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Abstract: The hydration of nitriles to amides in a water extract of pomelo peel ash (WEPPA) was
realized with moderate to excellent yields without using external transition metals, bases or organic
solvents. This reaction features a broad substrate scope, wide functional group tolerance, prominent
chemoselectivity, and good reusability. Notably, a magnification experiment in this bio-based solvent
at 100 mmol further demonstrated its practicability.
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1. Introduction

Nowadays, with the aggravation of the environmental crisis, there is an increasing requirement for
sustainable chemical technologies from academia and industry. Significant advances have been made
in the exploitation of greener processes from renewable feedstocks [1–3]. Volatile organic solvents
(VOCs) are recognized as one of the major contributors to the generation of bulky chemical waste.
A range of green solvents such as ionic liquids [4,5], deep eutectic solvents [6], super critical fluids [7–9],
and biosolvents [10], fluorinated solvents [11], water [12], and so on have been developed as alternative
solutions. In recent years, a water extract of agro-waste ash (AWEs) has emerged as a novel green reaction
medium [13] and has been successfully employed in transition-metal-catalyzed cross-coupling reactions
(Suzuki–Miyaura [14–19], Sonogashira [20], Ullmann [21]), Dakin reaction [22], Henry reaction [23],
peptide synthesis [24], ipso-hydroxylation [25], and biodiesel synthesis [26] (Scheme 1a–h)). AWEs,
easily prepared from various renewable agricultural waste products, can be a rich source of raw
materials and play multiple roles, including those of the water, in situ base, reductant, and so forth.

Amides are an important class of organic synthetic building blocks and have been widely used
in the construction of pharmaceutical molecules, in pesticide chemistry, and as advanced functional
materials [27–29]. Among the well-established synthetic methods for amide synthesis, nitrile hydration
reactions are considered one of the most straightforward and economic. For this purpose, some
elegant synthetic methods involving the hydration of nitriles and employing transition metal catalysts
(e.g., Ru [30–35], Rh [36,37], Pd [38,39], Os [40], Ir [41], Pt [42], Cu [43–45], Ag [46,47], Au [48,49],
Fe [50], Co [51], Ni [52,53], Mn [54,55], etc.) have been well documented. Meanwhile, some alternative
methods for the nitriles’ hydration reactions with transition-metal-free catalysts such as acids [56–58],
bases [59–65], and others [66,67] have also been developed. These protocols usually have some inherent
drawbacks. Some nitrile hydration reactions in aqueous media have been well documented, but
transition metal catalysts, external strong acids, strong bases, and/or volatile organic solvents are
usually indispensable in these transformations [30–65].

As a result, developing a biocompatible, recyclable, and practical procedure for the construction of
amides is still highly desirable. In light of Green Chemistry Principles 5 and 7 [68], and also as part of
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our long-term pursuit of environmentally benign chemistry [69–72], we present herein our systematic
studies on the preparation and characterization of several kinds of water extract of agro-waste ash
and their performance in the multiple roles of base, solvent, and promoter in the hydration of nitriles
to amides (Scheme 1i). To the best of our knowledge, this is the first example of the formation of
valuable amide derivatives through the hydrolysis of nitriles using a water extract of agro-waste ash
as the green reaction medium.
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Scheme 1. Representative reactions realized in AWEs.

2. Results and Discussion

The AWEs used in this paper were prepared according to the literature methods [13–26]: (i) drying
the agro-waste; (ii) burning the dried agro-waste to get the ash; (iii) suspension and stirring of the ash
in distilled water, followed by filtration with sintered glass crucible and collection filtrate (Figure 1).
For a comparison with the reported methods, we prepared two kinds of AWEs using the ash obtained
by high-temperature calcination and marked them as WEPPA(C) and WEWSA(C). The pH values of
AWEs were measured by the pH meter, as shown in Figure 2. Among them, WEPPA had the highest
basicity (pH = 11.21), while high-temperature calcination led to an obvious decrease in basicity (pH:
10.57 versus 6.43, 11.21 versus 7.60).
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To illustrate the origin of the basicity and analyze the kinds and concentrations of the remaining
elements, the pomelo peel ash was characterized by inductively coupled plasma atomic emission
spectroscopy (ICP-AES) (Table 1), energy-dispersive X-ray (EDX) (Figure 3), and X-ray photoelectron
spectroscopy (XPS) (Figure 4 and Table 2, respectively. The high element concentrations of K, Ca, Mg,
and Na were revealed by the ICP-AES analysis. That was why the aqueous pomelo peel ash had strong
basicity. The EDX and XPS spectrums jointly revealed an abundance of the oxides and/or carbonates of
K, Ca, Mg, and Na.
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Table 1. ICP-AES analysis of the pomelo peel ash.

