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Abstract: The enantioselective transformations of indoles preferentially take place in the more-reactive
azole ring. However, the methods for the enantioselective functionalization of the indole benzene ring
are scarce. In this paper, a series of bifunctional (thio)urea derivatives were used to organocatalyze
the enantioselective Friedel-Crafts hydroxyalkylation of indoles with isatins. The resulting products
were obtained in good yields (65–90%) with up to 94% enantiomer excess (ee). The catalyst type and
the substrate scope were broadened in this methodology.
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1. Introduction

The indole scaffolds are privileged skeletons, as they have been widely found in many bioactive
natural products, pharmaceuticals, and material molecules [1–6]. The synthesis and modification
of indoles have attracted intensive interest for a long time. Accordingly, the enantioselective
functionalization of indoles has been one of the most studied reactions in asymmetric catalysis [7–14].
Indoles show a high nucleophilic reactivity in the azole ring, which preferentially reacts with
electrophilic aromatic substitution at the C-3 position [15–22]. Additionally, these Friedel-Crafts
(F-C) reactions also selectively take place at the positions C-2 [23–30] and N-1 [31–37] by using different
strategies. However, the functionalization in the benzene ring of indole is still difficult, which generally
requires the presence of directing or blocking group in the azole ring [38–46] and employs transition
metal catalysts [47–49].

In 2015, Jørgensen reported the first example of catalytic asymmetric F-C alkylation of
4-hydroxyindole occurring at the C-5 position [50]. Subsequently, Pedro and coworkers developed
the first asymmetric F-C reaction of hydroxyindoles with isatin-derived ketimines [51] or isatins [52]
organocatalyzed by cinchona-derived squaramide. These methodologies allow the functionalization
of indoles in every position of the benzene ring in a regioselective and enantioselective fashion, by
utilizing the activating/directing ability of hydroxyl group. Moreover, the OH group was removed
smoothly upon hydrogenolysis of the corresponding triflate. Very recently, Zhao [53] and Deng [54],
respectively, reported the cinchona-derived squaramide organocatalyzed the enantioselective F-C
transformation in the benzene ring of indoles, employing other electrophiles with hydroxyindoles. In
particular, the resulting hydroxyindole moiety is of high importance in medicinal chemistry and natural
products [51,55–57], showing great potential in diversity-oriented synthesis and drug discovery.

In spite of the significant developments, there is a high demand for the enantioselective
functionalization in the benzene ring of indole by using new types of catalysts. Takemoto’s catalyst
is the commercially available chiral organocatalyst, which was first synthesized by Takemoto in
2003 [58]. Then, they were used efficiently for a wide range of diastereoselective and enantioselective
reactions [59–65]. We herein first reported the enantioselective hydroxyalkylation of hydroxyindoles

Molecules 2019, 24, 3944; doi:10.3390/molecules24213944 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-1518-1601
http://dx.doi.org/10.3390/molecules24213944
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/24/21/3944?type=check_update&version=2


Molecules 2019, 24, 3944 2 of 11

with isatins by employing Takemoto-type catalysts 1a–1h bearing (thio)urea-tertiary amine moiety
(Figure 1).
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Figure 1. (Thio)urea derivatives screened as organocatalysts (1a–1h).

2. Results and Discussion

According to the optimized conditions reported by Pedro [52], we first screened the bifunctional
catalysts in the reaction of 4-hydroxyindole and isatin (2a) with Et2O as a solvent in the presence of
10 mol% of (thio)urea catalysts 1a–1h (Table 1). Initially, widely used thiourea 1a was examined at
room temperature. However, the desired 5-alkylated indole 3a was afforded in 70% yield with 68%ee
(entry 1). Gratifyingly, when (S, S)-urea catalyst 1b was used to induce the reaction, the obviously
improved yield and ee value were observed (entry 2). Based on a comparison of the optical rotation of
the product with a value from the literature [52], the absolute configuration of the major product was
determined to be R. The enantiomeric (R, R)-urea catalyst 1d gave the S major isomer with slightly
decreased ee of 76% (entry 4). Surprisingly, piperidine-based thiourea 1e could not catalyze the reaction.
Moreover, the further endeavor to improve ee by increasing the steric bulk of the basic moiety of
bifunctional catalysts 1f–1h was not successful (entries 6–8). Therefore, the catalyst 1b, containing N,
N-dimethyl tertiary amine and urea moiety, showed the best yield and enantioselectivity.

