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Abstract: The syntheses of the title compounds demonstrate a privileged introduction of a nitroso
(and a hydroxyl via the Baudisch reaction) group to an aromatic ring. These complexes first appeared
in the literature as early as 1939, and a range of applications has subsequently been published.
However, optimisations of the preparative sequences were not considered, and as such, the reactions
have seldom been utilised in recent years; indeed, there remains confusion in the literature as to how
such complexes form. In this review, we aim to demystify the misunderstanding surrounding these
remarkable complexes and consider their renewed application in the 21st century.
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1. Introduction to Metal-Nitrosophenolato Complexes

Metal-nitrosophenolato complexes consist of a metal ion (most commonly copper(II)) flanked by
typically two or more 2-nitrosophenolate ligands. The structures of the nitrosophenols (both as ligands
and free molecules) are known to resonate between the nitrosophenol and the quinone-monoxime
forms [1–3]. Although the monoxime is considered to dominate, most literature representations display
the nitrosophenol form, often for clarity and simplicity. Interestingly, the nitrosophenolato complexes
are often highly coloured and reported to possess only limited solubility in most common organic
solvents and water. Historically, the complexes have featured in a wide range of publications most
often-based upon their colourimetric properties, although in recent years, both the metal complexes
and their 2-nitrosophenol ligands have received little attention, becoming an almost forgotten class
of molecules. However, one compound that has gained current commercial applicability [4] is an
iron tris(1-nitroso-2-naphtholato), a dye known as ‘pigment green 8’ (Figure 1) [5–7]. This vivid green
species has found widespread application in concrete, textiles, paint and rubber colouration.

One of the reasons why this area of chemistry has been somewhat overlooked in recent years
is most likely due to the background literature being spread widely, and often thinly, across many
subdomains of Organic, Inorganic, Analytical and Materials Chemistry. However, many positive
factors, which we will explore subsequently, such as the affordability and availability of starting
materials, the mild reaction conditions, lack of organic solvent-requirements and applicability to
naturally occurring aromatic feedstocks make this topic relevant to the chemical research community
today more than ever before.

1.1. Metal-Nitrosophenolato Complexes in Nature

Remarkably, substituted iron tris(nitrosophenolato) complexes are naturally biosynthesised by
particular Streptomycete bacteria as specialised antibiotics [8–11]. Ferroverdin (Figure 2) was the
first confirmed natural product to be isolated [8], although this was rapidly followed by the related
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Viridomycin A, Actinoviridin and Viridomycin E [12]. These complexes were found to target certain
bacteria by disrupting their cell membranes; however, the free ligands were determined to be more
effective than the corresponding iron complexes [13]. Interestingly, despite the presence of three
negatively charged ligands, the complexes all exist in the Fe(II) oxidation state, with the overall
negative charge counterbalanced with a sodium or equivalent cation [9,14]. It should, however, be
acknowledged that this general characterisation is not universally accepted [12], and is complicated by
the fact that the compounds are redox active and that, although the complexes are largely inert [13],
ligands can be added/removed under a range of mild conditions [14]. Interestingly, these complexes
were biosynthesised by the Streptomyces by incubation in a ferrous environment (e.g., with FeSO4)
with carbon sources such as fructose and alanine in an assumingly complex pathway that is not
extensively discussed [12], phosphate sources were also provided in most cases [11]. They were
eventually identified as secondary metabolites and did not appear to assist in the regulatory uptake of
iron into the cell [12]. The same iron complexes have now also been synthesised, using Cronheim’s
copper-mediated nitrosation method (to be discussed in due course), followed by transmetallation to
the ferrous complex [12,13,15].
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publication [12] and could well exist preferentially as the hexadentate sodium salt, equivalent to the
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1.2. A Brief History of Metal-Nitrosophenolato Synthesis

The very first appearance of metal-nitrosophenolato complexes was reported by Eugéne Millon [16]
in 1849, involving the formation of a mercury(II) complex. As indicated, such complexes are usually
highly coloured, which inspired their continued preparation and isolation; indeed, the first fully
isolated example appeared as early as 1900, but was originally misidentified as an ortho-nitrophenol
complex of mercury with four pendant ligands [17]. It has now been comprehensively shown that
this isolated compound was actually the corresponding mercuric-nitrosophenolato complex [18,19].
The analytical value of these intensely coloured complexes has over the years been widely exploited
via the ‘Millon reagent’ or ‘Millon test’. This test has been used as a qualitative detection method for
tyrosine, as well as other phenol functional molecules present in solution [14,17].

The next big development in the preparation of metal-nitrosophenolato compounds was realized
by the Austrian chemist, Oskar Baudisch, during the early part of last century [20,21]. The developed
synthesis represents a very interesting and novel functionalisation of an aromatic ring (such as benzene),
where a hydroxy and nitroso moiety are added with defined ortho-regioselectivity. The functional
aromatics are formed in the presence of a metal ion, typically copper(I) or (II) and hence post reaction,
the compounds remain co-ordinated to the metal, forming a stable dimeric complex (in the case of
copper). Advances in the fundamental understanding of this sequence, which has become known as the
‘Baudisch reaction’, including its underlying mechanism, have been explored in several publications,
but the experimental results and conclusions have never been reviewed in a comprehensive fashion,
and despite multiple recent advances in copper-mediated nitrosation procedures [22,23], the related
Baudisch scheme has been neglected. This review aims to amalgamate existing knowledge in order to
highlight the latest thinking regarding the mechanism and disclose how this reaction and its products
may find fertile ground as a valuable transformation in modern synthetic chemistry.

1.3. Introduction to the Baudisch Reaction

While not being a commonly encountered or formally recognised named reaction,
the term ‘Baudisch reaction’ has become synonymous with specific processes that synthesise
metal-nitrosophenolato compounds. In the original reported work, Baudisch employed a range
of copper(I) and (II) sources and ‘Merck’s Superoxol’ (historic, commercial name for aqueous hydrogen
peroxide) with benzene [20,21]. In addition, either hydroxylamine or a nitrous acid source was further
supplied to introduce the corresponding nitroso moiety, hence forming complexes as the end product
(Schemes 1 and 2). Baudisch in his reports proposed that the mechanism was much the same whether
hydroxylamine or a nitrite source was used, although findings from later publications to be discussed
cast significant doubts over this conclusion.
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Scheme 1. Five different reactions (1–5) that Baudisch chose to publish, across two publications,
which have subsequently become known as the Baudisch reaction [20,21]. aBaudisch states in the
literature that ‘freshly prepared yellow cuprous hydroxide’ was used; it is known that this is not a
stable entity, so the actual active substance could well be an alternative such as cuprous oxide, Cu2O.

