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Abstract: Osteoporosis is a disease that leads to reduced bone mineral density. The increase in
patient and medical costs because of global aging is recognized as a problem. Decreased bone
mass is a common symptom of bone diseases such as Paget’s disease, rheumatoid arthritis,
and multiple myeloma. Osteoclasts, which directly affect bone mass, show a marked increase
in differentiation and activation in the aforementioned diseases. Moreover, these multinucleated cells
made from monocytes/macrophages under the influence of RANKL and M-CSF, are the only cells
capable of resorbing bones. In this study, we found that the water extracts of Boseokchal (BSC-W)
inhibited osteoclast differentiation in vitro and investigated its inhibitory mechanism. BSC-W was
obtained by extracting flour of Boseokchal using hexane and water. To osteoclast differentiation, bone
marrow-derived macrophage cells (BMMs) were cultured with the vehicle (0.1% DMSO) or BSC-W in
the presence of M-CSF and RANKL for 4 days. Cytotoxicity was measured by CCK-8. Gene expression
of cells was confirmed by real-time PCR. Protein expression of cells was observed by western blot assay.
Bone resorption activity of osteoclast evaluated by bone pit formation assay using an Osteo Assay Plate.
BSC-W inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner without exerting
a cytotoxic effect on BMMs. BSC-W decreased the transcriptional and translational expression of c-Fos
and NFATc1, which are regulators of osteoclastogenesis and reduced the mRNA expression level of
TRAP, DC-STAMP, and cathepsin K, which are osteoclast differentiation marker. Furthermore, BSC-W
reduced the resorption activity of osteoclasts. Taken together, our results indicate that BSC-W is
a useful candidate for health functional foods or therapeutic agents that can help treat bone diseases
such as osteoporosis.
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1. Introduction

Bones are dynamic tissues of various types of cells that undergo regeneration and repair processes
known as bone remodeling. Osteoclasts and osteoblasts are cells that play an important role in bone
maintenance [1], and the balance between osteoclastic and osteoblastic activity is important to maintenance

Molecules 2019, 24, 3735; doi:10.3390/molecules24203735 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-6064-5295
https://orcid.org/0000-0002-9036-3221
http://dx.doi.org/10.3390/molecules24203735
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/24/20/3735?type=check_update&version=2


Molecules 2019, 24, 3735 2 of 10

of bone homeostasis. Increased numbers or activity of osteoclasts in bone homeostasis causes bone loss in
diseases such as osteoporosis, Paget’s disease, rheumatoid arthritis, and periodontal disease [2].

Osteoporosis, which is the most common bone disease in the world, is associated with bone
mass decrease and fracture risk. Patients with osteoporosis have a low bone density and weakened
microstructure, which is likely to lead to pathological fractures. Fractures caused by osteoporosis
are recognized as a global public health problem [3]. Such fractures can cause considerable pain and
severe disability, leading to poor quality of life. The main cause of osteoporosis is related to increased
osteoclast numbers and their bone resorption activity [3].

Osteoclasts are tartrate-resistant acid phosphatase-positive multinuclear cells (TRAP+-MNCs)
formed by the fusion of several mononuclear precursors that are responsible for bone resorption.
Osteoclasts remove old or weak bones, and are involved in maintenance of blood mineral levels [4,5].
Osteoclast differentiation is regulated by two cytokines, macrophage colony stimulating factor (M-CSF)
and receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) [6]. M-CSF produced by
osteoblasts (or immune cells) induces the expression of RANK and the survival signal of osteoclasts in
osteoclast precursor cells [7]. RANKL secreted by osteoblast/activated T cells binds to the osteoclast
receptor RANK and induces the activation of mitogen-activated protein kinase (MAPK), c-Fos,
and NFATc1 [5,6,8–10]. NFATc1, the key transcription factor for osteoclast formation, regulates the
expression of osteoclast differentiation and activation factors such as TRAP, cathepsin K, and dendritic
cell-specific transmembrane protein (DC-STAMP) [11–15].

Studies of the development of fruit or grains containing functional ingredients and antioxidants
have been conducted by many researchers all over the world. Anthocyanin is known to be an antioxidant
with antidiabetic activity, as well as cholesterol lowering, anticancer, and anti-aging effects [16–19].
Recently, Boseokchal was developed as a new barley strain with a high content of anthocyanin [20,21].
In this study, we investigated the effects of Boseokchal extract on osteoclast differentiation and activation
directly related to osteoporosis.