Table 1. Asymmetric hydroxyalkylation of 4-hydroxyindole with isatin a.
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Entry Catalyst a Yield (%) b %ee c Configuration d

1 1a 70 68 R
2 1b 88 79 R
3 1c 75 72 S
4 1d 85 76 S
5 1e - - -
6 1f 72 55 S
7 1g 65 35 S
8 1h 66 46 S

a Reaction conditions: isatin (0.1 mmol), 4-hydroxyindole (0.1 mmol), catalyst (0.01 mmol), and Et2O (1.5 mL) at
rt. b Isolated yield. cDetermined by HPLC analysis (Chiralpak AD-H). dAbsolute configuration was determined
according to the literature [52].

To optimize the enantioselectivity of the transformation, we investigated a variety of different
reaction conditions (Table 2). The survey of solvents showed that Et2O was the optimal solvent in
terms of the yield and enantioselectivity (entries 1–4). The screening of catalyst loading exhibited
that 10 mol% equivalent of 1b was optimal 5 mol% loading of catalyst led to reduction both in the
yield and ee (entry 6), and 20 mol% loading offered no improvement in the asymmetric induction,
albeit with a slightly improved yield (entry 7 vs. entry 1). When the reaction temperature was lowered
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from rt to 0 ◦C, an improved ee of 83% was afforded (entry 8 vs. entry 1). The further temperature
decreases to −20 ◦C and −40 ◦C were detrimental for both yield and enantiocontrol (entries 10, 11 vs.
entry 8). Furthermore, diluting the reaction concentration by half produced a slightly lower ee value
and decreased yield (entry 5). Based on these experiments, the optimized conditions were determined
to be Et2O as the solvent with a 10 mol% loading of catalyst 1b at 0 ◦C.

Table 2. Screening of the reaction conditions for the asymmetric hydroxyalkylation a.

Entry. Solvent Temperature Catalyst. Amount (% mmol) Yield (%) b %ee c

1 Et2O rt 10 88 79
2 DCM rt 10 69 32
3 toluene rt 10 70 28
4 THF rt 10 76 69

5 d Et2O rt 10 79 74
6 Et2O rt 5 79 77
7 Et2O rt 20 91 76
8 Et2O 0 ◦C 10 85 83
9 Et2O 0 ◦C 20 83 80

10 Et2O −20 ◦C 10 72 68
11 Et2O −40 ◦C 10 68 73

a Reaction conditions: isatin (0.1 mmol), 4-hydroxyindole (0.1 mmol), catalyst 1b in solvent (1.5 mL). b Isolated yield.
c Determined by HPLC analysis (Chiralpak AD-H). d Reaction performed in Et2O (3.0 mL).