1.4. Copper-Mediated Aromatic Nitrosation

An alternative, but related scheme that produces metal-nitrosophenolato complexes converging
from phenolic starting materials was reported by Cronheim, several years after Baudisch’s original
discoveries [15]. In this reaction aqueous nitrosation conditions (nitrite salt with acid) were used, and
hence the process most likely occurs via an aromatic C-nitrosation, where the copper plays a crucial,
yet undisclosed role. This approach has been used to synthesise several derivatives disclosed in other
publications and is also therein loosely referred to as the Baudisch reaction [18,24,25]. It should be
noted that Cronheim and others’ opinion was that this route was distinct from the Baudisch conditions,
as often a different major product is generated under the Baudisch conditions. A representative
example which clearly distinguishes between these processes is transposed regioselectivity, as seen in
the below transformations (Scheme 2).
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1.5. Additional Syntheses of Metal-Nitrosophenolato Complexes

A further alternative synthetic approach would be to generate the free 2-nitrosophenol compounds
first and then react them in a secondary process with a metal salt (e.g., copper(II) chloride). A copper
ion, for example, will readily combine with 2-nitrosophenol under a range of monophasic or biphasic
solvent systems, due to the substantial binding affinity [1,15,27]. Indeed, the thermodynamic stability
of the copper-nitrosophenolato complexes is such that the biphasic reaction of a ligand in an organic
solvent with a copper(II) salt in water is often completed quantitatively in only a few minutes [15]. Free
2-nitrosophenols can be made by partial oxidation of 2-aminophenols, in some cases [28], as well as a
simple C-nitrosation of a phenol [27,29–31]. The scope of this particular approach however appears
limited to certain 5-substituted-2-nitrosophenols and ortho nitrosonaphthols [1,31,32].

In contrast, the ligands can be freed from the complexes through the action of a strong acid.
These reactions were demonstrated by Cronheim to show the formation and decomplexation of these
complexes, as visualised by substantial colourimetric differences. The recovered yields for the free
ligands were not reported; but Cronheim described ‘relatively low yields’, which is expected due to the
nitrosophenol compounds’ strong ligand binding affinity and the temperamental acid-stability of the
free ligands. A much improved technique allowing simple isolation of the 2-nitrosophenol involves
the use of a copper-scavenger, which coordinates with a higher binding affinity and thus selectively
displaces the chelating nitrosophenol ligands [24].

The ligand-metal association method is not as applicable as might first be expected due to
problems with isolating the free 2-nitrosophenol compounds. Indeed, there are only very limited
experimental procedures documenting the preparation and isolation of 2-nitrosophenols. It is a
common misconception that C-nitrosation of phenols predominantly produce the corresponding
2-nitrosophenol regioisomer, as per the general expectation for an SEAr process [29,33,34]. Conversely,
unless there is a blocking group at the 4-position or a very strongly directing or bulky group at the
3-position, nitrosation of phenols occurs almost exclusively para to the hydroxyl group [35]. This
occurs because even though the 2-nitrosophenol is the kinetic product, owing to the ability of the
nitroso group to undergo migration to a more favourable position of the Wheland intermediate, the
thermodynamic 4-substitued product is almost the sole isolated adduct [2,36]. It should also be noted
that examples of 4-substituted-2-nitrosophenols are still relatively rare and mainly historical, the
one recent publication [37] describing the preparation, isolation and characterisation of four such
compounds has since been retracted, hence the existence of these compounds remains unconfirmed.
Electronics also play an important role as aromatics with electron-withdrawing substituents are
generally inert to nitrosation (hence why poly nitrosation is rarely observed), to a greater extent
even than nitration [38], with toluene being about the least electron-rich aromatic known to undergo
C-nitrosation [28,32,34].
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This preference for para-nitrosation is seemingly altered in the Baudisch conditions where the
formation of a complex stabilises the 2-nitrosophenol ligand against rearrangement. Complexation also
helps prevent condensation/decomposition or oxidation to the nitro derivative [18,36], factors which
likely explain why free 2-nitrosophenol compounds are so rarely reported and characterised in the
literature. Despite their highly reactive nature, a small collection of publications describe the synthesis
and isolation of 2-nitrosophenols possessing a meta substituent, rather than a para ‘blocking’ group
(Scheme 3) [31,39,40]. In each case, the metal substituent was a π-donor comparable in strength to or
exceeding the phenol directing group, hence attenuating the natural preference for para-nitrosation
relative to the phenol.
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Consequently, not all metal-nitrosophenolato complexes can be formed when metal salts are
combined with free 2-nitrosophenols [41]. Several failed attempts to synthesise complexes have been
reported [1]; however, investigating the experimental approach it is not clear if this was as a result of
complex instability or actually unsuccessful synthesis of the ligand in the first place. In general, there
are four principal synthesis routes to the discussed complexes, and although their preparations can be
problematic, the corresponding complexes can often be readily obtained by simple precipitation. Some
representative reaction conditions are summarised in Table 1 and will be discussed further in more
detail subsequently.
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Table 1. General conditions reported to produce metal-nitrosophenolato complexes, highlighting a
representative copper example for each case.

Description Accepted Starting Materials

Baudisch conditions with hydroxylamine

A range of aromatics including
benzene, phenols, catechols,

naphthalenes and phenylsulfinic
acids [20,42,43].
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1.6. Scope of Metal-Nitrosophenolato Synthesis

While the mechanism of the Baudisch reaction implies that almost any aromatic should be able to
form a copper-nitrosophenolato complex, in practice, the Baudisch conditions have not been extensively
investigated for their scope. More commonly, this approach has been relegated in favour of either
the copper (or other metal)-mediated phenol nitrosation procedure or the direct complexation of the
free-ligand with a metal salt (it is worth noting that these latter schemes are still often unhelpfully referred
to as the ‘Baudisch reaction’). For this reason, there is often a strong correlation between the number of
available literature references for a given nitrosophenol ligand and that of the related metal complex.
The exception is for 4-substituted-2-nitrosophenols, such as 4-chloro-2-nitrosophenol, where there has
been no reliable confirmation of existence for the free ligand, whereas the corresponding metal complex
has been repeatedly reported. The sub-class of o-nitrosonaphthols appears to form the most popular
complexes, probably because several o-nitrosonaphthols are more stable and are also commercially
available [44]. A range of metals have thus been utilised in their complexation. Historically, these were
initially smaller, first-row transition metals, though larger metals have subsequently been found to
form complexes too, including (but not limited to) gold [15], palladium [45], ruthenium [46] and more
recently even samarium [47].
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1.7. Properties of Metal-2-Nitrosophenolato Complexes

