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Abstract: Drug-drug interactions (DDIs) severity assessment is a crucial problem because
polypharmacy is increasingly common in modern medical practice. Many DDIs are caused by
alterations of the plasma concentrations of one drug due to another drug inhibiting and/or inducing
the metabolism or transporter-mediated disposition of the victim drug. Accurate assessment
of clinically relevant DDIs for novel drug candidates represents one of the significant tasks of
contemporary drug research and development and is important for practicing physicians. This work
is a development of our previous investigations and aimed to create a model for the severity of DDIs
prediction. PASS program and PoSMNA descriptors were implemented for prediction of all five
classes of DDIs severity according to OpeRational ClassificAtion (ORCA) system: contraindicated
(class 1), provisionally contraindicated (class 2), conditional (class 3), minimal risk (class 4), no
interaction (class 5). Prediction can be carried out both for known drugs and for new, not yet
synthesized substances using only their structural formulas. Created model provides an assessment
of DDIs severity by prediction of different ORCA classes from the first most dangerous class to the
fifth class when DDIs do not take place in the human organism. The average accuracy of DDIs class
prediction is about 0.75.
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1. Introduction

Many drug-drug interactions (DDIs) are caused by alterations of the plasma concentrations of one
drug (victim or object drug) due to another drug (precipitant drug). Precipitant drug inhibits and/or
inducts (activates) the metabolism or transporter-mediated disposition of the victim drug. Some DDIs
can cause more than tenfold increase or decrease in a victim drug exposure, with life-threatening
consequences. Thus, predictions and accurate assessment of clinically relevant DDIs for novel drug
candidates represent one of the significant tasks of contemporary drug research and development [1–3].
According to the requirements of US Food and Drug Administration (FDA) and European Medicines
Evaluation Agency (EMEA), it is essential to determine DDIs as early as possible during the drug
discovery and development process [1]. Usually, at the final stages of the costly drug discovery cycle,
the pharmaceutical companies prioritize the list of potential DDIs, which must be checked. Then
investigators select appropriate in vitro assays, then in vivo studies, optimize the design of experimental
testing and perform clinical trials. However, such a strategy can be dangerous because the developed
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new chemical entity (NCE) may finally be unacceptable due to the DDIs found in experiments. DDIs
can lead to life-threatening consequences and a recall of newly developed drugs from the market. The
examples of such recalled drugs are Mibefradil, Cisapride, Terfenadine, Astemizole [4]. Computational
(in silico) methods that predict DDIs can be used to avoid such dire consequences. A comprehensive
description of the methods for DDIs prediction is presented in the review [3]. There are computational
methods that predict DDIs indirectly, for example, ligand-based or structure-based methods dealing
with substrates, inhibitors, and inducers of drug-metabolizing enzymes (DMEs) [5–7]. Prediction
results of these methods can be used to obtain a conclusion about possible DDIs. Methods for direct
estimation of DDIs include literature-based DDIs prediction using medical records [8] and methods
based on structure resemblance, and functional similarities [9–11]. However, the results of such
DDIs prediction are typically provided without the assessment of importance and severity of DDIs
manifestation. Very often, the results of prediction obtained by these methods are given in databases
that contain a conglomeration of information about predicted DDIs between drugs without assessment
of the severity of possible DDIs manifestation [12,13].

We have earlier created PASS (Prediction of Activity Spectra for Substances) [14] and GUSAR
(General Unrestricted Structure-Activity Relationships) software that use structural formulas of
compounds and special mathematical algorithms to predict various biological and pharmaceutical
properties of compounds. With the use of PASS and GUSAR, a wide diversity of computational
experiments concerning drug metabolism and DMEs were carried out [15], and a dozen of freely
available web services were created [16]. We developed a model based on the GUSAR program
for the prediction of DDIs directly using combined descriptors for a pair of substances involved
in DDIs [17]. This prediction was performed without assessment of DDIs severity. In our recent
work, we created a new method for prediction of DDIs that are associated with the risk to health,
based on the PASS algorithm [18]. For that purpose, we used novel Pairs of Substances Multilevel
Neighbourhoods of Atoms (PoSMNA) descriptors, which take into account structures of two potentially
interacting molecules. The model was created using the training set with drug pairs with known
DDIs classes assigned according to OpeRational ClassificAtion (ORCA) system. The created model
allows predicting not only the fact of DDIs but also the severity of DDIs manifestation for three
out of five ORCA DDIs most dangerous classes. The developed method was used for Abiraterone,
Erythromycin and cytochrome P450 3A4 interaction prediction [19]. A special web resource for DDIs
prediction (http://way2drug.com/ddi/) was created based on the developed SAR (Structure-Activity
Relationships) models.