With the optimized conditions in hand, the substrate scope of this protocol was investigated. As
shown in Table 3, the corresponding 5-alkylated products were obtained in good yield (65–90%) with
>20:1 regioselectivities determined by 1H NMR. A wide range of isatins bearing various substituents
on the phenyl ring such as halogens, methyl and methoxyl were tolerated in good to excellent yields
with 71–94%ee except 4-bromo substituted isatin which produced 3b with only 50%ee in low yield
(entry 2). It might be caused by the adjacent substituent to the carbonyl of isatin. Therefore, the
enantioselectivities were obviously affected by the substituted position on the phenyl ring of isatins.
The 5- and 7-substituted isatins appeared to favor higher enantioselectivities (entries 3–6 and entries
8–9). In the case of N-methylisatin and N-benzylisatin, moderate ee value was obtained (entry 10–11).
Of all the different substrates listed in Table 3, the reaction of 5-Cl-substituted isatin afforded the
optimal enantiomeric excess (94%ee, entry 5). Compared with the results of the reported reference [52],
the similar enantioselectivities were achieved with N-unsubstituted isatins and N-Methylisatin as the
reactants (entries 1, 6, and 10), whereas the reaction of N-benzylisatin with 4-Hydroxyindole got the
significantly decreased ee value (entry 11). However, the obviously high yields were observed with
N-unsubstituted isatins as the substrate (entries 1, 6). The reported literature [52] mainly focused on the
reaction of N-benzylisatins and only tried three isatins containing the free NH group. We broadened
the substrate scope by investigating nine N-unsubstituted isatins.
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Table 3. Scope of the enantioselective hydroxyalkylation between 4-hydroxyindole and isatins a.
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Based on the obtained absolute configuration described above and previously reported
enantioselective organocatalytic reactions of isatin-derived ketimines [51], a proposed transition-state
model is depicted in Figure 2. Both hydroxyindole and isatin are activated through hydrogen bonding
with bifunctional urea catalyst 1b. Then, the reaction proceeds with a Re-face addition of hydroxyindoles
to isatin 2a, affording the desired product R-3a.
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Figure 2. Proposed stereochemical model.

In order to achieve the functionalization of every position in the carbocyclic ring, we respectively
examined the reaction of 5-, 6-, and 7-hydroxyindole and 5-Cl substituted isatin (Scheme 1). As we
expected, the corresponding alkylated indoles were isolated with excellent regioselectivity in all cases.
The 5-hydroxyindole showed optimal reactivity (75% yield) and enantioselectivity (94%ee) under the
optimized reaction conditions to give a 4-alkylated product. In a similar manner, 6-hydroxyindole was
functionalized selectively in the C-7 position with good enantioselectivity (80%ee). When we tried the
reaction of 7-hydroxyindole, the 6-alkylated product was obtained with low enantioselectivity (60%ee).
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Scheme 1. Scope for the enantioselective hydroxyalkylation between different hydroxyindoles and
isatin. Reaction conditions: hydroxyindole (0.1 mmol), isatin (0.1 mmol), 1b (10 mol %) in Et2O (1.5 mL)
at 0 ◦C. Isolated yields after column chromatography. >20:1 regioselectivity determined by 1H NMR.

3. Conclusion

In summary, we described how the first urea derivative catalyst promoted the enantioselective
hydroxyalkylation of hydroxyindoles with isatins. The enantioselective modification happened in
the benzene ring rather than in the azole ring to give the desired hydroxyalkylated indoles with high
enantioselectivity (up to 94%ee). Furthermore, we used our optimized conditions to expand upon the
substrate scope of this transformation.

4. Experimental

4.1. Chemistry

The 1H NMR spectra were recorded on a 500 MHz spectrometer, using CD3OD–d4 as a solvent.
The chemical shifts were reported in ppm, and the residual CD3OD signal was used as a reference (3.31
and 4.87 ppm). The splitting patterns of the signals were reported as s, singlet; d, doublet; t, triplet;
q, quartet; dd, doublet of doublets; and m, multiplet. The 13C NMR spectra were recorded on a 125
MHz instrument using CD3OD–d4 as a solvent. The chemical shifts were reported in ppm, and the
residual CD3OD signal was used as a reference (49.0 ppm). High-resolution mass spectra (HRMS)
were measured on a triple TOF 5600+ mass spectrometer equipped with an electrospray ionization
(ESI) source in the negative-ion mode. The enantiomeric excess (ee) values of the products were
determined by chiral HPLC, using Daicel Chiralpak AD-H columns (4.6 mm*250 mm). The reactions
were monitored by thin layer chromatography (TLC). Purifications by column chromatography were
conducted over silica gel (200–300 mesh). The organocatalysts 1a–h were purchased from Daicel chiral
technologies (China) company.

4.2. General Procedure for the Enantioselective Friedel-Crafts Reaction of Hydroxyindole and Isatins

To a tube containing hydroxyindole (13.3 mg, 0.1 mmol) and isatin (2, 23.7, 0.1 mmol) and
catalyst 1b (4.0 mg, 0.01 mmol), Et2O (1.5 mL) was added. The resulting mixture was stirred at
room temperature for 7 h (TLC). After the reaction was finished, the reaction directly poured into a
column chromatography on silica gel with hexane/EtOAc (3:1) as eluent to afford the products 3a–k.
Experimental data can be found in Supplementary Materials.