2. Results

2.1. BSC-W Inhibited RANKL-Mediated Osteoclast Differentiation

To examine whether BSC-W affected RANKL-mediated osteoclastogenesis, BMMs were cultured
with RANKL and M-CSF in the presence of 0.1% DMSO (vehicle) or BSC-W (0, 1, 3, 10, 30 µg/mL)
for 4 days. BMMs were differentiated into TRAP+-MNCs by RANKL, but BSC-W significantly reduced
this differentiation (Figure 1A). When the number of TRAP+-MNCs with three or more nuclei was
analyzed, the formation of osteoclasts was significantly decreased at a BSC-W concentration of more
than 10 µg/mL (Figure 1B).

2.2. BSC-W Had No Cytotoxic Effect On Bmms

To determine whether inhibition of osteoclastogenesis was due to cytotoxicity by BSC-W, we conducted
cytotoxicity studies in BMMs. Briefly, BMMs were cultured in 10% α-MEM treated with 0.1% DMSO
(vehicle) or BSC-W (1, 3, 10, 30µg/mL) for 3 days in the presence of 30 ng/mL M-CSF. As shown in Figure 1C,
BSC-W did not exert cytotoxicity toward BMMs at the concentrations used in this study (Figure 1C).

2.3. Effects of BSC-W on RANKL-Induced Gene Expression

To confirm the mechanism of inhibition activity of BSC-W in osteoclast differentiation, we analyzed
the expression of c-Fos and NFATc1, transcription factors that regulates osteoclastogenesis, and the
marker genes involved in osteoclast differentiation, such as TRAP, DC-STAMP, and cathepsin K.
RANKL increased the level of mRNA expression of c-Fos and NFATc1, but BSC-W significantly
decreased their expression level (Figure 2A,B). BSC-W also significantly reduced the mRNA expression
level of TRAP, DC-STAMP, and cathepsin K (Figure 2C–E).
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Figure 1. BSC-W inhibited osteoclast differentiation. (A) BMMs were cultured with 10 ng/mL RANKL
and 30 ng/mL M-CSF for 4 days in the presence of vehicle (0.1% DMSO) or the indicated concentrations
of BSC-W. Cells were fixed in 3.7% formalin, permeabilized with 0.1% Triton X-100, and stained with
TRAP solution. (B) TRAP-positive multinucleated cells (3 or more nuclei) were counted as osteoclasts.
*** p < 0.001 (n = 3). (C) BMMs were cultured with 30 ng/mL M-CSF for 3 days in the presence of vehicle
(0.1% DMSO) or the indicated concentrations of BSC-W. The effects of BSC-W on BMMs viability were
assessed using a CCK-8 assay kit (n = 3).

Figure 2. Effects of BSC-W on RANKL-mediated mRNA expression of NFATc1. BMMs were treated with
vehicle (0.1% DMSO) or BSC-W (30 µg/mL) and 30 ng/mL M-CSF for 1 h and then 10 ng/mL RANKL at
the indicated times. Total RNA was subsequently isolated using TRIzol reagent, after which the mRNA
expression levels were evaluated by real-time PCR. (A) NFATc1, (B) c-Fos, (C) TRAP, (D) Cathepsin K,
and (E) DC-STAMP were used. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as
the internal control. *, p < 0.05; ***, p < 0.001.
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2.4. BSC-W Inhibited RANKL-Induced Protein Expression of NFATc1

We confirmed the effects of BSC-W on protein expression of c-Fos and NFATc1 using Western
blot analysis. The protein expression of c-Fos and NFATc1 induced by RANKL was significantly
decreased by BSC-W (Figure 3). These results indicated that BSC-W inhibited NFATc1 expression and
osteoclast formation.

Figure 3. BSC-W decreases RANKL-mediated protein expression of NFATc1. BMMs were pretreated
with vehicle (0.1% DMSO) or BSC-W (30 µg/mL) and 30 ng/mL M-CSF for 1 h prior to 10 ng/mL RANKL
stimulation at the indicated times. Cell lysates were resolved by SDS-PAGE, and western blotting was
performed with anti-c-Fos, anti-NFATc1, and anti-actin antibodies as indicated. The above figures of
c-Fos and NFATc1 were calibrated based on the loading amounts of β-actin.

2.5. Effects of BSC-W on RANKL-Mediated Bone Resorptive Activity of Osteoclasts

We investigated whether BSC-W affects bone resorption of osteoclasts. The osteoclasts made
a wide pit area on the bone slice, but BSC-W drastically reduced the pit area in a dose-dependent
manner (Figure 4).

