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Abstract: Ten molecules were theoretically calculated and studied through density functional theory
with the M06 density functional and the 6-31G(d) basis set. The molecular systems have potential
applications as sensitizers for dye-sensitized solar cells. Three molecules were taken from the literature,
and seven are proposals inspired in the above, including the azomethine group in the π-bridge
expecting a better charge transfer. These molecular structures are composed of triphenylamine (donor
part); different combinations of azomethine, thiophene, and benzene derivatives (π-bridge); and
cyanoacrylic acid (acceptor part). This study focused on the effect that the azomethine group caused on
the π-bridge. Ground-state geometry optimization, the highest occupied molecular orbital, the lowest
unoccupied molecular orbital, and their energy levels were obtained and analyzed. Absorption
wavelengths, oscillator strengths, and electron transitions were obtained via time-dependent density
functional theory using the M06-2X density functional and the 6-31G(d) basis set. The free energy
of electron injection (∆Ginj) was calculated and analyzed. As an important part of this study,
chemical reactivity parameters are discussed, such as chemical hardness, electrodonating power,
electroaccepting power, and electrophilicity index. In conclusion, the inclusion of azomethine in the
π-bridge improved the charge transfer and the electronic properties of triphenylamine-based dyes.

Keywords: azomethine; DSSC; chemical hardness; free energy of electron injection

1. Introduction

Solar energy is a form of renewable energy, being the most abundant on this planet and, thus,
generating great interest to transform solar energy into electrical energy while being friendly to
the environment. At present, different technologies are being developed to obtain higher efficiency.
Silicon-based solar cells and dye-sensitized solar cells (DSSC) are some more developed devices for
their promising efficiency; from the above, DSSCs have presented a great growth in efficiency in a short
time. Grätzel in 1991 proposed the DSSC for the first time; since, it has been greatly studied [1]. DSSC
is mainly composed of semi-conductive oxide, electrolyte, electrode, and sensitizer, which contribute
to the cells’ performance. However, several authors have proposed that the cells’ efficiency can be
modulated with the dye modification [2]. Recently, some dyes have been reported with high energy
conversion efficiencies, such as ruthenium-based dyes up to 12% [3] and metal-free organic dyes up
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to 14.5% [4]. Metal-free organic dyes present some advantages because of their easy synthesis, low
cost, and environmental friendliness [5]. On the other hand, dyes with donator π-bridge-acceptor
(D-π-A) structure have reached high efficiencies [6]. Regarding D-π-A structure, several studies about
dyes have been reported using different proposals. For example, modifying the donor part using
coumarin [7,8], carbazole [9,10], phenothiazine [11,12], and triphenylamine [13,14]; modifying the
acceptor part using cyanoacrylic acid [15] and alkoxysilane [16,17]; and mainly modifying the π-bridge
using thiophene [18–20], benzene [21,22], dioxythiophene [23], and benzothiadiazole [24,25], among
many others. Hence, the study and the understanding of the performance of D-π-A metal-free organic
dyes is very important. The above can be reached via theoretical studies, which allows designing new
dyes searching for the best efficiency. Specifically, Density Functional Theory (DFT) has been used to
study the electronic properties of new and already reported dyes [26–28]. It is well known that the
design of sensitizer dye consists mainly in modifying the π-bridge. On the other hand, several studies
have reported the use of azomethine in molecular systems used in photovoltaics devices, finding an
improvement in the luminescent properties and the molecular structures stability [29] and considering
the azomethine as a photo-stable group [30] and with a good electric conductance [31]. Therefore, it is
expected that azomethine is beneficial to charge transportation and has potential application to produce
high-quality organic semiconductors [32]. Further, azomethine has been used in applications such as
organic light-emitting diodes (OLEDs) [33–35], OFET [36,37], and DSSC [38,39]. Recently, Manzoor et
al. reported a study of optical and photovoltaic properties of coumarin-based dyes with a similar azo
group in the π-bridge, obtaining good absorption behavior in UV-visible region, good photovoltaic
response, and a reduction in the HOMO-LUMO gap [7]. The main contribution of this paper is to
study the effect of the azomethine group in sensitizers’ photoelectronic properties. To achieve the
above, seven dyes with D-π-A structure were conformed by triphenylamine (TPA) in the donor part;
cyanoacrylic acid in the acceptor part; and different conformations in the π-bridge using thiophene,
benzene, methylbenzene, nitrobenzene, and azomethine groups. These dyes were inspired by three
experimentally reported dyes, which are 2-Cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylic
acid [40], 2-Cyano-3-[5-[4′-(diphenylamino)[1,1′-biphenyl]-2-thienyl]-2-acrylic acid [41,42],
and 2-Cyano-3-[5′-[4-(diphenylamino)phenyl][2,2′-bithiophen]-5-yl]-2-acrylic acid [41,43,44]. In this
work, these dyes are called AT, BBT, and BTT, respectively. AT and BTT were theoretically studied by
our work group [45]; however, these results are shown to compare to the seven studied dyes, which
were named TPAZ identified from 1 to 7, as is shown in Figure 1. Through the Density Functional
Theory (DFT), different optoelectronics properties were calculated of the already reported AT, BBT,
and BTT dyes and of the TPA1, TPA2, TPA3, TPA4, TPA5, TPAZ6, and TPA7 dyes. The second
group is inspired by the first group but includes the azomethine group in the π-bridge with different
conjugations. The optimization of molecular geometry, the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) energy levels, the free energy of electron injection,
UV-Vis absorptions and transitions, and chemical reactivity were evaluated and analyzed to compare
both groups. Finally, the best sensitizers were chosen regarding their optoelectronic properties.
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Figure 1. Molecular structures of triphenylamine-based dyes with different conjugation orders of the
π-bride.

