouse model of melanoma.

In a mouse melanoma tumor model, SmIII–EGCG nanocomplexes are directly compared with
a clinical anticancer drug, 5-fluorouracil, and shows remarkable therapeutic effects on primary
melanoma tumors and inhibition of metastasis of melanoma from invading other organs through
targeted therapeutic effects [86]. Moreover, these results suggested that SmIII–EGCG complexes
exhibited significantly lower adverse side effects than 5-fluorouracil when the anticancer therapy
was performed on melanoma primary tumors. Similarly, in vivo results revealed that SmIII–EGCG
nanocomplexes selectively and effectively induced the apoptosis of tumor cells with negligible effects
on the normal healthy cell lines.

Recently, one study reported that self-assembly of the PEG–EGCG with Sunitinib (SU) leads to the
formation of stable micellar nanocomplex (SU-MNC), which have greater anticancer effectiveness than
conventional SU formulations on human renal cell carcinoma-xenografted mice [87]. When injected
into mice, SU-MNC efficiently inhibited tumor growth with less systemic toxicity. Improved efficacy
of SU-MNC was attributed to the carrier−drug synergies as well as tumor-targeted delivery. This
study shows that EGCG-based nanocarriers would provide a more effective and safer strategy for
cancer therapy, suggesting an opportunity for potential improvement in therapeutic efficacy of the
nanocarrier platform.

3.5. 6-Gingerol (6G)

6-Gingerol (1-(4′-hydroxy-3′-methoxyphenyl)-5-hydroxy-3-decanone), one of the important
natural compounds isolated from the rhizome of ginger, has captured a lot of research interests
due to its wide range of biological activities like anti-inflammatory, antitumor, and so forth [88].
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Gingerol contains a series of phytoconstituents including 4-gingerol, 6-gingerol, 8-gingerol, 10-gingerol,
and 12-gingerol, with 6-gingerol (6G) being the pharmacologically active component [89]. Unfortunately,
its application is limited in the clinical settings mainly due to poor water solubility, temperature,
pH, and oxygen sensitivity and light instability. In order to deliver 6G in a targeted and controlled
manner and achieve better clinical efficacy, many new drug delivery systems have been studied
and developed in recent years, of which nano-drug delivery system has become a topic of rapidly
expanding scientific interest.

Manatunga et al. [90] reported a novel pH sensitive sodium alginate, hydroxyapatite bilayer-coated
iron oxide nanoparticle composite (IONP/HAp-NaAlg) loaded with two anticancer drugs, 6G or Cur.
The prepared nanocarrier system has shown the higher encapsulation efficiency and sustained
pH-controlled releasing ability, which make sure the release of 6G or Cur in a targeted and controlled
manner to treat cancer.

Loading of 6G into nanosized proliposomes has recently been studied for anticancer efficacy in SD
rat and it has been shown that the formulation of 6G reduced clearance by macrophage thus prolonged
the blood circulation time [91]. Encapsulation of 6G in nanosized proliposomes was also tested in
HepG-2 cells that demonstrated that the antitumor effect of 6G was improved by its entrapment
in proliposomes.

6G-loaded nanostructured lipid carriers have been shown to improve the water solubility and the
oral bioavailability of 6G [92]. These composite NPs were observed to have a suitable size distribution,
drug encapsulation efficiency, and drug release kinetics. In another important study, the toxic effects
of encapsulation of 6G in PEGylated nanoniosome was tested in the breast cancer cell line T47D and
the study exhibited that IC50 of the nanoformulation is less than the standard drug [93]. 6G-loaded
PEGylated nanoniosome have also been shown to display more stability and slower release of the
compound. Another characteristic feature of PEGylated nanoniosome noted was its stability during
storage and the capacity of drug loading.

Finally, magnetic hydroxyapatite (m-HAP) NPs conjugated to 6G were tested in MCF-7 cells and
HepG-2 cells, and it has been shown to display more effective inhibition of the proliferation of cancer
cells than 6G alone [94]. Another characteristic feature of m-HAP NPs noted was considerably higher
loading capacity and reduced toxic effects on non-targeted, non-cancerous cells.

3.6. Quercetin (Qc)

Quercetin (3,3′,4′,5,7-pentahydroxyflavone), an attractive polyphenolic active compound, which
is found in several dietary plant foods such as apples, onion, and red grapes, has been proven to possess
a variety of pharmacological benefits [95,96]. A large number of studies conducted over the past years
have shown that this particular natural compound can impede one or more steps in carcinogenesis
in various cancer cell lines [97,98]. Additionally, it has been previously demonstrated that Qc in
combination with chemotherapeutic drugs maximizes the efficacy of these agents in induction of
apoptosis in cancer cells and is very effective in the elimination of multi-drug resistance [99,100].
In spite of this beneficial effect, the use of Qc in clinical application met with limited success. Therefore,
current studies are focused on the development of nanoformulations which would overcome low
aqueous solubility and poor chemical stability of natural Qc.