Figure 4. BSC-W inhibited bone resorption by RANKL-induced osteoclasts. (A) BMMs were plated
on an Osteo Assay Plate and treated with 30 ng/mL M-CSF and 10 ng/mL RANKL in the presence of
different concentrations of BSC-W. After 4 days of culture, the cells attached to the Osteo Assay Plate
were removed and photographed under a light microscope. (B) Pit areas were quantified using the
Image J program. *** p < 0.001 (n = 3).
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3. Discussion

Osteoporosis is a disease in which the quality of the bone deteriorates and fracture rate increases.
In 2000, a total of 9 million osteoporotic fractures occurred, including 1.6 million pelvic fractures,
1.7 million forearm fractures, and 1.4 million vertebral fractures [22]. The increase in osteoporosis
patients because of population aging has become a problem for the health and economy of the
world [23,24]; therefore, investigation of osteoporosis is necessary for the prevention and treatment
of osteoporosis.

Bone quality is greatly influenced by the balance between the activity of bone-resorbing osteoclasts
and bone-forming osteoblasts. Osteoclasts, which originate from mononuclear cells/macrophages
of bone marrow, are the only cells that can absorb bone [25]. These cells are produced and matured
through various steps, such as differentiation and fusion, and the overall process is regulated by
the RANKL-RANK signaling system [5]. Specifically, RANKL-RANK signaling is important to the
formation of osteoclasts and for the treatment of pathological bone loss by these cells. After RANKL
binds to the receptor, RANK, it rapidly activates MAPKs signaling molecules, such as p38, ERK,
and JNK, and eventually promotes the activation of c-Fos-NFATc1 signaling, which is known to be
an important transcription factor in osteoclast differentiation and activation [26–28].

Barley, which seems to have been cultivated in the Mesopotamia region since 7000 BC, is one of
the major grains, along with rice, wheat, sorghum, and corn. Barley and wheat are believed to be the
first crops grown by humans. In the previous studies, β-D-glucan, a representative dietary fiber of
barley, decreased blood cholesterol levels in the body [29,30]. The value of barley as a healthy food is
gradually increasing because of its excellent nutritional materials. The Boseokchal used in this study is
an improved strain of hull-less waxy barley that contains high levels of the antioxidant anthocyanin
and has therefore attracted attention as a functional food.

Here, we investigated the effects of Boseokchal’s water extract (BSC-W) on RANKL-induced
osteoclastogenesis. BSC-W significantly reduced the differentiation of RANKL-treated macrophages
into osteoclasts with no cytotoxicity, confirming that it inhibited osteoclast formation. Transcriptional
factors of the NFAT family are known for being key molecules involved in the regulation of various
biological systems, as well as in the formation of osteoclasts [31–34]. Therefore, we analyzed
the expression levels of NFATc1 mRNA and protein by real-time PCR and western blotting,
respectively, to check the influence of BSC-W against osteoclast differentiation. BSC-W significantly
inhibited the expression levels of RANKL-induced NFATc1 mRNA and protein during osteoclast
differentiation. In addition, mRNA expression of TRAP, DC-STAMP, and cathepsin K, which are
differentiation/activation markers of osteoclasts, were significantly decreased by BSC-W. We also
confirmed that the bone resorptive activity of osteoclasts was inhibited by BSC-W using a pit assay.

In previous papers, polyphenols and flavonoids, which are the major components of plant extracts,
they are known as the inhibitive materials against osteoclast differentiation in osteoporosis. So it would
be helpful in the treatment of osteoporosis [35–40]. According to the results of analyzing the contents
of polyphenol and flavonoid component in BSC-W, the total polyphenol content was 8.73 ± 0.05 mg
gallic acid equivalents/g and the total flavonoid content was 41.27 ± 1.46 mg quercetin equivalents/g.
Therefore, it was confirmed that the inhibitive activity of BSC-W against the differentiation and
resorption of osteoclasts caused by polyphenols and flavonoids.

Taken together, these results suggested that BSC-W could prevent osteoclast differentiation
by inhibiting the expression of NFATc1 and the activities of osteoclastogenic-related factors during
osteoclast formation and differentiation. Therefore, BSC-W could be applied as a useful functional
food or therapeutic agent for bone diseases such as osteoporosis.