2. Results and Discussion

2.1. Molecular Structure of Dyes

The optimized structures reported correspond to the ground state in vacuum, which were obtained
by M06/6-31G(d) level of calculation. In this work, seven molecules were studied with D-π-A structure.
The π-bridge was conformed by two and three units of chemical groups such as thiophene, benzene,
methylbenzene, nitrobenzene, and azomethine. Table 1 shows a summary of the most representative
bond lengths and dihedral angles. Specifically, it reports the dihedral angles that are formed between i)
the donor part and unit one of the π-bridge (D-π1); ii) unit one and unit two of the π-bridge (π1-π2); iii)
unit two and unit three of the π-bridge (π2-π3); and iv) unit three of the π-bridge and the acceptor
part (π3-A). Further, the bond lengths shown are those between the mentioned units. In Figure 1,
it can be observed that the dyes reported in this research are grouped according to its similarities in
chemical structure such that the main difference is the presence or the position of the azomethine
group. For example, in group 1, TPAZ1 and TPAZ2 are similar to the AT dye; in group 2, TPAZ3,
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TPAZ4, and TPAZ5 are similar to BBT; and in group 3, TPAZ6 and TPAZ7 are similar to BTT. On the
other hand, it can be observed that the presence of thiophene in π1 results in a structure more plane
regarding D-π1 dihedral angle, as it occurs in AT, TPAZ2, BTT, TPAZ7, and TPAZ6. Further, in group 1,
the presence of azomethine in π2 (TPAZ2) results in a structure more plane in π1-π2 than the AT dye.
In group 2, the dihedral angle in D-π1 does not vary with the presence of the azomethine group, but
in TPAZ3, the dihedral angle in π1-π2 varied 15◦ approximately. The rest of the dihedral angles did
not present significant differences. In group 3, dihedral angles did not present significant differences
between BTT, TPAZ6, and TPAZ7, but using azomethine decreases this angle. It is important to see
that the difference between TPAZ6 and TPAZ7 is the position of the N atom in the azomethine, which
resulted in a more planar geometry for TPAZ7, mainly in the π2-π3 angle. In general, it is expected that
the dyes structural planarity is related to the improvements of charge transfer from donor moiety to
the anchoring group [46]. Then, this property suggests that TPAZ2 and TPAZ7 are the best sensitizers.

Table 1. Resume of bond lengths (Å) and dihedral angles (degrees) of the calculated dyes at M06/6-31G(d)
level of theory.