Minaei et al. [101] prepared composite NPs by mixing Qc and lecithin and examined its potential
use in doxorubicin-induced apoptosis. The data from this study demonstrated that combination of
nano-Qc and doxorubicin increased toxic effects of doxorubicin in human MCF-7 breast cancer cells.
Furthermore, the formulation provided improved drug loading, sustained, and sequential release of
both agents.

In another study, a near-infrared-responsive drug system-based on Au nanocages with
Biotin–PEG–SH modification was synthesized for the combination of doxorubicin and Qc [102]. In this
study, the resultant nanocomplex was exhibited to have much more potent effects on MCF-7/ADR cells
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growth inhibition under near-infrared irradiation. In addition, the co-delivery of doxorubicin and Qc
could effectively increase the intracellular accumulation of doxorubicin and distribution in nuclei.

The anti-proliferative and pro-apoptotic effects of lipid–polymeric NPs (LPNs)-loaded with
vincristine and Qc on human lymphoma have been studied both in vitro and in vivo [103]. To be
noticed, the lethality of treated Raji/VCR cells was higher than that of the free drugs. These LPNs
were confirmed to completely inhibit tumor growth along with a lower toxicity in a mouse model of
lymphoma. Co-encapsulation of vincristine and Qc in the same LPNs can combine the efficiency of
these two drugs and bring about synergistic effect and has potential as a novel therapeutic approach to
overcome chemo-resistant lymphoma.

Lastly, in another study, the anticancer potential of nanoparticle of Qc alone and in combination with
cisplatin nanoparticle (LPC) was studied in a bladder carcinoma model and the study suggested that the
nanoformulation yielded significantly enhanced antitumor efficiency in combination with LPC [104].
Encapsulated polyphenol in lipid calcium phosphate NPs protected Qc from degradation, facilitated
increased accumulation at the tumor site through enhancing the drug permeability, and enhanced the
tumor penetration of second-wave NPs administered. For the sake of simplicity, we summarized and
presented the information of this section in Table 1.
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Table 1. Studies employing nanotechnology for delivery of (phyto)chemicals.

(Phyto)chemicals Studying Group Nanoparticles Cancer Types Conditions Efficacy as Compared with Free Forms Reference

Apigenin

Das et al. (2013) PLGA Skin cancer In vitro and in vivo Enhanced anti-carcinogenic effect [56]

Telange et al. (2017) APLC Liver cancer In vitro and in vivo Improved aqueous solubility, dissolution, in vivo
bioavailability, and antioxidant activity [57]

Wu et al. (2017) Liposomes Hepatoma In vitro and in vivo Improved solubility and bioavailability [58]

Resveratrol

Karthikeyan et al. (2015) Gelatin Lung cancer In vitro Better stability; improved drug- loading capacity;
sustained drug-release; improved cytotoxicity [67]

Jhaveri et al. (2018) Liposomes Glioblastoma In vitro and in vivo Enhanced solubility and stability; sustained
drug-release; better tumor selectivity [68]

Nassir et al. (2018) PLGA Prostate cancer In vitro Enhanced anti-carcinogenic effect by inducing
mitochondrial-dependent apoptosis and cell arrest [69]

Zhang et al. (2019) Au Hepatoma In vitro and in vivo Inhibition of tumor growth; induced tumor
apoptosis and decreased the expression of VEGF [70]

Curcumin–Doxorubicin Zhang et al. (2017) pH-sensitive
nanoparticles Liver cancer In vitro and in vivo

Low polydispersity and high encapsulation
efficiency; enhanced release in the acidic
environment; inhibition of angiogenesis

[80]

Curcumin

Singh et al. (2018) Single walled
carbon nanotubes

Lung
adenocarcinoma In vitro Improved aqueous solubility; a moderate and ideal

drug delivery system; enhanced anticancer effect [81]

Arya et al. (2018) PLGA Metastatic pancreatic
cancer In vitro Superior cytotoxicity; enhanced anti-migratory;

anti-invasive and apoptosis-inducing ability [82]

EGCG

Siddiqui et al. (2010) PLA–PEG Prostate cancer In vitro and in vivo Enhanced bioavailability; superior
inhibition of angiogenesis [84]

Siddiqui et al. (2014) Chitosan Melanoma In vitro and in vivo Excellent anti-proliferation [85]

Li et al. (2019) SmIII nanocomplexes Metastatic melanoma In vitro and in vivo
Decreased viability; inhibition of wound-induced

migration; prevention of metastatic lung
melanoma from spreading

[86]

EGCG–Sunitinib Yongvongsoontorn
et al. (2019) MNC Renal carcinoma In vitro and in vivo Enhanced anticancer effects and less toxicity;

inhibition of angiogenesis [87]

6-Gingerol/Curcumin Manatunga et al. (2017) IONP/HAp-NaAlg Breast cancer In vitro Targeted and controlled release
over a period of time [90]
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Table 1. Cont.

