Efficient Removal of Copper Ions from Wastewater Using a Stable Chitosan Gel Material

Zujin Yang,^{1,4*} Yuxin Chai^{1,4}, Lihua Zeng², Zitao Gao¹, Jianyong Zhang², Hongbing Ji^{3,4,5*}

¹School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China ²School of Materials Science and Engineering, School of Chemistry, MOE Laboratory of Polymeric Composite and Functional Materials, Sun Yat-sen University, Guangzhou 510275, China ³Fine Chemical Industry Research Institute, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China ⁴Huizhou Research Institute of Sun Yat-sen University, Huizhou 516216, China ⁵School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maomen 525000, China * Correspondence author. Professor H. B. Ji School of Chemistry Sun Yat-sen University Tel.: +86 20 84113658 No. 135, Xingang West Road Guangzhou, China, 510275 E-mail: yangzj3@mail.sysu.edu.cn, jihb@mail.sysu.edu.cn.

Adsorption Model Fitting

In order to elucidate the adsorption mechanism, the pseudo-first-order and pseudo-second-order kinetic equations are used to fit the experimental adsorption data [1, 2].

$$\ln(q_e - q_t) = \ln q_e - k_1 t \tag{1}$$

$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + \frac{t}{q_{e}}$$
(2)

In addition, the adsorption amount q_t versus $t^{0.5}$ can also be used by using the following equation [3],

$$q_t = k_{id} t^{0.5} + C (3)$$

where q_e and q_t are the amount of Cu²⁺ ions adsorbed at equilibrium and time t (mg/g), respectively. k_1 (min⁻¹) and k_2 (mg/(g.min)) are the rate constants of pseudo-first-order and pseudo-second-order adsorption models, which can be determined by the slope and intercept from the straight lines of ln ($q_e - q_t$) against t and t/q_t versus t, respectively. k_{id} (mg/(g. min^{0.5})) is the diffusion kinetic rate constant, which is calculated by the slope from the straight line of q_t against $t^{0.5}$.

In order to understand the equilibrium data of adsorption from aqueous solution, Langmuir, Freundlich, and Dubinin-Radushkevich (D–R) models were used study the equilibrium data of Cu²⁺ ions on the FCG [4].

$$\frac{c_e}{q_e} = \frac{c_e}{q_m} + \frac{1}{K_L q_m} \tag{4}$$

$$\ln q_e = \ln K_f + \frac{1}{n} \ln c_e \tag{5}$$

where c_e (mg/L) and q_e (mg/g) are the concentration of adsorbate and adsorption capacity of the adsorbent at equilibrium time, respectively. K_L is Langmuir adsorption constant and q_m (mg/g) is the theoretical maximum adsorption capacity to form monolayer on the FCG, respectively. K_f is Freundlich constant that is an indicator of adsorption capacity and 1/n is the Freundlich coefficient related to the magnitude of the adsorption driving force.

To further understand adsorption mechanism, D-R isotherm is applied to illustrate the adsorption process of Cu²⁺ ions as physical or chemical adsorption. Its linear form is expressed as,

$$\ln q_e = \ln q_m - \beta \varepsilon^2 \tag{6}$$

where q_m is the theoretical saturation capacity (mg/g), β is related to mean adsorption energy (kJ/mol), and ε (Polanyi potential) is calculated as,

$$\varepsilon = RT \ (1 + \frac{1}{c_e}) \tag{7}$$

R (J/(mol.K)) is the gas constant and *T* (K) is absolute temperature. q_m and β are obtained from the intercept and the slope of linear plot of ln q_e against ε^2 , respectively. E_a (kJ/mol) is the mean adsorption energy, which is calculated from the β value as:

$$E_a = \frac{1}{(2\beta)^{0.5}}$$
(8)

If E_a is > 16 kJ/mol, the adsorption process is a chemisorption, and it is a process of ion exchange when E_a is in the range of 8 to 16 kJ mol⁻¹, while for values of $E_a < 8$ kJ mol⁻¹, demonstrates a physical process [5].

Thermodynamic parameters such as free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) can be calculated as,

$$K_c = \frac{C_{Ae}}{C_e} \tag{9}$$

$$\Delta G^o = -RT \ln K_c \tag{10}$$

$$\Delta G^{o} = \Delta H^{o} - T \Delta S^{o} \tag{11}$$

$$\ln K_c = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT}$$
(12)

where K_c is the equilibrium constant, T is the absolute temperature, R is the gas constant (8.314 **J/(mol.K**), C_e is the equilibrium concentration in solution (mg/L), C_{Ae} is the amount of Cu²⁺ adsorbed on the FCG at equilibrium (mg/L). ΔG° , ΔH° , ΔS° are changes in Gibbs free energy (kJ/mol), enthalpy (kJ/mol), and entropy (kJ/(mol K)), respectively. The values of ΔH° and ΔS° can be calculated from the slope and intercept by plotting ln K_c against 1/T.