(+)-(R)-3-Hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3a): brown oil (85% yield); 1H NMR
(500 MHz, CD3OD) δ 7.28–7.19 (m, 2H), 7.10–7.05 (m, 1H), 7.01 (td, J = 7.5, 1.0 Hz, 1H), 6.93 (d,
J = 8.0 Hz, 1H), 6.82 (d, J = 1.0 Hz, 2H), 6.53 (d, J = 3.0 Hz, 1H) ppm; HRMS (ESI) m/z: HRMS (ESI):
calcd for C16H11N2O3

− [M-1]−: 279.0775, found: 279.0770; [α]D
25 = +46.85 (c 0.5, MeOH). Enantiomeric

excess (83%) was determined by chiral HPLC (ChiralpakAD-H), hexane:iPrOH = 80:20, 1.5 mL/min,
major enantiomer tR = 14.1 min, minor enantiomer tR = 17.3 min.

(+)-(S)-4-bromo-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3b): brown oil (72% yield); 1H
NMR (500 MHz, CD3OD) δ 7.16 (t, J = 8.0 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 7.07 (d, J = 3.5 Hz, 1H),
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6.91 (dd, J = 7.5, 1.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 3.0 Hz, 1H); 13C NMR (125 MHz,
CD3OD) δ 181.8, 150.2, 145.6, 139.3, 132.9, 131.9, 127.8, 124.1, 122.3, 121.3, 120.1, 110.1, 103.8, 99.7, 99.6,
91.5; HRMS (ESI): calcd for C16H10BrN2O3

− [M-1]−: 356.9880, found: 356.9874; [α]D
25 = +5.10 (c 0.3,

MeOH). Enantiomeric excess (50%) was determined by chiral HPLC (Chiralpak AD-H), hexane:iPrOH
= 80:20, 1.5 mL/min, major enantiomer tR = 13.2 min, minor enantiomer tR = 17.3 min.

(+)-(R)-5-methyl-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3c): brown oil (85% yield); 1H
NMR (500 MHz, CD3OD) δ 7.08–7.05 (m, 3H), 6.83–6.80 (m, 2H), 6.78 (d, J = 8.5 Hz, 1H), 6.53 (d, J =

3.0 Hz, 1H), 2.26 (s, 3H); 13C NMR (125 MHz, CD3OD) δ 182.7, 150.5, 140.6, 139.4, 134.7, 133.4, 130.7,
126.9, 124.4, 121.7, 120.4, 114.1, 110.9, 103.9, 99.7, 80.7, 21.1; HRMS (ESI): calcd for C17H13N2O3

− [M-1]−:
293.0932, found: 293.0927; [α]D

25 = +64.42 (c 0.60, MeOH). Enantiomeric excess (85%) was determined
by chiral HPLC (Chiralpak AD-H), hexane:iPrOH = 80:20, 1.5 mL/min, major enantiomer tR = 12.8 min,
minor enantiomer tR = 14.3 min.

(+)-(R)-5-methoxyl-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3d): brown oil (78% yield);
1H NMR (500 MHz, CD3OD) δ 7.09 (d, J = 3.5 Hz,1H), 6.87–6.78 (m, 5H), 6.53 (d, J = 3.0 Hz, 1H),
3.71 (s, 3H). 13C NMR (125 MHz, CD3OD) δ 182.6, 157.6, 150.5, 139.5, 136.3, 135.9, 124.4, 121.7, 120.4,
115.4, 114.0, 112.8, 111.7, 104.0, 99.8, 81.0, 56.2; HRMS (ESI): calcd for C17H13N2O4

−[M-1]−: 309.0881,
found: 309.0870; [α]D

25 = +38.52 (c 0.65, MeOH). Enantiomeric excess (82%) was determined by chiral
HPLC (Chiralpak AD-H), hexane:iPrOH = 80:20, 1.5 mL/min, minor enantiomer tR = 20.8 min, major
enantiomer tR = 22.6 min.