One of the first publications highlighting the properties of a vast assortment of
metal-nitrosophenolato complexes came from German chemist, Georg Cronheim [15], whose team
prepared and analysed over 50 different complexes. It was also suggested in this seminal publication
that the free 2-nitrosophenol ligands were isolated from these complexes; however, yields, purities,
stabilities or structural data were not provided to support this statement. It was found that stable
complexes formed with a variety of metal +2 centres, especially mercury(II), nickel(II), iron(II), cobalt(II)
and palladium(II). Other metals in different oxidation states, including silver(I) and gold(III) were also
found to have affinity for the free 2-nitrosophenols. Interestingly, if insufficient free nitrosophenol was
present for complete conversion to the bis-ligated complexes, mono-ligated complexes were selectively
formed. These could be easily distinguished by their different solubilities, because the bi-ligated
complexes were organic soluble but not aqueous, and the reverse was true for the mono-ligated.
The majority of the complexes reported were prepared using Baudisch conditions; however, as
4-substitued-2-nitrosophenolato complexes cannot be made in this way, they were instead generated
using what appears to be the first record of a copper-mediated nitrosation of phenols procedure
(excluding examples of the Millon test [16]).

A later study, by Charalambous et al. [1], investigated the properties of additional
metal-2-nitrosophenolato complexes and addressed some of the common misconceptions made
in the earlier literature. Using infrared spectroscopy, it was discovered that the nitrosophenol ligands
readily tautomerise to the more favoured o-benzoquinone monoxime structure (Figure 3), and the
same is true for the free nitrosophenols [29].
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Figure 3. The possible tautomers of copper(II) bis(4-methyl-2-nitrosophenol), (2b, 2bi).

It was not possible at the time to determine whether the metal atom coordinated to the nitrogen or
the oxygen atom of the nitroso group. It has now been confirmed using single crystal X-ray diffraction
(XRD) analysis that coordination is through the nitrogen (Figure 4) [29,48]. A Jahn-Teller distorted
octahedral geometry is adopted, with the two aromatic ligands forming an equatorial plane and the
axial positions occupied due to oligomerisation, with the phenolic oxygen typically as the donor,
although its distance is a little outside the primary coordination sphere of the copper and instead
within the Van der Waal’s radii [49]. This structure occurs for only completely dried, anhydrous
compounds, otherwise a water (or another solvate, e.g., ethanol) is found sitting at the apex of
the structure in the place of a neighbouring phenol oxygen. Almost all other published structures
(where two nitrosophenolato ligands are present, with a single additional small donor) share the
back-to-back square-based pyramid geometry, apart from one example, which reports a distorted
trigonal bipyramid [50].
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Figure 4. The unit cell of the obtained crystal structure of copper(II) bis(4-methyl-2-nitrosophenol) with
ethanol as a solvate [41,51].

In all cases studied, when the copper complex is prepared the system tends to adopt a bi-ligated
dimer unit as a maximum whereas other metals, such as the higher oxidation states of cobalt(III) or
the larger iron (II or III) ions have been known to accommodate an additional nitrosophenol ligand,
i.e., retaining an octahedral hexacoordinate structure bearing 3 ligands (Figure 5) [52] (although with
nitrosophenols bearing larger substituents, e.g., 4-bromo-2-nitrosophenol, complexes remain bis-ligated,
at least with Co(III)) [53]. These findings were fully supported by elemental analysis and UV-VIS
absorbance data and proved at the time most revealing as up to this stage all complexes were assumed
to be limited to just one or two nitrosophenol ligands [3,43].
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1.8. Derivatisation of Complexes

While the organic nitrosophenolato ligands have enormous affinity for small metallic ions,
like Cu(II), researchers have been able to derivatise the complexes with additional, neutral ligands.
Cronheim first used pyridine as an auxiliary ligand to alter complex solubility [15], noting that the
new compounds could be formed by simply mixing the copper (or other metal) nitrosophenolato
complex with pyridine. Castellani et al. also synthesised several new complexes with additional
neutral amine bases, again by simply stirring the parent complex at room temperature in acetonitrile,
with a slight excess of the Lewis base (L, 6a–f, Table 2) [55]. Later, it was discovered that 6-coordinate
complexes could be generated by additionally heating the complex with three equivalents of imidazole
or N-methylimidazole in refluxing acetonitrile (6g,h, Table 2) [50] in order to overcome the interaction
of the copper centre with a neighbouring phenolic oxygen atom. Other notable derivatisations recorded
include the synthesis of a potassium (µ-iodo) copper nitrosophenolato complex, which comprises
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copper in both its octahedral and square-based pyramid geometries, bound by two bridging iodides
(6i, Table 2) [56].

Table 2. A range of derivatised complexes generated by Castellani and co-workers, starting from
copper bis(4-chloro-2-nitrosophenolato) with amine Lewis bases [55,56].
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1 supported by elemental analysis data. 2 supported by a solved crystal structure from XRD analysis [55,56] as well
as elemental analysis data. 3 synthesised by refluxing starting complex with 3 equiv. of ligand in MeCN rather than
by stated scheme.

The complexes have also been shown to undergo transmetalations. Tamura et al. [18] report the
conversion of mercury bis(4-methyl-2-nitrosophenolato) to the corresponding copper bis(4-methyl-
2-nitrosophenolato) in the presence of a simple copper salt (CuSO4). Remarkably, Charalambous,
Castellani and co-workers have been able to synthesise and characterise crystalline nitrosophenolato
complexes prepared from alkaline metals, i.e., sodium and lithium, by reacting with sodium and
lithium hydroxide respectively [57]. Due to the redox characteristics of the ligands, these may have
interesting properties for areas such as energy storage and battery materials [58].