Entry Element wt %

1 K 21.36
2 Na 0.12
3 Ca 7.41
4 Mg 1.92
5 Cu 0.0054
6 Fe 0.018
7 Mn 0.012
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Table 2. XPS analysis.

Element Start BE Peak BE End BE Height CPS FWHM eV Area (P)
CPS.eV Area (N) Atomic %

O 537.48 531.34 524.28 461018.18 2.4 1200937.11 6963.79 33.76

K 298.68 293.22 290.76 270622.92 2.4 704963.77 2127.97 10.32

C 290.69 284.78 277.28 342691.77 2.05 760946.07 10670.16 51.73

Ca 360.08 347.26 343.68 60779.2 2.4 158327.81 387.4 1.88

P 138.08 133.08 124.88 7161.84 2.4 18656.35 176.39 0.86

S 174.68 168.95 159.88 6485.17 2.4 16893.65 117.31 0.57

Cl 210.08 198.79 188.08 5350.36 2.4 13937.51 67.6 0.33

Si 105.68 102.24 93.28 3240.34 2.4 8440.99 117.89 0.57

The hydration of benzonitrile (1a) to benzamide (2a) was selected as the model reaction to
optimize the reaction conditions (Table 3). Among a range of AWEs screened, WEPPA produced
the best results and produced benzamide in a 41% conversion (entries 1–6). This result could be
ascribed to the strongest basicity of WEPPA. Notably, the different preparation methods of AWEs were
critical for the efficient hydration of the substrate, and the results were consistent with their relative
weakly acidity or alkalinity (entries 7–8, pH = 6.43 or 7.60). Extending the reaction time to 24 or 36 h
had only limited effects on the conversion (entries 9–10), while the conversions could be remarkably
improved by increasing the reaction temperature (entries 11–13). To our delight, the reaction efficiency
could be further boosted when performed the model reaction in the closed vessel synthesis reactor
(entries 14–16). The best isolated yield, 94%, was obtained at 150 ◦C for 0.5 h (entry 17). Reducing
the reaction time had a negative impact on the reaction activity (entry 18). A control experiment
showed that WEPPA was essential; no reaction was happened in distilled water (entry 19).

Table 3. Optimization of reaction conditions for the hydration of benzonitrile 1a in AWEs a.

Entry AWEs T (◦C) t (h) Conv. (%) b

1 WEWSA 100 12 7
2 WEHMPA 100 12 19
3 WEAA 100 12 Trace
4 WEBSA 100 12 13
5 WEPPA 100 12 41
6 WEPA 100 12 7

7 c WEPPA(C) 100 12 N.R.
8 c WEWSA(C) 100 12 N.R.
9 WEPPA 100 24 43

10 WEPPA 100 36 50
11 WEPPA 120 24 83
12 WEPPA 130 24 93
13 WEPPA 140 24 97
14 WEPPA 100 0.5 49
15 WEPPA 120 0.5 56
16 WEPPA 140 0.5 88

