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Abstract: Micrometer-sized hyperbranched poly(amidoamine) (hPAMAM) particles are prepared
with a simple A2B3 type Aza–Michael addition reaction between aminoethylpiperazine (AEP) and
methylenebisacrylamide (MBA) in an inverse suspension polymerization condition. The synthesized
particles exhibited surprisingly high Cu2+ sorption capacity (0.223g/g) for a solid-type absorbent. In
addition to the high sorption ability of the particle, its simple synthetic process and convenience, due
to its micrometer-sized spherical shape and recyclability, make it a practical and attractive absorbent
for heavy metal ion removal from aqueous solutions.

Keywords: heavy metal ion removal; poly(amidoamine); hyperbranched polymer; inverse suspension
polymerization.

1. Introduction

The heavy metal ion pollution of water has been a long-pending problem since the industrial
revolution. Although acute heavy metal ion poisoning accidents have disappeared, it is still an ongoing
trouble these days. For example, arsenic has been confirmed as a typical toxic metal ion causing
abdominal pain and cancer in the past [1], and a high level of arsenic has been found at Ganges,
Bangladesh, in 1998 [2], and also in China in 2013 [3]. Another notorious toxic heavy metal ion is
mercury. The usage and the disposal of mercury have been curtailed after the disaster in Minamata in
1959, but a high concentration of mercury still exists in several oceans [4] and mercury-accumulated
fishes are often found in the oceans [5]. In recent decades, copper has becomes one of the popular
technology metals in the industrial field. It is widely used from electrical wires to integrated circuits
and thin-film solar cells [6], but copper ions show toxicity to humans, living organisms, and the
environment [7]. From this point of view, the removal of the heavy metal ions that are poisoning the
aqueous environment is an issue which needs a continuous research effort, in addition to the restriction
of the use of toxic heavy metals.

To address the removal of heavy metal ions from water, numerous methods have been suggested,
such as precipitation [8], reverse osmosis [9], ion exchange [10–12], and adsorption [13]. One of
the interesting methods is using poly(amidoamine) (PAMAM) dendrimer as an adsorbent [14–16].
Abundant amine functional groups originated from its dendritic nature facilitate heavy metal ion
adsorption, resulting in a high adsorption performance. However, PAMAM dendrimer has significant
drawbacks. The synthesis of dendrimers is a complicated and time-consuming process to obtain
the necessary high molecular weight, and it cannot be separated easily from water, as it needs
ultrafiltration because of their nanometer-size hydrodynamic diameters. To overcome these drawbacks
several methods, including impregnating/grafting the PAMAM dendrimer onto supports, have
been proposed [17–21]. Recently our group suggested a novel method that can overcome the
drawbacks of PAMAM dendrimer without supports, utilizing the synthesis of micro-sized gel particles
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of hyperbranched PAMAM (hPAMAM) [22]. By the slow feeding of one monomer (methylene
bisacrylamide, MBA) into the other (ethylenediamine, EDA), highly-branched poly(amidoamine)
particles have successfully been obtained in one step. It can be easily separated from water by
a micro-size filter and can be produced on a large scale. Interestingly, the synthesized hPAMAM
particles show a high sorption capacity of Cu2+, at 0.17 g/g.

In this study, we used an A2B3 type monomer system instead of the previously reported
A2B4 type monomer system [22]. By replacing ethylenediamine (EDA) (a B4 type monomer) with
1-(2-aminoethyl)piperazine (AEP) (a B3 type monomer), we intended to reduce the crosslinking density
while maintaining structural robustness through the cyclic structure together with the tertiary-amine
group in the piperazine moiety, which is expected to improve the metal ion binding behavior of
hPAMAM hydrogel particles.

2. Results and Discussion

Aza–Michael addition polymerization between MBA (N,N′-methylenebis acrylamide) and AEP
was successfully carried out by following the previously reported method [22]. Because AEP is soluble
in water but MBA has a low solubility in water, simple mixing of AEP and MBA in water provides
a slow feeding system of MBA into the aqueous solution of AEP. Particle shape can be achieved via
inverse suspension polymerization, consisting of water as an aqueous phase and toluene as an organic
phase together with span 60 as a water-in-oil (W/O) surfactant. After the polymerization reaches
a critical gel point, the aqueous polymer droplets become insoluble gel particles. The polymerization
process is depicted in Scheme 1. Synthesized polymers are designated as AEPx/MBAy/span60z, where
x and y stand for the monomer feed ratio x:y=[AEP]0:[MBA]0, and z is the weight concentration (%)
of span 60 to monomers, respectively. After preparing AEP/MBA/span60 hPAMAM particles, the
synthesized hydrogel particles were characterized.
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Scheme 1. Synthesis of hyperbranched poly(amidoamine) particles from 1-(2-aminoethyl)piperazine
(AEP) and N,N′-methylenebisacrylamide.