(+)-(R)-5-chloro-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3e): brown oil (81% yield); 1H
NMR (500 MHz, CD3OD) δ 7.22 (dd, J = 8.0, 2.0 Hz, 1H), 7.13 (d, J = 3.0 Hz, 1H), 7.09 (d, J = 3.5 Hz,
1H), 7.03 (d, J = 8.5 Hz, 1H), 6.90 (dd, J = 13.5, 8.5 Hz, 2H), 6.53 (d, J = 3.0 Hz, 1H); 13C NMR (125 MHz,
CD3OD) δ 182.3, 149.6, 142.0, 139.5, 136.8, 130.1, 128.7, 126.1, 124.5, 121.3, 120.2, 114.3, 112.2, 104.1, 99.6,
79.7; HRMS (ESI): calcd for C16H10ClN2O3

− [M-1]−: 313.0385, found: 313.0380; [α]D
25 = +90.51 (c 0.46,

MeOH). Enantiomeric excess (94%) was determined by chiral HPLC (Chiralpak AD-H), hexane:iPrOH
= 80:20, 1.5 mL/min, major enantiomer tR = 13.4 min, minor enantiomer tR = 14.8 min.

(+)-(R)-5-bromo-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3f): brown oil (80% yield); 1H
NMR (500 MHz, CD3OD) δ 7.37 (dd, J = 8.0, 3.0 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 7.09 (d, J = 3.0 Hz, 1H),
7.03 (d, J = 8.5 Hz, 1H), 6.91 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 6.51 (d, J = 2.5 Hz, 1H); HRMS
(ESI): calcd for C16H10BrN2O3

− [M-1]−: 356.9880, found: 356.9873; [α]D
25 = +80.27 (c 0.67, MeOH).

Enantiomeric excess (90%) was determined by chiral HPLC (Chiralpak AD-H), hexane:iPrOH = 80:20,
1.5 mL/min, major enantiomer tR = 21.5 min, minor enantiomer tR = 23.7 min.

(+)-(R)-6-bromo-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3g): brown oil (83% yield); 1H
NMR (500 MHz, CD3OD) δ 7.13 (dd, J = 8.0, 1.5 Hz, 1H), 7.09 (d, J = 1.5 Hz, 1H), 7.03 (d, J = 3.5 Hz,
2H), 6.88 (dd, J = 10.0, 7.5 Hz, 1H), 6.50 (d, J = 3.0 Hz, 1H). 13C NMR (125 MHz, CD3OD) δ 182.4, 149.6,
145.0, 139.6, 134.1, 127.4, 126.3, 124.4, 123.5, 121.3, 120.2, 114.4, 114.2, 104.0, 99.6, 79.3 ppm; HRMS
(ESI): calcd for C16H10BrN2O3

− [M-1]−: 356.9880, found: 356.9873; [α]D
25 = +8.73 (c 0.76, MeOH).

Enantiomeric excess (71%) was determined by chiral HPLC (Chiralpak AD-H), hexane:iPrOH = 80:20,
1.5 mL/min, major enantiomer tR = 13.0 min, minor enantiomer tR = 17.2 min.

(+)-(R)-7-fluoro-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3h): brown oil (88% yield); 1H
NMR (500 MHz, CD3OD) δ 7.10–6.94 (m, 4H), 7.01 (d, J = 8.6 Hz, 1H), 6.95 (d, J = 8.0, 4.0 Hz, 1H), 6.89
(d, J = 8.5 Hz, 1H), 6.51 (d, J = 2.5 Hz, 1H); 13C NMR (125 MHz, CD3OD) δ 182.2, 149.6 (d, J = 59.5
Hz), 147.6, 139.5, 137.8 (d, J = 9.0 Hz), 130.4 (d, J = 49.5 Hz), 124.4, 124.2 (d, J = 22.0 Hz), 121.8 (d, J =