17 d WEPPA 150 0.5 >99 (94)
18 WEPPA 150 0.25 88

19 e —— 150 0.5 N.R.
a Reaction conditions: 1a (1.0 mmol), AWEs (2.0 mL), for entries 1–13 reacted in the oil bath, for entries 14–19 reacted
in the closed vessel synthesis reactor. b Determined by GC analysis. c The dried walnut shell and pomelo peel were
obtained by calcination at 300 ◦C for 3 h with a rising rate of 0.5 ◦C min−1. d Isolated yield of 2a in parentheses.
e Distilled water. WEWSA: water extract of walnut shell ash, WEHMPA: water extract of Hami melon peel ash,
WEAA: water extract of alfalfa ash, WEBSA: water extract of badam shell ash, WEPPA: water extract of pomelo peel
ash, WEPA: water extract of pomegranate ash. N.R. = no reaction.
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Having established the optimized reaction conditions in hand, the versatility of this protocol
was then exploited (Table 4). Generally, various functional benzonitriles with electron-donating or
-withdrawing groups reacted smoothly to generate the desired amide products 2a–y in moderate to
excellent yields (41–96%). The steric hindrance of the methyl group on the phenyl ring had little
influence on the isolated yields (2b–d). The condensed aromatic nitriles could also be converted
into the corresponding products 2m and 2n in moderate yields. Aminobenzamide derivatives,
especially o-aminobenzamides, which are important synthetic structural units, could be conveniently
prepared with 79–96% yields (2o–v). Isophthalamide (2w) and terephthalamide (2x) were obtained by
the concurrent hydrolysis of two cyano groups of phthalonitriles. The total chemoselectivity of this
catalytic system was verified by the hydrolysis of starting material 1y containing both the aromatic
and aliphatic cyano groups, only the aromatic cyano group was transformed to the amide group
with a 77% yield. In a similar fashion, trans-cinnamonitrile and ferroceneactonitrile underwent an
efficient hydrolysis reaction, producing the desired trans-cinnamamide (2z) and ferrocenecarboxamide
(2aa) with good yields (84% and 63%, respectively). This methodology could also be extended to
the heteroaromatic nitriles including five- and six- membered N-, O-, and S-containing heterocycles
(2a′–g′). To our delight, aliphatic nitriles could also be efficiently involved in this catalytic system
(2a”–d”).

The potential and practical applications of this environmentally benign protocol were firmly
demonstrated by the scaling-up experiments of 1o and 1e′ at 10 mmol; the desired hydration
products 2o and 2e′ were obtained with 79% and 61% yields, respectively. Notably, the hydration of
o-aminobenzonitrile was further amplified to 100 mmol to assemble the o-aminobenzoamide 2o in
85% yield (Scheme 2). The synthetic significance of amides was confirmed by the transformation of
aromatic amides to useful synthetic intermediates. With Lawesson reagent as the thionation reagent,
benzothioamide 3a was readily obtained with a 73% yield [73] (Equation (1)). Based on a consecutive
iodination/Kornblum oxidation/annulation tandem reaction, 2-aminobenzamide (2o) was transformed
to the heterocyclic product 2-benzoylquinazolin-4(3H)-one 3c (75%), which was an analogue of alkaloid
Luotonin F [74] (Equation (2)).Molecules 2019, 24, x FOR PEER REVIEW 7 of 16 
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Scheme 2. Gram-scale reactions of 1o and 1e′.

It is worth noting that the AWEs could be easily recycled. The good reusability performance
of WEPPA was evaluated in the hydration of 4-fluorobenzonitrile 1g under optimal conditions.
WEPPA could be reused at least four times with good yields (Figure 5). Interestingly, the target product
4-fluorobenzamide 2g was a water-insoluble white solid and WEPPA could be easily separated by
simple filtering with a sintered glass crucible without further purification by column chromatography.
Then the recovered WEPPA filtrate could be reused for the subsequent hydrolysis reaction. Actually,
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the reduction of catalytic efficiency was largely due to the gradual volumetric loss of WEPPA during
the product purification process.

Table 4. The substrate scope for the hydration of nitriles 1 in WEPPA a,b.
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In order to probe the real role of the water extract of agro-waste ash, some comparative experiments
were designed and conducted (Table 5). A series of water solutions were prepared by dissolving
commercially available inorganic carbonates or oxides of K, Na, Ca, Mg, Cu, Fe, and Mn in distilled
water. The dosage of carbonates or oxides was based on the results of the ICP-AES analysis of
the pomelo peel ash. Under standard conditions, not all of them could give similar results to WEPPA;
the water solution of CaO produced the highest yield of the target product 2a in 40% (Table 5, entry 7).
Even the water solution that combined these inorganic carbonates and oxides only produced 2a with
a 26% yield (Table 5, entry 12). Although the real role of the water extract of agro-waste ash is not clear
at present, these preliminary results demonstrated that it may not be functioning as the green reaction
medium and base.