In Figure 1, optical microscopy (OM) and scanning electron microscopy (SEM) images of the
hPAMAM hydrogel particles obtained with different monomer feed ratios are presented. Since the
stoichiometric value of [AEP]:[MBA] is 1:1.5, highly-departed values (under 0.8:1.5 and over 1.4:1.5)
cannot induce a gel formation. In all monomer feed ratios employed, the polymer particles were
obtained with a spherical shape and size of 50–300 micrometers.
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AEPx/MBA1.5/span601; (a’) x = 0.8, (b’) x = 0.9, (c’) x = 1.0, (d’) x = 1.1, (e’) x = 1.2, (f’) x = 1.3, (g’) x = 1.4. 
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no C=C double bond peak, while the polymer still showed the 3060 cm−1 signal in ATR-IR (Figure S5). 
Representative thermal gravimetric analysis data are presented in Figure 2b. All polymers showed 
good thermal stability for nitrogen-containing aliphatic polymers. The temperature of 5% weight loss 
(Td,5%) was 266 °C on average. This high thermal stability of the hPAMAM particles implies that the 
polymer network is highly stable without supports such as silica. 
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Figure 1. Optical microscopy (OM) images of hyperbranched poly(amidoamine) particles obtained with
the following monomer feed ratio; AEPx/MBA1.5/span601. (a) x = 0.8, (b) x = 0.9, (c) x = 1.0, (d) x = 1.1,
(e) x = 1.2, (f) x = 1.3, (g) x = 1.4. Scanning electron microscopy (SEM) images of AEPx/MBA1.5/span601;
(a’) x = 0.8, (b’) x = 0.9, (c’) x = 1.0, (d’) x = 1.1, (e’) x = 1.2, (f’) x = 1.3, (g’) x = 1.4.

The chemical structure of the polymers was characterized by attenuated total reflection infrared
spectroscopy (ATR-IR) spectroscopy (Figure 2a). Amine N-H stretch (3300~3400 cm−1), C-H stretch
(2820 cm−1), and amide C=O (1640 cm−1) signals clearly indicate that polymerization was carried out
successfully. The signal of 3060 cm−1 is assigned as an overtone of the 1530 cm−1 signal, often found
in amide compounds, and not the C=C double bond signal from the unreacted MBA. For further
verification, proton nuclear magnetic resonance (1H-NMR) spectroscopic analysis of the polymer
obtained with an AEP MBA 1.2: 1.5 monomer feed ratio was carried out, and the spectrum showed no
C=C double bond peak, while the polymer still showed the 3060 cm−1 signal in ATR-IR (Figure S5).
Representative thermal gravimetric analysis data are presented in Figure 2b. All polymers showed
good thermal stability for nitrogen-containing aliphatic polymers. The temperature of 5% weight loss
(Td,5%) was 266 ◦C on average. This high thermal stability of the hPAMAM particles implies that the
polymer network is highly stable without supports such as silica.

The sorption feature of the hyperbranched PAMAM polymers was studied. In general, swelling of
a cm-scale hydrogel is presented by volume or length change through swelling. However, synthesized
particles were in the range of 50–300 µm, which is quite small compared to macroscopic gels. Therefore,
we examined their swelling behavior with the weight change instead of length change. The water
swelling ratio of the particles was obtained via the beaker test method with distilled water for 24 h.
Because the water uptake was mainly affected by the crosslink density of the polymer hydrogel,
the swelling ratio of particles increased with increasing deviation from its stoichiometric value,
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[AEP]:[MBA]=1:1.5 (detailed information are presented in Figure S1). The maximum swelling ratio was
895% in AEP1.4/MBA1.5/span601, and the minimum swelling ratio was 335% in AEP1/MBA1.5/span601.
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Figure 2. Attenuated total reflection infrared spectroscopy (ATR-IR) (a), and thermal gravimetric
analysis (TGA) data (b). The ATR-IR sample was AEP1.2/MBA1.5/span601 in (a).