10.5 Hz), 121.4, 120.2, 117.0 (d, J = 69.5 Hz), 114.4, 104.0 (d, J = 25.5 Hz), 99.6 (d, J = 22.5 Hz), 79.8 (d,
J = 7.5 Hz) ppm; HRMS (ESI): calcd for C16H10FN2O3

−[M-1]−: 297.0681, found: 297.0677; [α]D
25 =

+43.06 (c 0.82, MeOH). Enantiomeric excess (92%) was determined by chiral HPLC (Chiralpak AD-H),
hexane:iPrOH = 80:20, 1.5 mL/min, major enantiomer tR = 10.5 min, minor enantiomer tR = 12.7 min.
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(+)-(R)-7-chloro-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3i): brown oil (90% yield); 1H
NMR (500 MHz, CD3OD) δ 7.22 (dd, J = 8.0, 1.0 Hz, 1H), 7.06 (dd, J = 7.5, 1.0 Hz, 2H), 7.02 (d, J = 8.5 Hz,
1H), 6.96–6.91 (m, 1H), 6.87 (d, J = 8.5 Hz, 1H), 6.48 (d, J = 2.5 Hz, 1H); 13C NMR (125 MHz, CD3OD)
δ 182.2, 149.5, 141.2, 139.6, 136.7, 130.1, 124.5, 124.4, 124.3, 121.3, 120.1, 116.1, 114.5, 104.0, 99.6, 80.2;
HRMS (ESI): calcd for C16H10ClN2O3

− [M-1]−: 313.0385, found: 313.0380; [α]D
25 = +14.45 (c = 0.49,

MeOH). Enantiomeric excess (83%) was determined by chiral HPLC (Chiralpak AD-H), hexane:iPrOH
= 80:20, 1.5 mL/min, major enantiomer tR = 11.2 min, minor enantiomer tR = 14.7 min.

(+)-(R)-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)-1-methylindolin-2-one (3j): brown oil (82 % yield); 1H
NMR (500 MHz, CD3OD) δ 7.31 (dt, J = 7.5, 1.0 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.07 (t, J = 4.0 Hz, 1H),
7.03 (dt, J = 7.5, 0.5 Hz, 1H), 6.97 (dd, J = 12.5, 8.0 Hz, 2H), 6.86 (dd, J = 8.5, 0.5 Hz, 1H), 6.50 (dd, J = 3.5,
1.0 Hz, 1H), 3.23 (s, 3H); HRMS (ESI): calcd for C17H13N2O3

− [M-1]−: 293.0932, found: 293.0922; [α]D
25

= +52.23 (c = 0.90, MeOH). Enantiomeric excess (78%) was determined by chiral HPLC (Chiralpak
AD-H), hexane:iPrOH = 80:20, 1.5 mL/min, major enantiomer tR = 12.5 min, minor enantiomer tR =

15.3 min.

(+)-(R)-1-benzyl-3-hydroxy-3-(4-hydroxy-1H-indol-5-yl)indolin-2-one (3k): colorless oil (87% yield);
1H NMR (500 MHz, CD3OD) δ 7.43 (d, J = 7.0 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H),
7.19–7.15 (m, 2H), 7.09 (d, J = 3.0 Hz, 1H), 7.03–6.96 (m, 2H), 6.89 (dd, J = 8.5, 1.0 Hz, 1H), 6.80 (d, J
= 8.0 Hz, 1H), 6.53 (dd, J = 3.5, 1.0 Hz, 1H), 5.02 (d, J = 16.0 Hz, 1H), 4.93 (d, J = 16.0 Hz, 1H); 13C
NMR (125 MHz, CD3OD) δ 180.8, 149.6, 144.3, 139.6, 137.5, 134.3, 130.2, 129.8, 128.6, 128.4, 125.7, 124.4,
124.2, 121.5, 120.23, 114.7, 110.7, 104.0, 99.7, 79.5, 44.7 ppm; HRMS (ESI): calcd for C23H17N2O3−

[M-1]−: 369.1245, found: 369.1239; [α]D
25 = +25.51 (c = 0.58, MeOH). Enantiomeric excess (74%) was

determined by chiral HPLC (Chiralpak AD-H), hexane:iPrOH = 90:10, 1.5 mL/min, minor enantiomer
tR = 17.5 min, major enantiomer tR = 19.8 min.