The concrete mechanism was also not clear. Based on literature reports and the primary results
mentioned above, we thought the mixture materials showed a synergistic effect [9e], which is obviously
different from the hydrolysis reaction in a water solution of single inorganic carbonates or oxides
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(for example, K2CO3, Na2CO3, etc.) and produced the result of “a whole greater than the sum of
the parts.”
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3. Materials and Methods

3.1. General Experimental Procedures

1H-, 13C-, and 19F-NMR spectra were recorded on a Varian Inova-400 (400 MHz, 100 MHz
and 376 MHz, respectively) spectrometer (Varian, Palo Alto, CA, USA). 1H- and 13C-NMR chemical
shifts were determined relative to internal standard TMS at δ 0.0 or CDCl3 (δ(1H), 7.26 ppm; δ(13C),
77.16 ppm) or d6-DMSO (δ(1H), 2.54 ppm; δ(13C), 39.50 ppm), and 19F NMR chemical shifts were
determined relative to CFCl3 as internal standard. Chemical shifts (δ) are reported in ppm, and coupling
constants (J) are in hertz (Hz). The following abbreviations are used to explain the multiplicities:
s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet. pH values were
detected by a PHS-3C acidometer (Rex Electric Chemical, Shanghai, China). Inductively coupled
plasma atomic emission spectroscopy (ICP-AES) analysis was carried out on a Varian VISTA-PRO
spectrometer (Varian, Palo Alto, CA, USA). X-ray photoelectron spectroscopy (XPS) was detected
on a Thermo Scientific K-Alpha+X spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).
Energy-dispersive X-rays (EDX) were recorded on the SU8010 cold field emission ultra-high-resolution
scanning electron microscope (Carl Zeiss AG, Jena, Germany). The melting point was recorded
on BÜCHI (M-560) (WoLong Instrument, Shanghai, China) and uncorrected. Analytical thin-layer
chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light
(254 nm). Column chromatographic purification was performed using a 200–300 mesh silica gel.
All the chemical reagents were purchased from commercial sources and used as received unless
otherwise indicated.

3.2. General Procedure for the Preparation of AWEs (Taking WEPPA as an Example)

The pomelo peel was obtained and dried naturally. The dried pomelo peel was burned to get
its ash. Then, one gram pomelo peel ash was suspended into 10.0 mL of distilled water at room
temperature for 30 min with constant stiring. The suspension was then filtered to obtain a pale yellow
extract which named as WEPPA.
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3.3. General Procedure for the Hydrolysis of Nitriles in WEPPA (Taking 1a as an Example)
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The results are summarized in Table 4. All products are known compounds, and were characterized
by their 1H- and 13C-NMR spectra (see the Supplementary Materials).

2-Methylbenzamide (2b): Known compound. 114.1 mg, 84% yield. White solid. m.p.: 140.1–142.9 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.43 (d, J = 7.6 Hz, 1H), 7.32 (td, J = 7.6 and 1.3 Hz, 1H), 7.21 (q, J = 7.2 Hz,
2H), 6.28 (bs, 1H), 5.86 (bs, 1H), 2.49 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ 172.4, 136.4, 135.4, 131.3,
130.4, 127.1, 125.8, 20.1.

3-Methylbenzamide (2c): Known compound. 108.2 mg, 80% yield. White solid. m.p.: 90.1–91.1 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.65 (s, 1H), 7.60–7.58 (m, 1H), 7.33–7.29 (m, 2H), 6.30 (bs, 2H), 2.39
(s, 3H); 13C-NMR (CDCl3, 100 MHz) δ 170.0, 138.6, 133.5, 132.8, 128.6, 128.2, 124.4, 21.4.

4-Methylbenzamide (2d): Known compound. 120.2 mg, 89% yield. White solid. m.p.: 148.1–148.8 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.71 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 9.0 Hz, 2H), 5.93 (bs, 2H), 2.42 (s, 3H);
13C-NMR (CDCl3, 100 MHz) δ 169.5, 142.7, 130.6, 129.4, 127.5, 21.6.
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4-Ethylbenzamide (2e): Known compound. 132.6 mg, 89% yield. White solid. m.p.: 160.2–162.5 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.74 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 6.06 (bs, 2H), 2.70
(q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 169.7, 148.8, 130.9, 128.2, 127.6,
28.9, 15.4.

4-(Chloromethyl)benzamide (2f): Known compound. 107.2 mg, 63% yield. White solid. m.p.:
133.3–135.1 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.92 (bs, 1H), 7.84 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.0 Hz,
2H), 7.30 (bs, 1H), 4.56 (s, 2H); 13C-NMR (d6-DMSO, 100 MHz) δ 167.8, 145.9, 132.6, 127.3, 125.9, 62.5.