Subsequently, the Cu2+ absorption capacity was measured with an inductively coupled plasma
optical emission spectrometer (ICP-OES), by following the concentration change of the CuCl2 solution
(1000 ppm) after placing hPAMAM particles in the solution for a certain time. Copper absorption
capacities exhibited an expected tendency, proportional to the increase of AEP units. The highest Cu2+

sorption capacity of 0.223 g/g was observed with AEP1.4/MBA1.5/span601, suggesting that the amine
functionalities are strongly related to the Cu2+ sorption ability. Noteworthy, 0.223 g/g is quite a high
value for a solid-type absorbent and almost quadruple to that of commercial resin, Dowex M4195
(Table 1). In addition, the highest Cu2+ absorption capacity of the AEP-MBA gel is 31% higher than the
value of the EDA-MBA hPAMAM particles, which was previously reported by our group [22].

Table 1. Copper (II) ion sorption capacities of various sorbents. hPAMAM: Hyperbranched
poly(amidoamine); EDA: Ethylenediamine.

Sorbent Cu2+ Sorption Capacity (g/g) Reference

Dowex M4195 0.054 [22]
Graphene oxide/Fe3O4 0.023 [23]

PEI-PS resin 0.116 [24]
m-MCM-41/PMMA 0.042 [25]

m-KIT-6 0.102 [26]
Alginate@PEI-1.5 0.164 [27]

Polyaniline grafted chitosan beads 0.100 [28]
Magnetic chitosan beads 0.147 [29]

PAMAM dendrimer 0.329 [15]
EDA-MBA hPAMAM particles 0.170 [22]
AEP-MBA hPAMAM particles 0.223 This work

Next, we studied the time-dependent Cu2+ sorption behavior to get information about the
sorption rate. Especially, we measured the sorption rate in different particle sizes to understand
the heavy metal ion sorption mechanism of hyperbranched PAMAM hydrogel particles (Figure 3).
Because the “absorption” process occurs through the whole volume of the particle and not just on the
surfaces and “adsorption” occurs on the surfaces, the sorption rate and capacity of the particles with
different diameters should provide useful information of its sorption mechanism. The sorption rate of
AEP1.2/MBA1.5/span600.5 (Figure 3a, 100–350 nm), AEP1.2/MBA1.5/span601 (Figure 3b, 100–300 nm),
and AEP1.2/MBA1.5/span605 (Figure 3c, 20–80 nm) in early stages showed none or negligible differences,
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although they have a large difference of particle diameters. Additionally, the sorption capacities of
three particles showed similar values of about 0.205 g/g (Figure S2), indicating that the surface area is
not a crucial factor, and that absorption is the major sorption mechanism of the hPAMAM hydrogel
particles. Moreover, the existence of copper inside of the particle has been confirmed by energy
dispersive X-ray spectroscopy (EDX) analysis on a cross-section of the Cu2+-absorbed particle, which
supports the absorption mechanism (Table S2).

Another important factor for heavy metal sorbent is desorption. Some strong sorbents
showing high sorption capacities have low desorption, requiring additional desorbents such as
ethylenediaminetetraacetic acid(EDTA) [30–33]. These additional treatment processes limit the
usability and applicability of sorbents. To check the desorption ability of synthesized hPAMAM
particles, Cu2+ saturated hPAMAM hydrogel particles were treated with 0.1N HCl aqueous solution
for 3 h, and then energy dispersive X-ray spectroscopy (EDX) analysis was carried out. It was found
that the acid treated PAMAM showed zero copper contents in thye EDX elemental analysis, meaning
that complete desorption was made (Figure S4, Table S1).
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Figure 3. Size change of the hPAMAM particles with different span60 concentration. OM images of
AEP1.2/MBA1.5/span600.5 (a), AEP1.2/MBA1.5/span601 (b), AEP1.2/MBA1.5/span605 (c), graph of copper
(II) ion absorption amount at 1, 3, 10, 20 min, and 24 h in the three surfactant concentrations (d).