2. History and Development of the Complex Formation

When Baudisch first discovered his named reaction, he proposed a mechanism involving the
addition of a ‘nitrosyl radical (NOH)’ and a hydrogen across a double bond of the aromatic ring,
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promoted by a Cu(I) ion, which was oxidised in the process to the Cu(II) product (Scheme 4). The highly
reactive addition product (1a, Scheme 4) was then proposed to aerobically oxidise, furnishing the
2-nitrosophenol (4, presumably furnishing water as a side-product). The order of reagent addition
in Baudisch’s reported reactions (Scheme 1) implies he believed the mechanism proceeded through
nitrosation, followed by secondary phenolation. Baudisch stated that the ‘nitrosyl radical’ could be
generated in 3 different ways: (1) via oxidation of NH2OH with Cu(II), (2) reduction of HNO2 with
Cu(I), and (3) release from benzenesulfohydroxamic acid by copper ions and H2O2 [20]. While no
radicals of a type corresponding to NOH are known to exist, the nitric oxide (·N=O) radical can be
observed under nitrosation conditions, but is rapidly oxidised in the presence of oxygen to the active
nitrosation species (nitrosonium, NO+) and can itself only form C-nitroso compounds by reacting
with a carbon centred radical under an inert atmosphere [29]. However, the nitric oxide radical is
also known to react with copper ions to form a copper-nitroso complex, itself a powerful agent for
nitrosation [29]. Although such a species could be present under the Baudisch reaction conditions
and may explain some of the behaviour of the ‘nitrosyl radicals’, there remain several issues with
Baudisch’s proposed sequence. Firstly, the hydrogenated intermediate (1a, Scheme 4) is not accounted
for: if benzene attacks the nitroso ligand of a copper-nitroso complex, then the next stage would be
deprotonation to restore aromaticity, rather than hydrogenation to disrupt it further by generating
an undesired, higher-energy intermediate. It also seems doubtful that the nitrosation would occur
before hydroxylation, where the introduction of the hydroxyl group would result in activation of the
ring towards subsequent nitrosation. It is well documented that direct nitrosation does not occur on
unsubstituted benzene [33]. Despite the issues with the mechanistic aspects of the reaction, based on
little more than theory and colourimetry, Baudisch correctly hypothesised the final copper-chelated
product (2).
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2.1. Development of the Baudisch Reaction Mechanism

In 1955 Konecny [43] reinvestigated the Baudisch reaction conditions and expanded upon the
work using different metal salts of Cu(I), Fe(II), and elemental Cu(0); all of which were found to form
the desired complexes. Interestingly, traces of 2- and 4-nitrosophenol (major) were detected in reactions
involving the mixing of benzene, H2O2, HCl, and H2NOH (without a metal). Irradiation of the reaction
mixture with X-rays was also found to increase the rate of the metal-free reaction. In a control reaction,
performed by replacing benzene with phenol, the metal-free reaction took place readily (generating
4-nitrosophenol as the major product), suggesting a rate-limiting hydroxylation step.

Konecny noted that although there was no direct evidence for the formation of ‘NOH’ radicals,
there was evidence for the formation of hydroxyl radicals when employing H2O2 with Fe(II) salts,
copper metal, or with exposure to short-wave (X-ray) radiation [43]. These conditions were known to
convert benzene to phenol, and as phenol had been shown to react with hydroxylamine and H2O2

(without a metal) to yield 4-nitrosophenol, this gave a more rational sequence of events. The reaction
was therefore considered to progress through an initial hydroxylation followed by nitrosation. The
nitrosating agent was proposed to be nitrous acid (while nitrous acid is a precursor to, but not a
nitrosating agent, at the time nitrous acid was thought to be an active nitrosating agent) formed as an
intermediate in the oxidation of hydroxylamine by H2O2 (or alternatively from K/NaNO2 and acid).
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Supporting evidence also came from experiments involving related copper-mediated nitrosation of
phenol (utilising NaNO2, H2SO4 and Cu(II)), which yielded a ‘red’ complex [43].

The refined mechanism suggested by Konecny became the accepted sequence, until a systematic
investigation by Maruyama et al. [26,43] identified several inconsistencies. The first major concern
was the nature of the nitrosating agent, as a free nitrosation agent does not explain the observed
preference for -ortho regioselectivity. A new proposal was therefore put forward that a copper complex
of hydroxylamine was involved in the nitrosation. As was shown, mixing anhydrous Cu(II) salts
with hydroxylamine hydrochloride in methanol produced a complex with a 2:1 hydroxylamine:Cu(II)
stoichiometry [42]. Mixing this complex with phenol and H2O2 gave exclusively 2-nitrosophenol
(derived from decomplexation), implying that the hydroxylamine complex could be a precursor to an
intermediate complex involved in the Baudisch reaction.

Another observation was that at higher pH (>4) than the standard Baudisch reaction (pH 2–3),
the yield of the 2-nitrosophenol (4) was considerably lowered, and instead, mainly catechol was
formed. Given normal hydroxylation of phenol would be expected to preferentially produce
1,4-dihydroxybenzene [28], the suggestion was made by Maruyama et al. that the two products
were produced through the same intermediate complex (7a, Scheme 5), and that the outcome was thus
pH dependent.
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a pH~3, the favoured path leads to the copper 2-nitrosophenol complex (7b), while at a pH > 4 the
preferred pathway leads to catechol (7c).

The re-examination by Maruyama et al. of the reactions of certain phenols produced
some additional surprising results [42]. For example, the reaction of 1-naphthol (8) gave, as
predicted, the 2-nitroso-1-naphthol adduct 9, but the reaction of 2-naphthol (8a) also gave the
same 2-nitroso-1-naphthol product (8c, Scheme 6). This apparent displacement of a hydroxyl group
inspired a wider examination of other phenolic starting materials. The compound 4-methylphenol
(p-cresol, 3a, Scheme 6) was converted to 5-methyl-2-nitrosophenol (4a) and gave the same product as
starting from 3-methylphenol (m-cresol, 3b). Again, this implied exchange of the hydroxyl group had
taken place. Consequently, catechol was re-examined, and it was found under the original Baudisch
conditions to yield the 2-nitrosophenol.
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Scheme 6. Unexpected products obtained from the Baudisch reactions of naphthols, methyl-phenols
and catechol, obtained by Maruyama et al. [42].

Clearly, the reaction was therefore not quite as simple as the proposed reaction pathway outlined
in Scheme 4 suggested. The existence of a catechol intermediate demonstrates that the mechanism of
the Baudisch reaction with hydroxylamine must differ from the simpler copper-mediated nitrosation
of phenol, which does not accept catechol as a substrate, nor involve replacement of any existing
phenolic hydroxyl groups [16]. For a hydroxyl substitution to take place, the reactions must go through
a common intermediate with two ortho oxygen atoms presumably chelated to the copper, similar to the
intermediate suggested from the reaction at pH > 4 (7iii, Schemes 5 and 6).