4-Fluorobenzamide (2g): Known compound. 127.0 mg, 91% yield. White solid. m.p.: 155.3–155.5 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 8.03 (bs, 1H), 8.00–7.96 (m, 2H), 7.43 (bs, 1H), 7.34–7.28 (m, 2H);
13C-NMR (d6-DMSO, 100 MHz) δ 166.8, 163.9 (d, J = 245.8 Hz), 130.7 (d, J = 11.5 Hz), 130.1 (d, J = 9.0 Hz),
115.1 (d, J = 21.6 Hz); 19F NMR (d6-DMSO, 376 MHz) δ −109.6.

4-Chlorobenzamide (2h): Known compound. 130.1 mg, 84% yield. White solid. m.p.: 177.4–178.8 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.77–7.74 (m, 2H), 7.45–7.42 (m, 2H), 5.85 (bs, 2H); 13C-NMR (CDCl3,
100 MHz) δ 168.3, 138.5, 131.8, 129.1, 128.9.

4-Bromobenzamide (2i): Known compound. 165.0 mg, 83% yield. White solid. m.p.: 188.9–191.6 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 8.08 (bs, 1H), 7.87–7.84 (m, 2H), 7.72–7.68 (m, 2H), 7.49 (bs, 1H);
13C-NMR (d6-DMSO, 100 MHz) δ 166.9, 133.4, 131.2, 129.6, 125.0.

4-Formylbenzamide (2j): Known compound. 91.0 mg, 61% yield. White solid. m.p.: 178.9–182.1 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 10.09 (bs, 1H), 8.19 (bs, 1H), 8.07 (d, J = 7.9 Hz, 2H), 7.99 (d, J = 8.0 Hz,
2H), 7.62 (bs, 1H); 13C-NMR (d6-DMSO, 100 MHz) δ 192.9, 167.0, 139.3, 137.8, 129.3, 128.1.

4-Acetylbenzamide (2k): Known compound. 110.8 mg, 68% yield. Yellow solid. m.p.: 192.5–194.1 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 8.15 (bs, 1H), 8.04–7.98 (m, 4H), 7.57 (bs, 1H), 2.62 (s, 3H); 13C-NMR
(d6-DMSO, 100 MHz) δ 197.7, 167.1, 138.6, 138.1, 128.1, 127.7, 26.9.

[1,1′-Biphenyl]-4-carboxamide (2l): Known compound. 164.1 mg, 83% yield. White solid. m.p.:
232.1–234.5 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 8.08 (bs, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.80 (bs, 1H),
7.78–7.75 (m, 3H), 7.53 (t, J = 7.3 Hz, 2H), 7.44 (t, J = 7.2 Hz, 2H); 13C-NMR (d6-DMSO, 100 MHz)
δ 167.5, 142.7, 139.2, 133.1, 129.0, 128.1, 128.0, 126.8, 126.4.

1-Naphthamide (2m): Known compound. 94.6 mg, 55% yield. White solid. m.p.: 204.8–206.2 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 8.36 (d, J = 7.3 Hz, 1H), 8.05–8.00 (m, 3H), 7.70–7.55 (m, 5H); 13C-NMR
(d6-DMSO, 100 MHz) δ 170.5, 134.6, 133.2, 129.7 × 2, 128.1, 126.6, 126.1, 125.6, 125.1, 124.9.

Anthracene-9-carboxamide (2n): Known compound. 90.7 mg, 41% yield. Yellow solid. m.p.:
186.2–188.6 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 8.68 (bs, 1H), 8.30 (bs, 1H), 8.16 (d, J = 7.9 Hz, 2H),
8.08 (d, J = 8.8 Hz, 3H), 7.64–7.57 (m, 4H); 13C-NMR (d6-DMSO, 100 MHz) δ 170.2, 133.7, 130.7, 128.3,
126.8 × 2, 126.2, 125.5, 125.4.

2-Aminobenzamide (2o): Known compound. 130.5 mg, 96% yield. Yellow solid. m.p.: 110.1–111.5 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.36 (dd, J = 7.9 and 1.3 Hz, 1H), 7.25–7.20 (m, 1H), 6.68 (d, J = 8.2 Hz, 1H),
6.66–6.62 (m, 1H), 5.90 (bs, 2H), 5.67 (bs, 2H); 13C-NMR (CDCl3, 100 MHz) δ 171.8, 149.6, 133.1, 128.1,
117.6, 116.5, 114.1.