Dyes Donor Part (D) π-Bridging Acceptor Part (A)

D-π1 π1-π2 π2-π3 π3-A

AT
Dihedral 22.5 − − −0.9
Distance 1.45 − − 1.42

TPAZ1
Dihedral −26.8 −1.4 − −0.2
Distance 1.39 1.45 − 1.42

TPAZ2
Dihedral −19.0 0.5 − 0.1
Distance 1.45 1.42 − 1.36

BBT
Dihedral −33.1 23.2 − −0.8
Distance 1.47 1.46 − 1.42

TPAZ3
Dihedral −33.8 −32.1 −1.2 −0.1
Distance 1.47 1.40 1.45 1.42

TPAZ4
Dihedral −33.6 −34.9 −1.0 0.1
Distance 1.47 1.40 1.45 1.42

TPAZ5
Dihedral −33.3 −49.1 4.9 0.4
Distance 1.47 1.39 1.45 1.42

BTT
Dihedral −23.5 7.7 − −0.3
Distance 1.45 1.45 − 1.42

TPAZ6
Dihedral −22.7 −0.7 −30.3 −0.3
Distance 1.46 1.43 1.37 1.42

TPAZ7
Dihedral −19.5 1.9 0.6 0.1
Distance 1.45 1.36 1.43 1.42

2.2. Frontier Molecular Orbitals

The energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) were calculated with the M06/6-31G(d) level of calculation. The HOMO
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and LUMO energy levels are shown in Figure 2. For an efficient electron injection, the LUMO energy
level must be above the band conduction of nanocrystalline semiconductor oxide (commonly used
TiO2) [47,48], and for an efficient regeneration of the dye, the HOMO energy level must be below the
redox potential of the electrolyte (commonly used I−/I−3 redox couple) [49]. Furthermore, a smaller
HOMO-LUMO gap is desired to sure an electron excitation from HOMO to LUMO with less energy.
Figure 2 shows that the LUMO level of all dyes studied is above the conduction band of TiO2, which
is located at −4.0 eV [50] and that the HOMO level of all dyes is below the redox potential of the
electrolytes I−/I−3 redox couple. Hence, the electron injection from the dye to the conduction band of
TiO2 is thermodynamically favorable.

Figure 2. Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energy levels of the triphenylamine-based dyes at M06/6-31G(d) level of theory.

Also, it has been observed that the inclusion of the azomethine group induces more negative
LUMO levels, namely, closer to the conduction band of TiO2 and, hence, with a more favorable electron
injection. For example, in group 1, TPAZ1 (−2.786 eV) and TPAZ2 (−2.692 eV) have LUMO levels more
negative than AT (−2.381 eV). Further, TPAZ1 has the LUMO level more negative than TPAZ2 and less
gap (2.610 eV for TPAZ1 and 2.872 eV for TPAZ2). In group 2, TPAZ3 (−2.856 eV), TPAZ4 (−2.855 eV),
and TPAZ5 (−3.005 eV) have LUMO levels more negative than BBT (−2.490 eV). Further, the dye with
the methylbenzene group in π1 (TPAZ4) has the lowest gap ((2.430 eV) < TPAZ3 (2.459 eV) < TPAZ5
(2.470 eV) < BBT (2.825 eV)). In group 3, TPAZ6 (−2.585 eV) and TPAZ7 (−2.837 eV) have LUMO levels
more negative than BTT (−2.560 eV). Further, TPAZ7 has the lowest gap ((2.471 eV) < TPAZ6 (2.882 eV)
< BTT (2.904 eV)). In general, the LUMO levels closer to the conduction band of TiO2 are the sensitizer
with benzene, methylbenzene, and nitrobenzene in π1, besides TPAZ7. These values are very similar:
−3.005 eV to TPAZ5, −2.856 eV to TPAZ3, −2.855 eV to TPAZ4, and −2.837 eV to TPAZ7. Further,
the HOMO-LUMO gap increases as follows: TPAZ4 (2.430 eV) < TPAZ3 (2.459 eV) < TPAZ5 (2.470 eV)
< TPAZ7 (2.471 eV). The best dyes with regard to LUMO level and gap are TPAZ4, TPAZ3, TPAZ5,
and TPAZ7. While that with regard to HOMO level are TPAZ4 (−5.284 eV), TPAZ7 (−5.308 eV) and
TPAZ3 (−5.315 eV) because they are closer to redox potential of the electrolytes I−/I−3 redox couple,
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which favors a better electron regeneration of the dye. Finally, it can be observed that the LUMO+1
and HOMO-1 levels have behaviors like that above. On the other hand, it is important to know
that the mechanism of charge separation depends notably on the spatial distribution of the HOMO
and LUMO density because it is significantly related to the electron injection. As shown in Figure 3,
in all dyes, the HOMO density is mainly found on the triphenylamine part and the π-bridge and
the LUMO density is mainly distributed on the π-bridge and cyanoacrylic acid part; the distribution
meets the requirements according to the charge transfer mechanism. In addition, with the increase of
π-conjugation of the linker by the inclusion of the azomethine group, a better load separation occurs as
well as an adjustment in energy level values of HOMO and LUMO, causing a decrease in gap [51–53].
This occurred in groups 1, 2, and 3. Moreover, the best charge separation can be observed in TPAZ5,
TPAZ4, and TPAZ3.