Additional experiments performed by Maruyama et al. convincingly identified the existence of a
catechol-type intermediate, but the question remains as to how the aromatic hydroxyl group can be
replaced when neither nucleophilic nor electrophilic substitutions at a phenolic carbon are favourable
processes. An alternative possibility would be via an oxidised o-quinone intermediate, to which
nucleophilic addition is possible, especially if the copper acts as a Lewis acid, withdrawing electron
density and thus activating the quinone carbonylπ-bond. To investigate this possibility, the reaction was
attempted with semicarbazide hydrochloride in place of the hydroxylamine [42]. A mixture of catechol,
Cu(II) and semicarbazide hydrochloride (at pH 2.5) did not react until H2O2 was added, confirming the
reaction was of the same type as the Baudisch reaction. The resulting product (determined by elemental
analysis) was identified as 2-hydroxyphenylazoformamide, the semicarbazone of o-benzoquinone
(Scheme 7).
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In addition, when 4-methylpyrocatechol (9a) was reacted in the same manner, it gave
exclusively 4-methyl-2-hydroxyphenylazoformamide (Scheme 7). The compound was confirmed
by decomplexation and reduction by SnCl2 to the corresponding aniline, 6-amino-3-methylphenol,
for comparison (Scheme 7). The observed regiochemistry was identical to the outcome of the original
Baudisch reaction. Since semicarbazones are formed by reaction of carbonyls with semicarbazides, the
conclusion was that this indicated the existence of an o-quinone intermediate [42]. This leads to the
following sequence of events: firstly, the intermediate catechol-Cu(II) complex (6c) is oxidised to an
o-benzoquinone derivative which then reacts to yield the semicarbazone (with semicarbazide) or the
oxime (with hydroxylamine). In line with this conclusion, 2-benzoquinones gave 2-nitrosophenols
under the general conditions of the Baudisch reaction without the need for the addition of H2O2. As a
final confirmation of the sequence of steps, all catechols tested did not react until H2O2 was added as a
co-oxidant [42].

2.2. The Accepted Mechanism

The new Maruyama proposition for the Baudisch conditions as applied to benzene while
acknowledging all the preceding experimental findings is outlined below. Starting from non-phenolic
starting materials, the process begins with a copper(I)-catalysed fragmentation of hydrogen peroxide,
generating hydroxyl radicals that rapidly attack the aromatic ring to form phenols (Scheme 8).
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Scheme 8. The mechanism under which phenol is formed from benzene [42,43].

Next, coordination of the newly formed intermediate phenol to the copper occurs, which is also
complexed with two hydroxylamine ligands and a peroxyl ligand (Scheme 9). Attack from the peroxyl
ligand follows, forming the coordinated catechol intermediate. An oxidation sequence then forms the
2-benzoquinone complex. This key intermediate enables nucleophilic attack by a hydroxylamine ligand,
leading to substitution. This substitution occurs unusually at the seemingly most electron-rich of the
two quinone-carbonyls, forming a single regioisomer [42]. Kinetically, attack at the less electron-rich
carbonyl would be preferred, as it is more electrophilic, suggesting thermodynamic control. Further
evidence for a benzoquinone intermediate is provided in a more recent piece of work that describes
the reaction of a 1,2-benzoquinone with hydroxylamine in the presence of copper, forming the target
copper complex [59].
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Hydroxylamine is readily oxidised to higher N-oxidation levels in the presence of strong oxidants
including H2O2 [60], so a legitimate question is how the hydroxylamine survives long enough for this
activity. It is possible that the complexation of the hydroxylamine protects the hydroxylamine (the
hydrogen peroxide is the final reagent added) and the N-oxidation level only increases once bound
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to the ring, in order to restore aromaticity [42]. However, the above mechanism does not account
for the fact that the process still works when KNO2 is used in place of hydroxylamine (as reported
in the original Baudisch work). Under such alternative conditions, the higher nitrogen oxidation
level excludes a nucleophilic attack. It is known that when sodium nitrite is mixed with copper(II),
a copper-nitroso complex forms, which is a powerful electrophilic, but not nucleophilic, nitrosation
agent [29]. Although it may be possible that such a copper-nitroso complex undergoes a redox process,
facilitating the oxidation of phenol/catechol to the intermediate o-benzoquinone with concurrent
reduction of the nitroso ligand to a more nucleophilic species, this seems unlikely. Alternatively, it is
more probable that these reactions performed by Baudisch using KNO2 rather than hydroxylamine do
not ultimately follow the same outlined (Maruyama’s) mechanism. Indeed, they are likely to be more
closely related to the copper-mediated nitrosation (see above Section 1.4), and the role of the hydrogen
peroxide was for the formation of phenol from benzene. This then represents an alternative—but
related—one-pot sequential process starting from benzene.

2.3. Mechanism of the Alternative Copper-Mediated Nitrosation

Both Cronheim and Maruyama have shown that some phenols (e.g., 4-methylphenol) give
a different major regioisomer depending on whether Baudisch conditions with hydroxylamine or
copper-mediated nitrosation conditions are used [15,42]. What is less certain is how copper-mediated
nitrosation of phenols compares to the equivalent process in the absence of copper. Modern knowledge
assumes a rate-acceleration in the presence of copper, again due to the formation of a stronger
nitrosation agent than free nitrosonium [29], but it is not immediately obvious from the literature
whether the regioselectivity and preference for 2-nitrosophenols is affected.

Results from Maruyama suggest that the presence of copper only has a very minor effect on the
regiochemistry versus nitrosation in the absence of copper and that ortho-nitrosation dominates only
if the Baudisch conditions with hydroxylamine are employed (Figure 6) [42]. However, Konecny
repeated the same reaction and claimed that the 2-nitrosophenol adduct (as the copper complex)
dominated, [43] albeit without quantification; this appears to be a direct contradiction of the literature.
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ability of the OH to stabilise the initially formed positive charge) [60]. In the Wheland intermediate 
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Figure 6. The results published by Maruyama [26], which appear to contradict other results from
Konecny (not quantified), who instead implied that ortho-nitrosation dominated for conditions
comparable to the ‘NaNO2, pH 2.5, Cu(II)’ shown [43]. The product ratios were calculated by
obtaining the isolated ligand, then reacting with Cu(II) salt, separation via a preparative TLC method
and finally, quantification via absorbance measurements.

The most stable free nitrosophenol regioisomer is the 4-nitrosophenol, because the 4-substituted
Wheland intermediate is thermodynamically favoured compared to the 2-substituted (while the 3-
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substituted is very high-energy due to inability to form quinone-type resonance structures or the ability
of the OH to stabilise the initially formed positive charge) [60]. In the Wheland intermediate with para
regiochemistry (4-substituted), the phenol group can stabilise the electron-deficient nitroso-bound
carbon by donating π-electron density more effectively than if the nitroso were ortho-bound [38]. This is
more significant than the stabilisation gained from the formation of an intramolecular hydrogen bond
when the hydroxyl and nitroso groups are adjacent [61]. The effect of other substituents, such as an
alkyl, is generally inferior to that of the phenol group, although it is undoubtedly observed when not
in competition with more powerful effects. For example, one of two regioisomers forms when reacting
4-methlyphenol under Baudisch conditions; hence, the nitroso is found exclusively para to the methyl,
despite the need for the original phenol oxygen to be replaced by the nitroso. Additionally, only one of
two possible regioisomeric products from the reaction of 3-methylphenol is formed (Scheme 10) [42],
again the resulting nitroso is para to the methyl. As previously discussed, the mechanism of nitrosation
allows the most stable regioisomer to dominate [33,36]; hence, an outcome where the resultant nitroso
group is not para to the phenol would qualify as an unexpected result. In addition to Konecny’s paper,
there exist several other publications [1,25] that quote a major regioisomer that might be unexpected if
the copper did not influence the regioselectivity in some way (Table 3).
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Table 3. A selection of literature results that show the organic ligand of the major product from
copper-mediated nitrosation is the same as might be expected for the nitrosation in the absence
of copper.