2-Amino-6-methylbenzamide (2p): Known compound. 139.9 mg, 93% yield. White solid. m.p.:
143.7–144.8 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.63 (bs, 1H), 7.42 (bs, 1H), 6.92 (t, J = 7.7 Hz, 1H), 6.51
(d, J = 7.9 Hz, 1H), 6.39 (d, J = 7.2 Hz, 1H), 4.90 (bs, 2H), 2.21 (s, 3H); 13C-NMR (d6-DMSO, 100 MHz)
δ 170.5, 145.4, 134.2, 128.7, 123.0, 117.9, 112.7, 19.9.

2-Amino-5-methylbenzamide (2q): Known compound. 135.9 mg, 90% yield. Yellow solid. m.p.:
172.6–174.3 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.65 (bs, 1H), 7.34 (bs, 1H), 6.95 (dd, J = 8.2 and 1.5 Hz,
2H), 6.59 (d, J = 8.2 Hz, 1H), 6.31 (bs, 2H), 2.15 (s, 3H); 13C-NMR (d6-DMSO, 100 MHz) δ 171.3, 147.8,
132.7, 128.6, 122.7, 116.5, 113.7, 20.0.

2-Amino-4-methylbenzamide (2r): Known compound. 146.1 mg, 97% yield. White solid. m.p.:
148.9–149.5 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.62 (bs, 1H), 7.43 (d, J = 8.1 Hz, 1H), 6.92 (bs, 1H),
6.53 (bs, 2H), 6.47 (s, 1H), 6.29 (d, J = 8.5 Hz, 1H), 2.16 (s, 3H); 13C-NMR (d6-DMSO, 100 MHz) δ 171.2,
150.3, 141.6, 128.8, 116.4, 115.6, 111.1, 21.0.



Molecules 2019, 24, 3838 11 of 16

Amino-6-chlorobenzamide (2s): Known compound. 135.6 mg, 79% yield. White solid. m.p.:
131.6–132.3 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.81 (bs, 1H), 7.58 (bs, 1H), 7.01 (t, J = 8.0 Hz, 1H),
6.64 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 7.8 Hz, 1H), 5.21 (bs, 2H); 13C-NMR (d6-DMSO, 100 MHz) δ 167.5,
147.0, 130.0, 129.8, 121.7, 116.1, 113.6.

2-Amino-4-chlorobenzamide (2t): Known compound. 155.2 mg, 91% yield. White solid. m.p.:
179.7–180.6 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.81 (bs, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.19 (bs, 1H),
6.86 (bs, 2H), 6.77 (d, J = 2.2 Hz, 1H), 6.52 (dd, J = 8.5 and 2.2 Hz, 1H); 13C-NMR (d6-DMSO, 100 MHz)
δ 170.4, 151.5, 136.3, 130.6, 115.1, 114.0, 112.4.

2-Amino-4-(trifluoromethyl)benzamide (2u): Known compound. 175.8 mg, 86% yield. White solid.
m.p.: 150.8–151.1 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.96 (bs, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.36 (s, 1H),
7.07 (d, J = 1.1 Hz, 1H), 6.91 (bs, 2H), 6.78 (dd, J = 8.2 and 1.7 Hz, 1H); 13C-NMR (d6-DMSO, 100 MHz)
δ 170.2, 150.2, 131.8 (q, J = 31.0 Hz), 129.9, 124.0 (d, J = 271.1 Hz), 116.7, 112.5 (d, J = 4.0 Hz), 109.9
(d, J = 3.6 Hz).

3-Aminobenzamide (2v): Known compound. 125.5 mg, 92% yield. Yellow solid. m.p.: 112.1–112.7 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 7.74 (bs, 1H), 7.15 (bs, 1H), 7.10–7.07 (m, 2H), 7.02–7.00 (m, 1H),
6.72–6.70 (m, 1H), 5.21 (bs 2H); 13C-NMR (d6-DMSO, 100 MHz) δ 168.7, 148.5, 135.2, 128.5, 116.5, 114.7,
113.1.

Isophthalamide (2w): Known compound. 136.1 mg, 83% yield. Pale yellow solid. m.p.: > 300 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 8.42 (bs, 1H), 8.13 (bs, 2H), 8.03 (dd, J = 7.7 and 1.7 Hz, 2H), 7.57
(t, J = 7.7 Hz, 1H), 7.50 (bs, 2H); 13C-NMR (d6-DMSO, 100 MHz) δ 167.5, 134.4, 130.1, 128.2, 126.8.