Figure 3. Density of HOMO and LUMO frontier molecular orbitals of the triphenylamine-based dyes
at M06/6-31G(d) level of theory.
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2.3. Ultraviolet-Visible Absorption Spectra

Ultraviolet-Visible absorption spectra were calculated with the M06-2X/6-31G(d) level of
calculation, using tetrahydrofuran (THF) as solvent. The calculation was carried out with
nonequilibrium protocol, taking into account 20 excited states. Figure 4 shows the theoretical
UV-Vis absorption spectra of the dyes. M06-2X/6-31G(d) level of calculation was validated by
experimental UV-Vis spectra data, taking experimental values of maximum absorption wavelength
(λmax) and comparing them with theoretical results, obtaining reasonable similarities (see Figure S1).
Experimental λmax taken from the bibliography were 415 nm [40], 417 nm [41], and 473 nm [44], while
the theoretical λmax obtained results of 446 nm, 486 nm, and 474 nm for AT, BBT, and BTT, respectively.
All experimental and theoretical spectra were obtained in THF solvent. In Figure 4, it can be observed
that the inclusion of the azomethine group in the π-bridge increases the conjugation of π bonds,
which promotes a bathochromic displacement of λmax [52,54–58], except in TPAZ6. Regarding the
oscillator strength (f) reported in Table 2, a significant variation was not observed with the inclusion
of azomethine. On the other hand, dyes with benzene-derived groups in π1 showed a bathochromic
displacement of λmax but also showed a hypochromic effect. For example, in group 2, TPAZ1 with
azomethine in π1 presented λmax of 513 nm and f value of 0.713 and TPAZ2 with thiophene in π1
showed λmax of 483 nm and f value of 1.027. Meanwhile, TPAZ3 with benzene in π1 presented λmax

of 564 nm and f value of 0.340, TPAZ4 with methylbenzene in π1 presented λmax of 563 nm and f
value of 0.323, and TPAZ5 in π1 presented λmax of 576 nm and f value of 0.206 (see Table 2). However,
TPAZ3 and TPAZ4 showed higher f values from the secondary band of 0.878 and 0.719, respectively.
All transitions of λmax were from HOMO to LUMO (H-L). Group 2 had the higher H-L transitions of
92% in BBT, of 95% in TPAZ3, of 94% in TPAZ4, and of 96% in TPAZ5. According to λmax, the best
dyes could be TPAZ5, TPAZ3, and TPAZ4. Additionally, other strong absorption bands were observed
in the ultraviolet range with HOMO to LUMO+1 and HOMO-1 to LUMO transitions, among others
(see Table 2).

Figure 4. UV-Vis absorption spectra of triphenylamine-based dyes obtained with time-dependent
Density Functional Theory (TD-DFT) and M06-2X/6-31G(d) level of theory.
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Table 2. Absorption wavelengths, vertical excitation energy (E), oscillator strengths (f), and the orbitals
involved in the transitions of triphenylamine-based dyes at M06-2X/6-31G(d) level of theory.