(-)-(R)-5-chloro-3-hydroxy-3-(5-hydroxy-1H-indol-4-yl)indolin-2-one (4): brown oil (75% yield); 1H
NMR (500 MHz, CD3OD) δ 7.23 (d, J = 8.5 Hz, 1H), 7.20 (d, J = 8.5 Hz, 1H), 7.12 (s, 1H), 7.08 (s, 1H),
6.92 (d, J = 8.0 Hz, 2H), 6.66 (d, J = 8.5 Hz, 1H); 13C NMR (125 MHz, CD3OD) δ 181.2, 142.0, 136.4,
133.1, 128.8, 126.2, 125.8, 113.7, 113.0, 112.2, 94.6, 80.8; HRMS (ESI): calcd for C16H10ClN2O3

−[M-1]−:
313.0385, found: 313.0380; [α]D

25= −14.58 (c 0.43, MeOH). Enantiomeric excess (94%) was determined
by chiral HPLC (Chiralpak AD-H), hexane:iPrOH = 80:20, 1.5 mL/min, major enantiomer tR = 15.1 min,
minor enantiomer tR = 24.1 min.

(-)-(R)-5-chloro-3-hydroxy-3-(6-hydroxy-1H-indol-7-yl)indolin-2-one (5): brown oil (72% yield); 1H
NMR (500 MHz, CD3OD) δ 7.30 (d, J = 8.5 Hz, 1H), 7.19 (dd, J = 2.0, 8.0 Hz, 1H), 7.15 (s, 1H), 6.99 (d, J
= 2.0 Hz, 1H), 6.87 (d, J = 8.5 Hz, 2H), 6.49 (d, J = 8.5 Hz, 1H); 13C NMR (125 MHz, CD3OD) δ182.0,
150.2, 142.3, 137.2, 136.7, 129.9, 128.3, 125.4, 124.6, 124.0, 121.2, 111.9, 110.5, 109.7, 94.6, 79.6; HRMS
(ESI): calcd for C16H10ClN2O3

−[M-1]−: 313.0385, found: 313.0379; [α]D
25 = −11.50 (c 0.56, MeOH).

Enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak AD-H), hexane:iPrOH = 80:20,
1.5 mL/min, major enantiomer tR = 11.6 min, minor enantiomer tR = 33.6 min.

(+)-(R)-5-chloro-3-hydroxy-3-(7-hydroxy-1H-indol-6-yl)indolin-2-one (6): brown oil (68% yield); 1H
NMR (500 MHz, CD3OD) δ 7.29 (dd, J = 8.0, 2.0 Hz, 1H), 7.24 (d, J = 1.5 Hz, 1H), 7.20 (d, J = 3.0 Hz,
1H), 6.97 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 6.54 (d, J = 8.0 Hz, 1H), 6.35 (d, J = 3.0 Hz, 1H); 13C
NMR (125 MHz, CD3OD) δ 182.0, 144.1, 141.8, 136.3, 131.6, 130.5, 128.5, 126.6, 126.2, 118.8, 115.6, 112.6,
112.5, 102.6, 81.0; HRMS (ESI): calcd for C16H10ClN2O3

− [M-1]−: 313.0385, found: 313.0386; [α]D
25 =

+9.07 (c 0.55, MeOH). Enantiomeric excess (60%) was determined by chiral HPLC (Chiralpak AD-H),
hexane:iPrOH = 80:20, 1.5 mL/min, minor enantiomer tR = 10.1 min, major enantiomer tR = 12.8 min.

Supplementary Materials: Copies of 1H and 13C-NMR spectra and HPLC trace of products are available online
at http://www.mdpi.com/1420-3049/24/21/3944/s1. Figures S1–S25: NMR spectra of compounds 3a–3k and 4–6;
Figures S26–29: HPLC trace of enantiomeric 3a in different solvent. S30–S57: HPLC trace of compounds 3a–3k
and 4–6.

http://www.mdpi.com/1420-3049/24/21/3944/s1
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