Starting Phenol Expected Major Product Reported Major Product (with Yield) Reference
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position (Table 3); thus, reviewed together, the verdict remains inconclusive. To help resolve this, our 
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was isolated in high yield (Figure 7). The isolated compounds were all initially believed to be copper 
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dominate on substrates where para-nitrosation would otherwise be expected. However, detailed 
analysis showed that the reaction of phenol (7) instead generated a stable complex of the para-
nitrosation product. While it is easy to envisage how the literature disagreement occurred, our results 
confirm the proposition by Maruyama et al. that copper-mediated nitrosation is not inherently ortho-
regioselective, as per the Baudisch reaction.  
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Literature results can be found to both support and rule out the possibility of copper playing a
key role in forcing nitrosation of phenols to occur predominantly at the ortho position rather than para
position (Table 3); thus, reviewed together, the verdict remains inconclusive. To help resolve this, our
group has performed several copper-mediated nitrosation reactions [41], using similar conditions to
those first devised by Cronheim [15]. For all reacting phenolic substrates, including phenol (7), which
are known to form 4-nitrosophenol in the absence of copper, a highly coloured copper compound
was isolated in high yield (Figure 7). The isolated compounds were all initially believed to be copper
bis(nitrosophenolato) complexes, causing the belief that the copper does cause ortho-nitrosation to
dominate on substrates where para-nitrosation would otherwise be expected. However, detailed
analysis showed that the reaction of phenol (7) instead generated a stable complex of the para-nitrosation
product. While it is easy to envisage how the literature disagreement occurred, our results confirm the
proposition by Maruyama et al. that copper-mediated nitrosation is not inherently ortho-regioselective,
as per the Baudisch reaction.
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three examples of our results [41] for copper-mediated nitrosation.

Since the mechanistic investigation by Maruyama and co-workers, there have been only minimal
attempts to further investigate or improve on the mechanism of either the Baudisch reaction or the
simpler copper-mediated nitrosation procedures. Instead, researchers have found a variety of unique
and innovative uses for the metal complexes. Professors emeriti Carla Bisi Castellani of the University
of Pavia [64] and John Charalambous of London Metropolitan University [65], in particular, have
contributed substantially to this field, with several publications scattered across the final quarter of the
20th century.

3. Applications of Copper-Nitrosophenolato Complexes

An obvious application of these complexes is as the means to synthesise problematic
2-nitrosophenol compounds. The ease of oxidation of the often-unstable free nitroso compound
to a more stable nitro derivative offers a mild synthetic route to such compounds. Nitrophenols have a
wide range of applications with the nitro groups being useful scaffolds, via reduction to the amine
followed by dediazoniation [66] and modification (e.g., Sandmeyer processes) [67]. Although the
production of 2-nitrosophenols via these sequences are stoichiometric in copper, a highly efficient
process could be envisaged if the metal ion can be recycled. In the literature, the copper-mediated
nitrosation has been used preferentially relative to the Baudisch conditions, presumably because of its
simplicity and often higher isolated yields.

3.1. Colourimetry

As we highlighted previously, the very first reported preparation of a metal-nitrosophenolato
complex was in the detection of tyrosine, by utilising the intense colour of the mercury complex in
solution [16]. Subsequently, 2-nitrosophenol products have been more widely used in colourimetry to
identify metal ions, as originally suggested by Baudisch; for example, in the determination of Co(II)
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ions [15]. The Co(II) complex of 2-nitrosophenol is a grey/brown colour and is only sparingly soluble
in petroleum ether. The high affinity of 2-nitrosophenols for Co(II) is such that essentially 100% of the
metal ion is extracted from water upon shaking with a solution of 2-nitrosophenol in petroleum ether,
giving a grey/brown solution, which can be easily measured in a spectrophotometer. The colour is
stable for ‘at least several hours’, and can be detected down to a concentration of 0.1 ppm [15].

Dessouky [25] expanded the general principle of the Millon test by using the copper-mediated
nitrosation on target samples containing phenylephrine (3e, Figure 8), and subsequently measured
the absorbance of the resulting copper complex in solution. It was found that even in pharmaceutical
preparations containing additional formulation materials, the correct concentrations could be
determined to a high accuracy. When reacted, the phenylephrine gave a coloured complex, which
lasted for up to 24 h with a minimal decrease in absorbance. Other phenolic materials of pharmaceutical
interest were also tested, including adrenaline, tetracycline and methyl salicylate, although none gave
the same long-lasting red colour [25]. In addition, it was claimed that the formation of the complexes
was close to quantitative, although speculation about the reactivity of the secondary amine with
NaNO2, forming a nitrosamine, as well as the possible tendency for the phenolic hydroxyl to give
para directed nitrosation, casts some doubts on the likelihood that this formation could be completely
lossless. Such analytical tests have now been somewhat superseded; therefore, to the modern synthetic
chemist, the following synthetic procedures will be of more interest.
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3.2. Nucleophilic Addition of Grignard Reagents

Mustafa and Kamel [68], investigating reactions of Grignard reagents and exploring the chemistry
of o-quinone-monoximes, found that unusual secondary hydroxylamines could be generated. The
nucleophilic addition took place on the N=O bond of the nitrosophenol tautomer, rather than the
C=O, owing to the greater electrophilicity of the N-atom. Phenanthroquinone monoxime (10, Figure 9)
was used as a substrate, and several Grignard reagents were tested, including phenylmagnesium
bromide, for example, which gave 10-phenylhydroxylamino-9-hydroxyphenanthrene (10a, R=Ph)
after work-up (Figure 9). In addition, reduction of the same starting material, phenanthroquinone
monoxime (10) was attempted using thiophenol, but instead of the expected reduction product (10b),
the diphenanthro-oxazine (10c) was synthesised via a rapid exothermic reaction (Figure 9). The reaction,
conducted in cold benzene, this time gave a mixture of the diphenanthro-oxazine (10c) product and
the expected reduction product (10b), suggesting that 10c arises from the self-condensation of product
10b with starting material 10a [68]. By contrast, the reduction performed with LiAlH4 gave solely the
10-amino-9-phenanthrol (10b), implying the condensation is not effective under these conditions. The
product from the oxidation of the thiophenol is not reported, but is likely the disulfide (PhS-SPh) [69].
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3.3. The Use of Complexes as a Redox Catalyst