(Phyto)chemicals Studying Group Nanoparticles Cancer Types Conditions Efficacy as Compared with Free Forms Reference

6-Gingerol

Wang et al. (2018) Nanosized
proliposomes Liver cancer In vitro and in vivo Improved water solubility; sustained drug release;

enhanced oral bioavailability [91]

Wei et al. (2018) Lipid nanocapsules Liver cancer In vitro Better stability and slower drug release;
targeted delivery [92]

Behroozeh et al. (2018) PEGylated
nanoniosome Breast cancer In vitro and in vivo Enhanced bioavailability [93]

Manatunga et al. (2018) m-HAP Breast and liver
cancers In vitro Increased stability; controlled and targeted delivery;

minimizing toxicity [94]

Quercetin–Doxorubicin Minaei et al. (2016) Lecithin Breast cancer In vitro and in vivo
Elevated efficacy of chemotherapeutics by

increasing the permeability of tumor cells to
chemical agents

[101]

Zhang et al. (2018) Au nanocages Breast cancer In vitro and in vivo Inhibition of tumor growth [102]

Quercetin–Vincristine Zhu et al. (2017) Lipid-polymeric Lymphoma In vitro and in vivo

Improved bioavailability and metabolic stability;
remodeled tumor microenvironment and increased
the penetration of second-wave nanoparticles into

the tumor nests

[103]

Quercetin–Cisplatin Hu et al. (2017) Lipid calcium
phosphate Bladder carcinoma In vitro and in vivo

Enhanced permeation and retention effect; selective
targeting; greater antitumor efficacy

and minimized toxicity
[104]
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4. Conclusions

Abundant natural phytochemicals are potential anticancer drugs. It is widely accepted that
nanotechnology could be a future direction in cancer treatment. The application of phytochemicals
in combination with nanotechnology amplifies the therapeutic effect and provides a new way to
solve the difficult economic and environmental problems of nanotechnology. Therefore, combining
phytochemicals with nanotechnology is a promising approach. However, challenges of nanotechnology
are not yet fully settled. Despite research advancements in this area with various modifications on
the nanocarrier platform to improve pharmaceutical properties of therapeutic molecules, achieving
desirable effectiveness still remains an issue for clinical success. One of the major drawbacks is
in general these NPs can only encapsulate small amounts of compounds. Though tailor-made
nanomaterials functionalized with specific ligands could enable loaded drugs to function at lower
doses, their improved efficacy over conventional drugs has remained marginal. The main reason is
that nanocarriers are just excipients for delivering drugs and not therapeutically active. To overcome
the obstacles, more innovative nanocarriers (for example, phytofabricated NPs) that have inherent
therapeutic properties need to be developed. In addition, it is important to point out that the safety of
nanocarriers remains largely unexplored, as nanomaterials may not have immediate health impact.

Furthermore, the manufacturing of nanomedicinal products for commercialization is a key
obstacle. The determination of optimal physicochemical parameters of NPs is needed. As the
involvement of multiple steps or complicated technologies for the production of NPs, the use of
well-designed manufacturing processes is essential. What is more, the clinical benefit must be
guaranteed, as the manufacturing cost is generally high. Indeed, large scale-production is technically
challenging, the transition from laboratory to clinic is nearly always accompanied by the optimization
of formulation parameters. Even a subtle change in the formulation methods then the physicochemical
properties of NPs may vary from batch to batch. Suffice to say, we still have a journey in the large-scale
production of nanoparticles for drug delivery and many challenges to be conquered.
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Abbreviations

Akt protein kinase B
APLC apigenin-phospholipid phytosome
AuNPs gold nanoparticles
Cur curcumin
EGCG epigallocatechin-3-gallate
EGFR epidermal growth factor receptor
6G 6-gingerol
IC50 50% inhibiting concentration
IONP/HAp-NaAlg pH sensitive sodium alginate, hydroxyapatite bilayer-coated iron oxide nanoparticle composite
LPC cisplatin nanoparticle
LPNs lipid–polymeric NPs
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m-HAP magnetic hydroxyapatite
MNC micellar nanocomplex
NPs nanoparticles
PI3K phosphatidylinositol 3-kinase
PLA–PEG polylactic acid and polyethylene glycol
PLGA poly(lactic-co-glycolide acid)
Qc quercetin
RES resveratrol
RES–AuNPs RES-loaded with AuNPs
RES–GNPs gelatin nanoparticles-loaded RES
SU sunitinib
Tf–RES–L transferrin-targeted, resveratrol-loaded liposome
VEGF vascular endothelial growth factor
VEGFR VEGF receptor
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