Electronic Supporting Information

for

Synthesis and chemiluminescent properties of aminoacylated luminol derivatives bearing phosphonium cations

Anna Pantelia¹, Ira Daskalaki¹, M. Consuelo Cuquerella², Georgios Rotas¹, Miguel A. Miranda^{2,*} and Georgios C. Vougioukalakis^{1,*}

- ¹ Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; annapantelia@gmail.com (A.P); iradask@hotmail.com (I.D); rotasgiorgos@hotmail.com (G.R)
- ² Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, 46022 València, Spain; mcuquere@itq.upv.es (M.C.C)
- * Correspondence: vougiouk@chem.uoa.gr. Tel.: +30 210 7274230. Fax: +30 210 7274761 (G.C.V); mmiranda@qim.upv.es. Tel.: +34 963 877 807. Fax: +34 963 879 444 (M.A.M)

Figure S1. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of **2a**.

Figure S2. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of **2b**.

Figure S3. 1 H (200 MHz, top) and 13 C (50 MHz, bottom) NMR (CDCl₃) spectra of 5a.

Figure S4. ¹H (200 MHz, top) and ¹³C (50 MHz, bottom) NMR (CDCl₃) spectra of 5b.

Figure S5. 1 H (200 MHz, top) and 13 C (50 MHz, bottom) NMR (CDCl₃) spectra of **6a**.

Figure S6. ¹H (200 MHz, top) and ¹³C (50 MHz, bottom) NMR (DMSO- d_6) spectra of **6b**.

Figure S7. 1 H (200 MHz, top) and 13 C (50 MHz, bottom) NMR (CDCl₃) spectra of 8a.

Figure S8. ¹H (200 MHz, top) and ¹³C (50 MHz, bottom) NMR (CDCl₃) spectra of 8b.

Figure S9. ¹H (200 MHz, top) and ¹³C (50 MHz, bottom) NMR (CDCl₃) spectra of **9a** (mixture with 10mol% of the corresponding chloride).

Figure S10. 1 H (200 MHz, top) and 13 C (50 MHz, bottom) NMR (CDCl₃) spectra of **9b**.

Figure S11. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 10a.

Figure S12. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of **10b**.

Figure S13. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 10c.

Figure S14. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 10d.

Figure S15. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 10e.

11a.

Figure S17. ¹H (400 MHz, top), ¹³C (100 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of **11b** (contaminated with 25mol% Cy₃P=O).

Figure S18. ¹H (400 MHz, top), ¹³C (100 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 11c.

Figure S19. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 1a.

Figure S20. 1 H (200 MHz, top), 13 C (50 MHz, middle) and 31 P (81 MHz, bottom) NMR (CDCl₃) spectra of **1b**.

Figure S21. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (DMSO- d_6) spectra of **1c**.

Figure S22. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 1d.

Figure S23. ¹H (400 MHz, top), ¹³C (100 MHz, middle) and ³¹P (81 MHz, bottom) NMR (CDCl₃) spectra of 1e.

Figure S24. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (81 MHz, bottom) NMR (DMSO- d_6) spectra of **12a**.

Figure S25. ¹H (200 MHz, top), ¹³C (50 MHz, middle) and ³¹P (162 MHz, bottom) NMR (DMSO- d_6) spectra of **12b**.

12c.

Figure S27. ¹H (200 MHz, top) and ¹³C (50 MHz, bottom) NMR (CDCl₃) spectra of **13**.

Figure S28. ¹H (200 MHz, top) and ¹³C (50 MHz, bottom) NMR (DMSO- d_6) spectra of 15.

Figure S29. ¹H (200 MHz, top) and ¹³C (63 MHz, bottom) NMR (MeOD- d_4) spectra of 14.