Fig. S1. (a) Adsorption–desorption isotherms of N₂ at 77 K and (b) pore-size distribution of chitosan and FCG.

Fig.S2. Adsorption kinetic equations fitting of Cu²⁺ ions with two Cu²⁺ ions concentrations by FCG. (a) Pseudo-first-order kinetics; (b)Pseudo-second-order kinetics; (c) Intraparticle diffusion kinetics. (initial Cu²⁺ ions concentration, 50 and 100 mg/L; pH, 5; temperature, 293 K; agitation speed, 150 r/min; and adsorbent dose,10 mg/25 mL)

Fig. S3. Regeneration capacity (a) and recovery ratio (b) of FCG for $Cu^{2\ast}$ ion.

Sample	Solubility			Swelling		
	Distilled water	2% acetic acid	0.10 mol/L NaOH	Distilled water	2% acetic acid	0.10 mol/L NaOH
Chitosan	Insoluble	Soluble	Insoluble	42.4	Soluble	32.7
FCG	Insoluble	Insoluble	Insoluble	10.4	5.8	4.2

Table S1. Solubility and swelling of chitosan and FCG

Table S2. Porosity and diameter of chitosan and FCG

Materials	Surface Area (m²/g)	Pore Volumn (cm³/g)	Average pore size (nm)
Chitosan	0.58	0.00269	19.88
FCG	2.53	0.0829	4.63

		$C_{Cu^{2+}}$ (mg/L)		
model	parameter	50	100	
	$q_{\rm e,exptl}({ m mg/g})$	39.4	76.4	
	k_1 (min ⁻¹)	0.0072	0.0095	
Pseudo-first-order	$q_{ m e,calcd}(mg/g)$	30.9	66.3	
	R^2	0.985	0.981	
	k2(mg/(g.min))	0.000560	0.000282	
Pseudo-second-order	$q_{ m e,calcd}(mg/g)$	39.1	77.2	
	R^2	0.995	0.996	
	$k_{\text{int}}(\text{mg}/(\text{g.min}^{0.5})$	1.647	3.581	
Intraparticle diffusion	С	4.656	3.761	
	R^2	0.984	0.979	

Table S3. Kinetic parameters for the adsorption of two $\rm Cu^{2+}$ ions concentrations at 293 K

	Temperature/K			
parameter	293	298	303	
	Langmuir Model			
$q_m (mg/g)$	84.39	60.57	43.84	
Kı (L/mg)	0.07992	0.06377	0.03958	
RL	0.2016	0.1355	0.1112	
R^2	0.993	0.997	0.986	
	Freundlich Model			
Kf(L/mg)	13.26	11.45	8.93	
1/n	0.46	0.35	0.24	
<i>R</i> ²	0.992	0.984	0.971	
	D-R Model			
$q_m (mg/g)$	56.10	46.68	35.08	
β	0.004064	0.003217	0.002845	
E _a (kJ mol ⁻¹)	13.25	12.46	11.09	
<i>R</i> ²	0.842	0.869	0.646	

 Table S4. The correlated parameters for the adsorption of Cu²⁺ ions onto FCG from aqueous solution according to Langmuir, Freundlich and D-R models

adsorbent	Temperature	ln KL	ΔG°	ΔH°	ΔS°
	(K)		(kJ/mol)	(kJ/mol)	(J/(mol· <i>K</i>))
	293	2.992	-7.288		-316.97
Cu ²⁺	298	2.211	-5.478	-100.16	-317.72
	303	1.636	-4.121		-316.96

Table S5. Thermodynamic parameters for adsorption of Cu^{2+} ions on FCG

References

1. Rudzinski, W.; Plazinski, W. Kinetics of solute adsorption at solid/solution interfaces: A theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. *J. Phys. Chem.* **2006**, *110*, 16514-16525.

2. Bulut, Y.; Aydın, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. *Desalination*. **2006**, *194*, 259-267.

3. Zhang, X.; Bai, R., Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. *J. Colloid. Interf Sci.* **2003**, *264*, 30-38.

4. Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J., Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. *J. Hazard. Mater.* **2010**, *177*, 676-682.

5. Günay, A.; Arslankaya, E.; Tosun, İ., Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. *J. Hazard. Mater.* **2007**, *146*, 362-371.