A further interesting application of 2-nitrosophenols was proposed by Charalambous et al. [30]
and later expanded by Nishino et al. [70], then Ogura et al. [71]. Noting that manganese plays a
vital role in oxygen evolution in the photosynthetic pathway of many plants (during the synthesis of
glucose) and that the redox couple nitroso/nitro had been used for oxidation of alkenes to aldehydes
and ketones, the researchers attempted using 2-nitrosonaphthol-manganese complexes under an
oxygen atmosphere to perform the epoxidation of alkenes (Figure 10) [30].
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The majority of reported and industrially utilised catalytic epoxidation systems require the use
of active oxygen sources such as iodosobenzene (Ph-I=O), organic peroxides or hypochlorite salts;
however, these all produce stoichiometric amounts of waste, leading to poor atom economy and the
need for extra product separation/extraction. Alternatively, the reported nitrosonaphthol-manganese
system represents a successful, non-porphyrin, alkene epoxidation catalysis using simple ambient
oxygen as the oxidant. Both Mn(II) and Mn(III) complexes (with two and three 2-nitrosonaphthol
ligands, respectively) were used, and two ortho-nitrosonaphthol regioisomers (11, 11a) were tested
(Figure 10). The general procedure was very mild, requiring only the stirring of the catalyst and alkene
in toluene, under an oxygen atmosphere at 60 ◦C (Figure 10) [30].

Using the same manganese-nitrosonaphtholato complexes, the scope of this process was broadened
to include some novel phenolic oxidations as a method of aryl-aryl coupling, giving diaromatic products
(e.g., 12a–12d, Table 4) [70]. The presence of trialkylphosphine was required as an additional π-donor
ligand, hence allowing a complex to form with a peroxide ligand upon reaction with molecular oxygen.
The regioselectivity is ensured by using substrates with R-groups to the ortho positions of the phenol.
1,4-benzoquinones were formed as side-products in some cases [70].

Table 4. The aryl-aryl coupling procedure, with the highest yield reported for the four derivatives [70].
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Metal-nitrosophenolato complexes have found further use as homogeneous co-catalysts in
electrochemical carbon-dioxide reduction, producing methanol [71,72]. The application arises because,
as with other metal-bis(nitrosophenolato) complexes, there is the vacant coordination site that weaker
donors, such as water and organic solvents, can occupy with high reversibility. In this case, the labile
CO2 ligand binds; hence, the complex provides a route by which CO2 can intercede a heterogeneous
reduction catalyst. Ogura and co-workers demonstrated this as a proof of concept using cobalt
bis(2-hydroxyl-1-nitrosonaphthalene-3,6-disulphonato) and a platinum heterogeneous catalyst [71].
Later, the work was expanded by building a functioning, continuous hydrogen fuel-cell that converted
CO2 to methanol catalytically and indefinitely, provided the pH was controlled and sufficient H2 was
present (Figure 11) [72]. The implementation of the process to remove unwanted CO2 and CO during
ammonia synthesis in the Haber process was also established [73], and finally, a solid-supported
electrode of the same cobalt complex and platinum was built to improve performance [74].
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Figure 11. An adapted diagram to show the Catalytic reduction of CO2 to methanol. Overall equation:
CO2 + 3H2 → CH3OH + H2O [72].

3.4. Use in [4 + 2] Cycloadditions

The copper nitrosophenol complex constitutes a heteroatomic diene system and hence can undergo
Diels-Alder cycloadditions with powerful dienophiles, such as dimethylacetylenedicarboxylate (DMAD,
13) [75], to yield unique diheterocycles (14a–14g, Table 5). A concise report was published by McKillop
and Sayer [76], quoting yields as high as 98% (Table 5, R = 4-Me). The process is promoted due
to the benzoquinone tautomer, rather than the nitrosophenol and was supported by the lack of
product formation when complexes of compounds known to exist predominantly in the nitrosophenol
form were used. Interestingly, no reaction occurred between 13 and isolated (non-complexed)
o-quinone-monoximes (2-nitrosophenols). In addition to stabilising the organic ligand reagents, it
was suggested that the Cu(II) plays a twofold role in the mechanism. Firstly, the electron density
is polarised towards the two heteroatom termini of the diene system, and secondly, it provides a
‘coordinative template’ for the reaction (the acetylene is believed to weakly coordinating). This process,
over two steps, leads directly to a unique bicyclic system, for which derivatives have been investigated
for biological properties including as herbicides [76]. Here we note that we repeated this procedure
ourselves and the structure of the heterocycle was slightly different to that in the publications [41].
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3.5. Synthesis of Phenazines 

Pathways to more complex structures starting from copper-nitrosophenolato complexes have 
been shown in a study by Charalambous et al. [35,77,78], who were aiming to prepare nitrene metal 
complexes via deoxygenation of 2-nitrosophenols with PPh3. While nitrenes were proposed 
intermediates in the reported reactions, they were not the isolated products. Various metal complexes 
of 2-nitrosophenols were treated with PPh3 in chloroform or pyridine, and the products varied with 
the metal ion in question (Figure 12). The 2-nitrosophenol complexes of Ni(II) or Zn(II) gave 
triphenyl(2-hydroxyphenylimino)phosphorane metal complexes, whereas Cu(II) and Fe(III) 
complexes gave 1,6-dihydrozyphenazines (15), which are highly desirable systems. 

The different outcomes result from the fact that Cu(II) and Fe(III) ions are easier to reduce. The 
reduction of such metal(2-nitrosophenolato)n complexes readily generates a nitrene at the nitroso-N 
of one ligand, leaving behind metal(2-nitrosophenolato)n-1(PPh3)2. The nitrenes then dimerise to yield 
6,10-dihydroxyphenazines. With the Ni(II) and Zn(II) species, reduction of the metal ion is much 
more difficult, and the PPh3 instead substitutes the oxygen of the nitroso group, yielding complexes 
of triphenyl(o-hydroxyphenylimino)phosphoranes [35]. 