3. Materials and Methods

3.1. Materials

1-(2-Aminoethyl)piperazine (AEP), N,N′-Methylenebisacrylamide (MBA), Span 60®, and CuCl2
anhydrous were purchased from Sigma-Aldrich (St. Louis, MI, USA). Toluene was purchased from
Junsei (Japan). All the reactants were used without further purification. Optical microscopy (OM)
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images were obtained on a Nikon Eclipse ME600 (Nikon, Tokyo, Japan), and field emission scanning
electron microscopy (FE-SEM) images were obtained using a FEI Company Inspect F50 (USA) and
a Hitachi SU 8230 (Japan). Energy-dispersive X-ray analysis (EDX) was performed with a Hithchi SU
8230 (Hithchi, Tokyo, Japan). Metal ion concentration was measured by an inductively coupled plasma
optical emission spectrometer (Agilent ICP-OES 720, Santa Clara, CA, USA). Fourier transform infrared
spectroscopy (FT-IR) spectra were obtained from a Nicolet iS50 (Thermo Fisher Scientific, Waltham,
MA, USA), and thermogravimetric analysis (TGA) was performed on a TGA Q50 (TA Instruments,
New Castle, DE, USA) in N2 condition.

3.2. Methods

3.2.1. Synthesis of Poly(Amidoamine) Particles

Inverse suspension polymerization was applied to synthesize the polymer particles. Oil phase
was prepared in a 50 mL round bottom flask as the suspension stabilizer span 60 (1.0 wt% of the
monomers) was dissolved in cyclohexane (12 mL) and heated to 60 ◦C with vigorous agitation.
Methylenebis(acrylamide) (MBA) was placed in a 50 mL round bottom flask with water (6 mL) and
heated to 50 ◦C. AEP was added into the MBA solution. The aqueous mixture was heated at 50 ◦C
for 5–10 min until the two monomers completely dissolved. After the aqueous solution became
transparent, it was poured into the oil phase solution and then agitated in 1000 rpm at 60 ◦C for 12 h.
After polymerization, off-white polymer hydrogel particles were produced and these particles were
filtered and washed several times with distilled water, acetone and methanol.

3.2.2. Measurement of Copper Ion Absorption Capacity

Stock copper solution was prepared with the initial concentration of copper (Ci) in deionized
water. Dry polymer particles were placed in a 20 mL vial with a certain volume of the stock copper
solution (V) and kept for 24 h to reach sorption saturation at room temperature. Copper absorbed
polymer particles were removed by 0.45 µm Nylon syringe filter, and the filtrate were collected. The
concentration of copper in the filtrate (Cf) was determined by inductively coupled plasma optical
emission spectrometry (ICP-OES). Copper ion absorption capacity (A) was calculated from the following
equation, Equation (1).

Copper ion absorption capacity (A) = [(Ci − Cf)V/m] (g/g) (1)

where m (mg) is the weight of the dry sample, and V (mL) is the volume of the stock copper solution.
Ci and Cf (mg/mL) are the initial and filtrate copper ion concentrations, respectively. The sorption rate
is defined as the copper sorption amount (g/g) divided by sorption time (min).

4. Conclusions

In conclusion, micro-sized hPAMAM hydrogel particles consisting of AEP and MBA were
successfully synthesized by a simple A2B3 type Aza–Michael addition, via inverse suspension
polymerization. The synthesized particles showed a high absorption capacity of Cu2+ regardless
of its diameter, as high as 0.223 g/g, which is 31% higher than ethylenediamine-based hPAMAM
particles and 412% of the commercial sorbent Dowex M4195. High sorption capacity, easy desorption
at mild conditions, and handy micrometer-sized particle diameters make these hydrogel particles
useful materials for a practically efficient absorption system e.g., a packed column. Amine and amido
groups can bind not only copper but also other metals, e.g., cadmium. Further investigation on this
proposed polymer sorbent can be expanded, for its use as a high-performance sorbent for various
heavy metal ions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/21/3866/s1,
Figure S1. Water swelling ratio of AEPx/MBA1.5/span601, Figure S2. Cu2+ absorption for different surfactant

http://www.mdpi.com/1420-3049/24/21/3866/s1
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conditions (z = 0.5, 1, 2, 5 in AEP1.2/MBA1.5/span60z, absorption time was 24h), Figure S3. Cu2+ absorption
saturation test (used polymer: AEP1.2/MBA1.5/span601), Figure S4. Images of AEP1.2/MBA1.5/span601 in absorption
and desorption process, Figure S5. 1H-NMR and IR spectra of AEP1.2/MBA1.5 polymer, Table S1. Elemental
analysis of Copper by EDX spectroscopy, Table S2. Elemental analysis of Copper on surface and cross-section of
the particles by EDX.
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