Molecule λmax (nm) E (eV) f Transitions H = HOMO,
L = LUMO (%)

AT

446 2.78 0.928 H→ L (90%)
315 3.94 0.260 H-1→ L (84%)
282 4.40 0.169 H→ L+1 (72%)
265 4.67 0.198 H→ L+3 (89%)

TPAZ1

513 2.42 0.713 H→ L (90%)
342 3.63 0.624 H-1→ L (66%)
306 4.05 0.192 H→ L+1 (66%)
268 4.63 0.234 H→ L+4 (55%) H→ L+5 (35%)

TPAZ2

483 2.57 1.027 H→ L (89%)
338 3.67 0.492 H-1→ L (82%)
297 4.17 0.138 H→ L+1 (54%) H-9→ L (25%)
263 4.71 0.140 H→ L+4 (67%)

BBT

486 2.55 0.520 H→ L (92%)
361 3.43 0.869 H-1→ L (71%)
315 3.94 0.333 H→ L+1 (71%)
233 5.32 0.208 H-1→ L+1 (72%)

TPAZ3

564 2.20 0.340 H→L (95%)
395 3.14 0.878 H-1→ L (65%)
331 3.75 0.228 H→ L+1 (69%)
322 3.85 0.423 H-8→ L (42%) H-6→ L (23%)
269 4.61 0.237 H→ L+7 (88%)

TPAZ4

563 2.20 0.323 H→ L (94%)
403 3.08 0.719 H-1→ L (67%)
329 3.77 0.288 H→ L+1 (68%)
325 3.81 0.518 H-8→ L (42%) H-7→ L (27%)
269 4.61 0.205 H→ L+7 (72%)

TPAZ5

576 2.15 0.206 H→ L (96%)
388 3.20 0.536 H→ L+1 (56%)
372 3.33 0.313 H→ L+1 (32%) H-1→ L (21%)
331 3.75 0.392 H→ L+2 (49%) H→ L+3 (27%)
326 3.80 0.411 H-6→ L (42%) H-7→ L (32%)
267 4.64 0.233 H→ L+9 (92%)

BTT

474 2.62 1.148 H→ L (80%)
360 3.44 0.303 H-1→ L (77%)
316 3.92 0.311 H→ L+1 (77%)
269 4.61 0.212 H→ L+4 (88%)

TPAZ6

469 2.64 1.225 H→ L (74%)
366 3.39 0.545 H-1→ L (68%)
338 3.67 0.261 H→ L+1 (74%)
268 4.63 0.213 H→ L+4 (83%)

TPAZ7

522 2.38 1.036 H→ L (84%)
390 3.18 0.501 H-1→ L (76%)
337 3.68 0.230 H→ L+1 (74%)
269 4.61 0.185 H→ L+5 (72%)

The emission spectra were estimated through vertical excitation energy without considering
external iteration calculations (these conditions were chosen taking into account the computational
cost). Stokes shift can be consulted in the Supplementary Material (see Figure S1); the results indicate
that the studied molecules constitute potential applications in organic light-emitting diodes (OLEDs),
except TPAZ1 linking the azomethine group with the donor moiety.
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2.4. Free Energy of Electron Injection

One of the important factors to predict the short-circuit current density (Jsc) is the electron injection
efficiency (Øinj), which is influenced by the free energy of electron injection (∆Ginj), that is, Øinj α

(−∆Ginj) [7,59,60]; therefore, Øinj is equal to the absolute values of ∆Ginj. Thereby, the absolute values
of ∆Ginj (Øinj) for all dyes are much greater than 0.2 eV, as is shown in Table 3, and according to the
literature [60], we can predict that these dyes have enough driving force for the fast injection of excited
electrons from dyes to TiO2. The ∆Ginj oscillate between −1.23 and −0.68 eV, which is large enough to
guarantee an efficient electron injection (AT, BBT, and BTT have been reported with good conversion
efficiency [40,41,44]). Besides, if this ∆Ginj is too large, it may introduce energy redundancy and result
in a smaller open-circuit voltage (Voc) and large thermalization losses [61,62]. Furthermore, ∆Ginj

increases in the order: AT (−1.28) < BTT (−1.23) < TPAZ6 (−1.17) < BBT (−1.16) < TPAZ7 (−1.07) <

TPAZ1 (−1.02) < TPAZ2 (−1.01) < TPAZ4 (−0.92) < TPAZ3 (−0.89) < TPAZ5 (−0.68). The results reflect
that all the dyes have good electron injection efficiencies with AT, BTT, TPAZ6, BBT, and TPAZ7 having
better electron injection efficiencies. Despite TPAZ4, TPAZ3, and TPAZ5 presenting the lowest electron
injection efficiencies, it should be considered that this study considers as a parameter the oscillator
strength of λmax; however, these dyes have other absorption bands with a high oscillator strength.