Terephthalamide (2x): Known compound. 143.0 mg, 87% yield. Pale yellow solid. m.p.: > 300 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 8.11 (bs, 2H), 7.97 (s, 4H), 7.52 (bs, 2H); 13C-NMR (d6-DMSO, 100 MHz)
δ 167.3, 136.5, 127.3.

4-(Cyanomethyl)benzamide (2y): Known compound. 123.6 mg, 77% yield. White solid. m.p.: >

300 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 8.02 (bs, 1H), 7.94–7.92 (m, 1H), 7.92 (t, J = 1.8 Hz, 1H), 7.46
(d, J = 8.4 Hz, 2H), 7.43 (bs, 1H), 4.15 (s, 2H); 13C-NMR (d6-DMSO, 100 MHz) δ 167.3, 134.4, 133.6, 128.1,
127.9, 118.9, 22.2.

Cinnamamide (2z): Known compound. 123.0 mg, 84% yield. White solid. m.p.: 148.2–148.8 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 7.56 (d, J = 6.9 Hz, 3H), 7.42–7.36 (m, 4H), 7.15 (bs, 1H), 6.63
(d, J = 15.9 Hz 1H); 13C-NMR (d6-DMSO, 100 MHz) δ 166.7, 139.1, 134.9, 129.4, 128.9, 127.5, 122.3.

Phenyl(o-tolyl)methanone (2aa): Known compound. 144.4 mg, 63% yield. Yellow solid. m.p.:
160.9–162.5 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.35 (bs, 1H), 6.98 (bs, 1H), 4.80 (t, J = 1.8 Hz, 2H),
4.36 (t, J = 1.8 Hz, 2H), 4.20 (s, 5H); 13C-NMR (d6-DMSO, 100 MHz) δ 171.5, 76.9, 70.4, 69.8, 69.0.

Furan-2-carboxamide (2a′): Known compound. 79.0 mg, 71% yield. White solid. m.p.:
140.1–141.3 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.83 (t, J = 0.7 Hz, 1H), 7.80 (bs, 1H), 7.41 (bs,1H), 7.14
(d, J = 3.4 Hz, 1H), 6.62 (q, J = 1.7 Hz, 1H); 13C-NMR (d6-DMSO, 100 MHz) δ 159.4, 148.0, 145.0, 113.6,
111.8.

Thiophene-2-carboxamide (2b′): Known compound. 101.6 mg, 80% yield. White solid. m.p.:
178.2–179.3 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.95 (bs, 1H), 7.74 (s, 2H), 7.37 (bs, 1H), 7.13
(t, J = 3.9 Hz, 1H); 13C-NMR (d6-DMSO, 100 MHz) δ 162.8, 140.3, 130.9, 128.6, 127.8.

Thiazole-2-carboxamide (2c′): Known compound. 78.1 mg, 61% yield. White solid. m.p.:
119.0–122.1 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 8.21 (bs, 1H), 8.06 (d, J = 3.1 Hz, 1H), 8.03
(d, J = 3.1 Hz, 1H), 7.88 (bs, 1H); 13C-NMR (d6-DMSO, 100 MHz) δ 164.3, 160.9, 143.9, 125.9.

Picolinamide (2d′): Known compound. 83.3 mg, 69% yield. White solid. m.p.: 106.3–108.8 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 8.56 (d, J = 4.7 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.90 (bs, 1H), 7.83
(td, J = 7.7 and 1.0 Hz, 1H), 7.44–7.41 (m, 1H), 6.41 (bs, 1H); 13C-NMR (CDCl3, 100 MHz) δ 167.2, 149.7,
148.4, 137.4, 126.5, 122.5.

Nicotinamide (2e’): Known compound. 91.2 mg, 75% yield. White solid. m.p.: 134.4–137.5 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 9.03 (d, J = 1.4 Hz, 1H), 8.69 (dd, J = 4.7 and 1.4 Hz, 1H), 8.22–8.19
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(m, 1H), 8.18 (bs, 1H), 7.63 (bs, 1H), 7.49 (dd, J = 7.8 and 4.8 Hz, 1H); 13C-NMR (d6-DMSO, 100 MHz)
δ 166.5, 151.9, 148.7, 135.2, 129.7, 123.4.