The current study is dedicated to creating SAR model that will be able to predict not only three but
all five ORCA DDIs severity classes: Contraindicated (Class 1), provisionally contraindicated (Class 2),
conditional (Class 3), minimal risk (class 4), no interaction (Class 5). The model is based on the same
approach as in our previous research [18]; however, it contains the new training set data on five ORCA
classes, as opposed to three ORCA classes used in the previous research.

2. Results

The accuracy of biological activity prediction in the standard PASS version is estimated by
the leave-one-out cross-validation (LOO CV) procedure with a calculation of Invariant Accuracy of
Prediction (IAP) parameter. To estimate the accuracy of the created computational model for ORCA
DDIs classes prediction, the LOO CV procedure was performed with a modified calculation algorithm.
Experimental DDIs classes for a particular pair of compounds are compared with the predicted classes
after excluding from the training set, not only this particular pair of compounds. All pairs containing
any of the compounds of the estimated pair (see Table 1, “DDIs IAP” column) were excluded. It is
called “compound out” strategy of validation [18]. Additionally, 20-fold CV procedure using IAP
criterion was performed (see Table 1, “DDIs IAP 20-Fold” column).

http://way2drug.com/ddi/
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Table 1. Accuracy of the ORCA DDIs classes prediction estimated by the LOO CV and 20-fold
CV procedures.

DDIs Class N DDIs IAP DDIs IAP 20-Fold

Class 1 59 0.876 0.876
Class 2 236 0.788 0.777
Class 3 1139 0.683 0.679
Class 4 523 0.671 0.668
Class 5 133 0.752 0.754

Average 0.754 0.751

N is the number of drug pairs in the training set belonging to the appropriate ORCA classes; DDIs IAP is the
invariant accuracy of prediction, obtained by the LOO CV procedure with exclusion from the training set of all the
pairs containing one of the compounds of the pair under estimation; DDIs IAP 20-Fold is the invariant accuracy of
prediction, obtained by 20-fold cross-validation procedures.

DDIs IAP estimation of DDIs prediction accuracy was obtained under conditions when both
structures from the estimated DDIs pair are completely excluded from the data set during the training.
Thus, such estimation can be called ‘true predictivity’. With this in mind, the obtained accuracy
(average DDIs IAP is 0.754, and DDIs IAP 20-Fold is 0.751) appropriates for the application of the
model in the assessment of DDIs in practice. A small difference between DDIs IAP and DDIs IAP
20-Fold values displays the robustness of the models. It is important to stress that prediction of the
most dangerous class 1 (the contraindicated combination of compounds) and class 2 (provisionally
contraindicated) ORCA DDIs classes can be performed with the best IAP 0.876 and 0.788 respectively.
Accuracy of class 5 (when no interaction between compounds occurred) prediction is 0.752 that is
high enough, which is important too, because the model can distinguish the really occurred DDIs
from opposite cases. Accuracy of prediction of boundary classes 3 (conditional) and 4 (minimal risk
of combination) between the most dangerous classes 1 and 2 and inactive class 5 is not high enough
(0.683 and 0.671 respectively). This low accuracy may be explained by unclear separation in training
set of the DDIs of these classes among themselves and with the cases of DDIs in neighboring classes.

3. Discussion

The DDIs is a crucial problem because polypharmacy is increasingly common in modern
medical practice [20] and the risk of adverse drug reaction (ADRs) caused by DDIs is about
13% for simultaneously used drugs pair, about 58%—for five drugs, and 82%—for seven or more
drugs [21]. Assessment of DDIs severity is very important—based on this information researchers in
the pharmaceutical chemistry field make conclusions about NCEs perspectives and practical physicians
rely on assessment of DDIs severity as it pertains to the strategy and consequences of polypharmacy.
Critical problem of such computer models is DDIs overprediction, which leads to false-positive results,
because in many cases these computational models do not contain negative examples of DDIs, viz. the
pairs of the molecules that do not interact when co-administered in the human organism. To some
extent it occurs due to the use by researchers of the freeware DrugBank (https://www.drugbank.ca/)
as a source of information for training sets for creation of computer models for DDIs prediction [3],
whereas DrugBank does not contain a structured description of DDIs severity. In vivo and in vitro
experiments can provide information about negative examples, but the results of such investigation
are incredibly scarce. Thus, computational prediction of drugs non-interaction, or insignificant and
non health-threatening DDIs, is necessary but has not been realized yet.