Table 3. Ground-state oxidation potential energy (Eoxdye), absorption energy associated with λmax

(∆E), oxidation potential energy of the excited state (Eoxdye*), driving force of electron injection (∆Ginj),
and light harvesting efficiency (LHE).

Molecule Eoxdye (eV) ∆E(eV) Eoxdye* (eV) ∆Ginj (eV) LHE

AT 5.50 2.78 2.72 −1.28 0.88
TPAZ1 5.40 2.42 2.98 −1.02 0.81
TPAZ2 5.56 2.57 2.99 −1.01 0.91

BBT 5.39 2.55 2.84 −1.16 0.70
TPAZ3 5.31 2.20 3.11 −0.89 0.54
TPAZ4 5.28 2.20 3.08 −0.92 0.53
TPAZ5 5.47 2.15 3.32 −0.68 0.38

BTT 5.39 2.62 2.77 −1.23 0.93
TPAZ6 5.47 2.64 2.83 −1.17 0.94
TPAZ7 5.31 2.38 2.93 −1.07 0.908

On the other hand, the f parameter is related to light harvesting efficiency (LHE) [63–65], and higher
values indicating that short-circuit photocurrent (Jsc) can be increased [66]. However, according to
LHE, the best dyes could be TPAZ6 with 0.94, BTT with 0.93, TPAZ7 with 0.91, TPAZ2 with 0.906,
and AT with 0.88. Note that the best electron conjugation occurs when the thiophene group is next to
the donators zone; see Table 3. It should be noted that this parameter only contemplates a wavelength
(λmax) and does not represent all others that also contribute to the absorption of the sensitizer, and so,
they should be considered in light harvesting.

2.5. Chemical Reactivity Parameters

Chemical reactivity parameters were calculated through DFT conceptual using M06/6-31G(d)
level of calculation to obtain neutral and ionic energies. Chemical hardness (η), electrophilicity index
(ω), electrodonating power (ω−), and electroaccepting power (ω+) were obtained and analyzed.
The chemical hardness has been related to the ease with which electrons are transferred through the
molecule [67,68]. This parameter, furthermore, has been inversely associated with the conversion
efficiency of the DSSC, which is highly supported on correlation calculations between theoretical results
of the chemical hardness and experimental data of the efficiency [69]. Likewise, the electrodonating
power and electroaccepting power are related to the capacity of the molecule to donate and accept
electrons, respectively [70], and the electrophilicity index is related to the stabilizing energy that a
system experiences when it is saturated with electrons [71]. Mainly, lower values of chemical hardness
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are expected to consider the highest efficiency [72]. Furthermore, higher values of electrophilicity and
electroaccepting power are expected to consider the highest efficiency in dyes with the modification in
the π-bridge (see Figure 5).

Figure 5. (a) Chemical hardness, (b) electrophilicity index, (c) electrodonating power, and (d)
electroaccepting power of the triphenylamine based dyes at M06/6-31G(d).

Table 4 shows the calculated chemical reactivity parameters. It can be observed that the inclusion of
the azomethine group in the π-bridge decreases in the chemical hardness in each group of dyes. Further,
it increases in electrophilicity index, electrodonating power, and electroaccepting power. The lower
values of chemical hardness resulted in the next order: TPAZ7 (4.46 eV) < TPAZ4 (4.60 eV) < TPAZ3
(4.63 eV) < TPAZ5 (4.68 eV), which have the azomethine group between the π-bridge units (π1-π3).
Other dyes had the next values of chemical hardness: TPAZ1 (4.81 eV) < TPAZ6 (4.82 eV) < TPAZ2
(4.98 eV). The highest values in electrophilicity index, electrodonating power, and electroaccepting
power were present in decreasing order as TPAZ5 > TPAZ7 > TPAZ4 > TPAZ3 > TPAZ1 > TPAZ2 >

BTT > BBT > AT. The lowest chemical hardness and the highest electrophilicity index, electrodonating
power, and electroaccepting power were obtained by the dyes with the inclusion of azomethine.

Table 4. Chemical reactivity parameters of triphenylamine based dyes (in eV) obtained by DFT
conceptual at M06/6-31G(d) level of theory.