Free 2-nitrosophenols also react with PPh3 to furnish 1,6-dihydroxy-5,10-dihydrophenazines 
(15), with traces of the PPh3 substitution product. The yields varied (Figure 12), but products were 
easily separated from starting material. This reaction is different to those which lead to a O,N-
diheterocycle in the cycloaddition processes, as only the N-containing functional groups are involved 
and the hydroxyl groups are outside the newly formed ring [77]. The reported yields were similar 
starting from either the free nitrosophenol or copper-nitrosophenolato complex. 
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3.5. Synthesis of Phenazines

Pathways to more complex structures starting from copper-nitrosophenolato complexes have
been shown in a study by Charalambous et al. [35,77,78], who were aiming to prepare nitrene
metal complexes via deoxygenation of 2-nitrosophenols with PPh3. While nitrenes were proposed
intermediates in the reported reactions, they were not the isolated products. Various metal complexes
of 2-nitrosophenols were treated with PPh3 in chloroform or pyridine, and the products varied
with the metal ion in question (Figure 12). The 2-nitrosophenol complexes of Ni(II) or Zn(II) gave
triphenyl(2-hydroxyphenylimino)phosphorane metal complexes, whereas Cu(II) and Fe(III) complexes
gave 1,6-dihydrozyphenazines (15), which are highly desirable systems.

The different outcomes result from the fact that Cu(II) and Fe(III) ions are easier to reduce.
The reduction of such metal(2-nitrosophenolato)n complexes readily generates a nitrene at the nitroso-N
of one ligand, leaving behind metal(2-nitrosophenolato)n-1(PPh3)2. The nitrenes then dimerise to yield
6,10-dihydroxyphenazines. With the Ni(II) and Zn(II) species, reduction of the metal ion is much
more difficult, and the PPh3 instead substitutes the oxygen of the nitroso group, yielding complexes of
triphenyl(o-hydroxyphenylimino)phosphoranes [35].

Free 2-nitrosophenols also react with PPh3 to furnish 1,6-dihydroxy-5,10-dihydrophenazines (15),
with traces of the PPh3 substitution product. The yields varied (Figure 12), but products were easily
separated from starting material. This reaction is different to those which lead to a O,N-diheterocycle in
the cycloaddition processes, as only the N-containing functional groups are involved and the hydroxyl
groups are outside the newly formed ring [77]. The reported yields were similar starting from either
the free nitrosophenol or copper-nitrosophenolato complex.
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3.6. Synthesis of Oxazoles

Castellani and co-workers combined theory and practice from the previous examples of phenazine
synthesis from Charalambous and cycloadditions from McKillop in order to synthesise valued
benzoxazoles (16, Scheme 11) directly from the copper-nitrosophenolato complexes [75]. The conditions
and reagents required are much the same as per those for the aforementioned cycloaddition, with one
important difference: the reaction is performed in anhydrous solvent (methanol). The possible
mechanism was not elaborated and does not appear to have been revisited since; however, it was
thought to be comparable to the reduction-nitrene-formation observed in the phenazine synthesis [75,77].
The reaction time is fairly short (1 h), but forcing conditions were required (Scheme 11).
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4. Future Applications of Copper-Nitrosophenolato Complexes

4.1. Functionalisation of Natural Products

Phenolic moieties are widespread across many natural products; notably in polyphenols, a class
of phenol-containing macromolecules prevalent in plant material (e.g., making up about 30% of the
dry mass of tea) [79]. With the selective addition of a nitroso group (or nitro via oxidation) to the
phenolic moieties, a valuable degree of functionality can be added. The investigation by Dessouky
showed that the process works on some such compounds [25], but this could be taken much further.
Applications from 2-nitrosated natural products may arise due to their high affinity for metal ions,
giving applications in areas for example like removing transition metals from laundry in the washing
process (Fe in blood and Cu in tea).

4.2. Lignin Functionalisation

Lignans, the phenolic monomers of lignin, are a promising replacement source of aromatic
compounds, currently obtained from crude oil [80–82]. There are several reported methods for
breaking the lignin down into useful monomeric aromatics (lignans) [83,84], including a recently
developed method of hydrogenolysis of the lignin polymers under mild conditions, with the feedstock
of ‘kraft lignin’ (a feedstock readily obtained as waste from the paper industry) [85,86]. Being phenolic,
the lignans are electron-rich, aromatic systems; good for electrophilic substitution chemistry, but not
much more. By preforming a Baudisch reaction (or copper-mediated nitrosation) on the lignans,
a nitroso group could be introduced, neighbouring a hydroxyl, under relatively mild conditions. This
opens the possibility of the reactivity discussed above, but perhaps more industrially important are the
oxidation products, the 2-nitrophenols. The previously electron-rich system is transformed into an
electron-deficient system, and a whole new reactivity pattern emerges.

4.3. Addition of Nucleophilic Amines to Aromatic Rings

Maruyama et al. demonstrated that Baudisch conditions could be used to replace a catecholic
OH group with a nitrogenous nucleophile [42]. The goal was to aid with mechanistic understanding,
but this is an outstanding transformation of an inert group. Even today, the nucleophilic substitution
at a phenolic carbon remains niche and generally requires a stoichiometric amount of a reagent to
sufficiently activate the phenol as a leaving group [87–89]. While catechols and other biphenols have
been aminated using ammonia-water under high temperatures [90] since mid-last-century, and more
recently this has been applied to the addition of an N-formyl moiety [91], the Baudisch reaction could
potentially be applied to a more diverse range of nucleophilic amines, as well as avoiding the extreme
temperatures required for the transformation. Such an approach could be used to synthesise targets
such as benzoxazoles [92], as well as an enormous range of active-pharmaceutical ingredients relying
on the 1,2-aminophenol synthon, in comparatively few steps, though as of yet there seem to be no
recorded attempts at this approach.

4.4. Summary of Uses

As discussed, the title compounds have found uses in the determination of metal ion concentrations,
epoxidation and redox catalysts, as well as being good reagents for the synthesis of four distinct
heterocyclic systems from simple aromatic starting materials. Despite its ‘amazingly simple’ [20]
functionalisation of aromatic (particularly phenolic) substrates and well-defined regiochemistry, these
processes do not appear to have been investigated further, at the time of writing. This may be attributed
to a lack of general understanding in the formation of the copper complexes and their nitrosophenol
ligands. In attempting to demystify the procedure and the obscurity surrounding the Baudisch reaction
and its related nitrosation process, additional potential uses can be readily theorised.
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5. Conclusions

The challenges in synthesis, lack of profusion in literature and unique properties of 2-nitrosophenols
and their metal salts make them a stimulating target for further study. Across several publications,
greater understanding has developed about their properties and the mechanisms to their formation.
Applications are demonstrated, but not yet developed—the speciality of the process may afford
application in the future. Doubts over specific aspects of the mechanisms proposed remain, and further
study and characterisation of the structures proposed would aid in the understanding of the field.
A publication [41], completed by our group, represents the initial stages of such as study.
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