The proposed approach for the prediction of ORCA DDIs classes is advanced in comparison with
the methods proposed earlier. It is essential that the prediction can be carried out for new (virtual and
not yet synthesized) molecules using only their structural formulas. Such assessment is important
for NCE development. Another unique feature of the created computational model is that prediction
provides an assessment of DDIs severity by estimation of different ORCA classes from the first most
dangerous class to the fifth class when DDIs do not take place in the human organism.

https://www.drugbank.ca/
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The prediction that substrates will not interact, is another very important distinctive feature of the
presented method. When creating negative examples for computational models, one must proceed
from the results of studies indicating that the substances do not interact (such experimental information
is extremely scarce), or from the assumption that pairs of substances, for which DDIs are not described,
will not exhibit DDIs (such approach is controversial in case of DDIs). Information source for training
set creation that was used in this investigation already contains those negative examples described as
the drug pairs that do not interact (class 5). Application of this information in the model for prediction
of fifth DDIs ORCA class overcame the problem of negative examples’ deficiency, which is very often
observed in QSAR modeling.

Comprehensive “ideal” training set for DDIs prediction for the pair of compounds should contain
a description of all possible pairwise combinations of drugs. For example, for 767 drugs, “ideal”
training set theoretically should contain information about severity classes for 293,761 pairwise DDIs.
However, at present, it is physically impossible to reach this level of data completeness due to the DDIs
assessment being the result of human in vivo clinical trials and observations for this great amount
of pairs.

The average accuracy of prediction (DDIs IAP = 0.754) is acceptable but not high enough. It can
be explained by incompleteness of the training set (see Section 4.2) because only small fraction of all
possible pair combinations for 767 drugs is presented in the training set. The training set includes 2090
pairs of drugs. It is less than one percent (0.71%) of all 293,761 possible pair combinations of 767 drugs.
The rest 291,671 pairs are not described in the book due to the lack of any such information available in
publications for the reason that these combinations have not been experimentally evaluated yet, or the
negative results of experiments (lack of DDIs for such combinations) have not been published. Another
possible problem with the data set is the absence of clear boundaries between the classes, especially
between the third and fourth DDIs classes, because it is clear that the difference between "conditional
risk" (Class 3) and "minimal risk" (Class 4) is very fuzzy. This blurring between the classes affected
the model that we can see for the third (IAP = 0.68) and the fourth (IAP = 0.67) classes. However, the
accuracy obtained for marginal cases of DDIs Class 1 (IAP = 0.876) and Class 5 (IAP = 0.752) is higher.
The prediction that the substances definitely should not be taken together (Class 1) or the prediction
that the substances are safe when taken together (Class 5) is more important than the assumption about
minimal (Class 4) or conditional (Class 3) risk. It should be noted that the prediction of the second
class of DDIs (provisionally contraindicated) may be performed with a good accuracy (IAP = 0.79).
Thus, the model, even with such an imperfect training set, is useful. Further progress in increasing the
accuracy of the assessment will be achieved by improving, refining, and expanding of the training set.

4. Materials and Methods

4.1. OpeRational ClassificAtion (ORCA) System

The number of potential DDIs that can be predicted by in silico methods, is large and could
contain a lot of false-positive results. Many of these predicted DDIs can also be detected in the human
organism but are not clinically relevant; therefore, it is essential to assess the severity of predicted DDIs.
The DDIs severity can be defined by applying different classification systems based, for example, on
the "clinical significance" of levels of documentation. In our previous [18] and present investigations,
we applied the OpeRational ClassificAtion (ORCA) system developed and provided by The Drug
Interaction Foundation for the classification of DDIs [22]. ORCA system was created for clinicians to
assess the potential risk of drug pairs co-administration. ORCA assigns the pairs of drugs into five
categories based on the DDIs management: contraindicated (Class 1), provisionally contraindicated
(Class 2), conditional (Class 3), minimal risk (Class 4), no interaction (Class 5). Belonging to one of
the classes means explicit recommendations for clinicians. Belonging of the pair of compounds to the
first ORCA class means that "no situations have been identified where the benefit of the combination
outweighs the risk." Belonging to the second ORCA class means that "the combination increases the
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risk of adverse effects; avoid concurrent use unless interaction is desired or no alternative is available;
if the combination is used, increased monitoring may be necessary." In the case of the third class, it
is noted that "risk may be increased, depending on the clinical situation; assess risk and take action
as needed." The fourth class means that "the risk of adverse outcome appears small, and no special
precautions appear necessary." Finally, the fifth ORCA class for the pair of substances means that"
evidence suggests that drugs do not interact" [22].