Molecule η ω ω− ω+

AT 5.35 1.39 5.05 1.19
TPAZ1 4.81 1.68 5.67 1.65
TPAZ2 4.98 1.67 5.68 1.61

BBT 5.09 1.46 5.18 1.31
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Table 4. Cont.

Molecule η ω ω− ω+

TPAZ3 4.65 1.73 5.75 1.74
TPAZ4 4.60 1.73 5.74 1.75
TPAZ5 4.68 1.87 6.12 1.94

BTT 4.89 1.55 5.35 1.46
TPAZ6 4.82 1.65 5.59 1.60
TPAZ7 4.46 1.80 5.87 1.87

According to the analyzed properties, the best molecules to be used as sensitizer are TPAZ7,
TPAZ4, TPAZ5, and TPAZ3, with similar optoelectronic properties among them. Further, this group of
dyes presented optoelectronic properties far better than AT, BBT, and BTT, which have been reported
with high efficiency.

3. Computational Details

A theoretical study was carried out on the optoelectronic properties of the proposed molecular
systems. Ground state molecular structure was obtained using Density Functional Theory (DFT) [73,74]
with the M06 hybrid meta-GGA density functional [75] combined with the 6-31G(d) [76,77] basis
set, proposed by Pople. Frequencies were reviewed to guarantee the non-presence of the imaginary
frequencies, namely, to guarantee the molecular structure of the global minimum energy. Likewise,
energy levels and electron density of the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) and chemical reactivity parameters were obtained. Chemical
reactivity parameters were obtained with DFT conceptual by ionic and neutral energy calculations,
such as chemical hardness (η) [78], electrodonating power (ω−) and electroaccepting (ω+) power [70],
and electrophilicity index (ω) [71]. Ultraviolet-visible (UV-vis) absorption spectra were calculated using
time-dependent DFT (TD-DFT) [79,80] with M06-2X hybrid meta-GGA density functional [75] combined
with 6-31G(d) [76,77] basis set to obtain maximum absorption wavelength (λmax). UV-Vis spectra
were calculated by nonequilibrium protocol [81,82]; tetrahydrofuran (THF) was considered as solvent;
and its effect was calculated through integral equational formalism polarizable continuum model
(IEF-PCM) [83], an implicit method. The equations were resolved for 20 excited states. Absorption
spectra data was processed using the Swizard program [84] and the Gaussian model to read oscillator
strength (f) and orbitals involved in the electron transition. Also, the free energy of electron injection
(∆Ginj) was obtained for all molecules, this being the difference between oxidation potential energy of
the excited state (Eoxdye*) and the reduction potential energy of TiO2 conduction band (ECB = −4.0 eV).
Then, it is expressed as ∆Ginj = Eoxdye*

− ECB and, successively, as Eoxdye* = Eoxdye
− ∆E, where Eoxdye

is the ground-state oxidation potential (−HOMO) of the dye and ∆E is the absorption energy in eV
associated with λmax (vertical excitation energy of λmax); for more details, consult References [7,59,60].
The light harvesting efficiency (LHE) was obtained by LHE(λ) = 1− 10− f , where f is the oscillator
strength associated to λmax [26,85,86]. All calculations were carried out using the Gaussian 09 Revision
D.01 [87].

4. Conclusions

We have presented the study of 10 dyes, of which three have already been reported experimentally
and theoretically and of which seven are new structures inspired by the former. The effect of the
π-bridge was evaluated by combining azomethine, thiophene, and benzene derivatives using two and
three units. In all cases, the inclusion of azomethine improved the electronic properties such as UV-Vis
absorption, charge transfer from the donator part to acceptor part and the electron injection according
to HOMO and LUMO levels, and chemical reactivity. Therefore, considering the obtained results,
the dyes with the best properties are TPAZ7, TPAZ4, TPAZ3, and TPAZ5. The chemical hardness
received particular attention in this prediction regarding previous studies reported [5,88–90]. It can
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be recommended to synthesize and experimentally research dyes with azomethine on the π-bridge
in DSSC.

Supplementary Materials: The following are available online, Figure S1: Comparison of UV–Vis absorption
spectra of triphenylamine-based dyes. Experimental λmax was taken from the bibliography and theoretical results
obtained with TD-DFT and M06-2X/6-31G(d) level of theory, Table S1: Stokes shift of triphenylamine based dyes
at M06-2X/6-31G(d) level of theory.
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