Isonicotinamide (2f′): Known compound. 104.8 mg, 86% yield. White solid. m.p.: 151.1–153.9 ◦C.
1H-NMR (d6-DMSO, 400 MHz) δ 8.64 (dd, J = 4.3 and 1.5 Hz, 2H), 7.78 (dd, J = 4.3 and 1.6 Hz, 2H);
13C-NMR (d6-DMSO, 100 MHz) δ 167.3, 149.6, 144.6, 123.1.

1H-Indole-4-carboxamide (2g′): Known compound. 130.9 mg, 82% yield. Pale yellow solid. m.p.:
143.2–145.7 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 11.3 (bs, 1H), 7.75 (bs, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.51
(d, J = 7.3 Hz, 1H), 7.46 (t, J = 2.8 Hz, 1H), 7.25 (bs, 1H), 7.16 (t, J = 7.7 Hz, 1H), 6.96 (t, J = 2.0 Hz, 1H);
13C-NMR (d6-DMSO, 100 MHz) δ 169.8, 136.6, 126.4, 126.2, 126.1, 120.0, 118.9, 114.2, 102.0.

Phenylacetamide (2a”): Known compound. 109.4 mg, 81% yield. White solid. m.p.: 152.6–155.1 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.38–7.34 (m, 2H), 7.32–7.27 (m, 3H), 5.82 (bs, 1H), 5.41 (bs, 1H), 3.58
(s, 2H); 13C-NMR (CDCl3, 100 MHz) δ 173.7, 135.0, 129.5, 129.2, 127.6, 43.5.

1,2,3,4-Tetrahydronaphthalene-1-carboxamide (2b”): Known compound. 130.3 mg, 74% yield.
White solid. m.p.: > 300 ◦C. 1H-NMR (d6-DMSO, 400 MHz) δ 7.49 (bs, 1H), 7.15–7.09 (m, 4H),
6.99 (bs, 1H), 3.64 (t, J = 6.8 Hz, 1H), 2.75–2.72 (m, 2H), 1.97–1.91 (m, 3H), 1.69–1.60 (m, 1H); 13C-NMR
(d6-DMSO, 100 MHz) δ 176.2, 137.0, 135.3, 128.9, 128.4, 126.0, 125.4, 45.0, 28.8, 26.9, 20.6.

Benzothioamide (3a): Known compound. 99.8 mg, 73% yield. Yellow solid. m.p.: 114.5–115.7 ◦C.
1H-NMR (CDCl3, 400 MHz) δ 7.95 (bs, 1H), 7.87–7.86 (m, 1H), 7.85–7.84 (m, 1H), 7.52–7.48 (m, 1H),
7.42–7.37 (m, 2H), 7.30 (bs, 1H); 13C-NMR (CDCl3, 100 MHz) δ 202.9, 139.2, 132.1, 128.6, 127.0.

2-Benzoylquinazolin-4(3H)-one (3c): Known compound. 188.0 mg, 75% yield. White solid. m.p.:
182.5–183.9 ◦C. 1H-NMR (CDCl3, 400 MHz) δ 10.5 (bs, 1H), 8.52–8.49 (m, 2H), 8.39 (dd, J = 7.9
and 1.4 Hz, 1H), 7.93–7.91 (m, 1H), 7.86–7.82 (m, 1H), 7.69–7.61 (m, 2H), 7.56–7.52 (m, 2H); 13C-NMR
(CDCl3, 100 MHz) δ 185.7, 161.1, 147.6, 146.1, 134.9, 134.4, 134.1, 131.9, 129.5 x 2, 128.5, 127.0, 123.4.

4. Conclusions

In conclusion, we have developed an environmentally friendly and practical methodology for
the hydrolysis of nitriles to amides in WEPPA with transition metal catalysts, external bases, and organic
solvent-free conditions. A variety of substrates including aryl, heteroaryl, vinyl, and alkyl nitriles with
high functional group compatibility were tolerated to deliver the desired products with moderate to
excellent yields. This hydrolysis reaction could easily be scaled up to 10 or even 100 mmol with good
yields and WEPPA could be reused at least four times. This work opens the way for the reclamation
of agricultural waste. Further applications of AWEs in other organic reactions are ongoing in our
laboratory and will be reported on in due course.
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