4.2. Training Set Creation

Hansten and Horn’s Drug Interaction and Management 2013, published by Philip D. Hansten and
John R. Horn [23] was the source of information for the creation of a training set for in silico prediction
of the severity of DDIs. The information contained in this book is derived from the analysis of literature
after it was reviewed and approved by the authors. Interacting drugs are unambiguously assigned to
one of five ORCA classes. Management options are given for each described in book interacted pair to
offer the clinicians the actions that may be taken to reduce the risk of adverse outcomes. All the cases
of DDIs specified in the book belong to the first, second, third, fourth, and fifth ORCA classes. For the
training set creation, we collected data for 767 drugs’ structural formulas of 2090 pairs described in
this book. These pairs belong to class 1 (59), class 2 (236), class 3 (1139), class 4 (523), and class 5 (133)
of DDIs. Structural formulas of 767 molecules of drugs were collected and represented in MOL format.
The table of pair DDIs for these 767 drugs contains an indication of DDIs severity classes for all 2090
pairs, but it is clear that this amount of known DDIs is only a small part of all 293,761 possible pair
combinations for 767 molecules.

4.3. PASS

The PASS software [14] predicts the profile of biological activity based on advanced naïve Bayes
classifier. Input data for the algorithm are the structural formulas of drug-like organic compounds in
MOL format. PASS output is a ranked list of activities with probabilities ”to be active“ Pa and ”to
be inactive“ Pi. PASS prediction algorithm is based on the analysis of structure-activity relationships
(SAR) for the training set of compounds with known biological activities. Currently, PASS predicts over
5000 kinds of biological activity, including pharmacological effects, mechanisms of action, toxic and
adverse effects, interaction with metabolic enzymes and transporters, influence on gene expression, etc.
Biological activities are represented qualitatively as “active” or “inactive” in the PASS program. The
molecular structures of drug-like organic compounds are described by Multilevel Neighbourhoods
of Atoms (MNA) descriptors. Accuracy of prediction is estimated in PASS by LOO CV and 20-fold
cross-validation procedures using IAP criterion. IAP is a sample estimate of the probability that
randomly selected from an independent test set positive and negative examples will be correctly
classified; IAP coincides with AUC value [14].

DDIs estimation by PASS is similar to the biological activity prediction procedure, but for DDIs
prediction, the input data represented not by single molecules but by the pairs of structural formulas
of compounds. The results of prediction for each pair of compounds are represented by the lists of five
DDIs ORCA classes. For each ORCA class in the list two probabilities Pa (probability of belonging to a
particular ORCA class) and Pi (in the opposite case) are calculated.

4.4. Pairs of Substances Multilevel Neighbourhoods of Atoms Descriptors

In our previous work we developed PoSMNA descriptors [18]. PoSMNA can be used for the
prediction of various phenomena where pairs of molecules act together, e.g., for prediction of DDIs or
prediction of synergetic effects of two drugs. In this investigation, PoSMNA descriptors were used in
PASS to describe the structures of drug pairs instead of Multilevel Neighborhoods of Atom (MNA)
descriptors used for single molecules in the standard version of PASS program [14]. The pairs of the
substances are represented by the PoSMNA descriptors. PoSMNA is a set of all possible pairs of MNA
descriptors of each of the molecular pair as strings of symbols ”MNA descriptor of the first molecule“,
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”space“, ”MNA descriptor of the second molecule“. Second level MNA descriptors (MNA/2) for heavy
(not hydrogen) atoms were used for PoSMNA assembling. In each pair the MNA descriptors are ordered
lexicographically, for example, ”C(C(CCC-H)C(CC-H-H)-H(C)-N(C-H-H)) C(C(CC-H)C(CC-H)-H(C))”,
”C(C(CCC-H)C(CCH-H)-H(C)-N(C-H-H)) C(C(CC-H)C(CC-H) C(C-H-H-C))”, etc. (see PoSMNA
descriptors examples for Phenelzine and Tranylcypromine in Figure 1). To create the models for DDIs
prediction, PoSMNA descriptors were generated for all pairs of compounds with known classes of
DDIs severity (from class 1 to class 5) in the training set.

Figure 1. Representation of the Phenelzine and Tranylcypromine molecules by MNA and
PoSMNA descriptors.
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