Molecules 2019, 24, 3735 6 of 10

4. Materials and Methods

4.1. Preparation of the Boseokchal Water Extract

Preparation of Boseokchal water extract was performed as previously described [41]. Briefly,
flour of Boseokchal was defatted three times with 1 L hexane for 24 h at room temperature. After
filtration with Whatman No. 3, the residue was extracted three times with 1 L prethanol, then passed
through a Büchner funnel lined with filter paper (Carl Roth, Karlsruhe, Germen, 111A, Ø100 mm).
The residue of the prethanol extraction was subsequently extracted twice with 1 L of water for 24 h at
room temperature, after which the liquid was concentrated on a rotary evaporator and lyophilized to
give an extract. The total flavonoid and phenolic contents of BSC-W was analyzed by the method of
previous papers [42,43].

4.2. Cell Culture and Osteoclast Differentiation

In vitro cell experiments were performed as previously published paper [44]. All cells were
cultured at 37 ◦C under 5% CO2 and medium was renewed every three days. Bone marrow cells
(BMCs) were obtained from the femurs and tibiae of five week-old male ICR mice (n = 2: Raon Bio,
Yongin, Korea). The protocol was approved by the Sunchon National University Institutional Animal
Care and Use Committee (SCNUIACUC; Permit No. SCNU IACUC 2016-06). The BMCs from mice were
cultured with 10 ng/mL macrophage colony-stimulating factor (M-CSF; Peprotech, Rocky Hill, NJ, USA)
overnight in α-MEM (Thermo Fisher Scientific Inc., Waltham, MA, USA) containing 10% fetal bovine
serum (FBS; Thermo Fisher Scientific Inc., Waltham, MA, USA) and 100 U/mL penicillin/streptomycin
(10% FBS α-MEM) on two 10 cm culture dish. Non-adherent cells were isolated and cultured with
M-CSF (30 ng/mL) in 10% FBS α-MEM on 10 cm Petri dishes for three days. Adhered cells were used
as bone marrow derived macrophages (BMMs). We used the 96 well plate and cells were plated 1 × 104

cells/well. BMMs were cultured with RANKL (10 ng/mL; R&D Systems, Minneapolis, MN, USA) and
M-CSF (30 ng/mL) in 10% FBS α-MEM for 4 days in the presence of vehicle or BSC-W with 0.1% DMSO
as solvent.

4.3. Tartrate-Resistant Acid Phosphatase (TRAP) Staining

The cells were fixed with formaldehyde (10%) for 5 min, permeabilized with Triton X-100 (0.1%)
for 10 min, and then incubated with TRAP solution (Sigma-Aldrich, St. Louis, MO, USA) at room
temperature for 10 min. Red stained cells with three or more nuclei were counted as mature osteoclasts.

4.4. Cytotoxicity Assay for Extracts of BSC-W

BMMs were incubated with M-CSF (30 ng/mL) in 10% FBS α-MEM in the presence of 0.1% DMSO
or BSC-W for 3 days. Cell viability was assessed using a cell counting kit-8 (CCK-8; Dojindo Molecular
Technologies, Kumamoto, JP) according to the manufacturer’s protocols.

4.5. Real-Time PCR

Real-time PCR was performed as previously described [26]. BMMs were cultured with RANKL
(10 ng/mL) and M-CSF (30 ng/mL) in 10% FBS α-MEM for 0, 1, 2, or 3 days in the presence of 0.1% DMSO
or BSC-W. For real-time PCR, primer sets were designed (Table 1) using the online primer3 program [45].
Total RNA was isolated using TRIzol reagent (Thermo Fisher Scientific Inc., Waltham, MA, USA)
according to the manufacturer’s protocols. cDNA was synthesized using a M-MLV cDNA synthesis kit
(Enzynomics, Daejeon, Korea) according to the manufacturer’s protocols. QPCR was conducted using
the TOPreal qPCR 2× PreMIX (BioRad, Hercules, CA, USA) in a Real-Time PCR Detection System
(BioRad, Hercules, CA, USA). The mRNA levels of the genes were analyzed by the 2−∆∆CT method [46].
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal standard.
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Table 1. Primer sequences used in this study.

Gene of Interest
Primer Sequence (5’→3’)

Sense Anti-Sense

NFATc1 GGGTCAGTGTGACCGAAGAT GGAAGTCAGAAGTGGGTGGA
c-Fos CCAGTCAAGAGCATCAGCAA AAGTAGTGCAGCCCGGAGTA

Cathepsin K GGCCAACTCAAGAAGAAAAC GTGCTTGCTTCCCTTCTGG
DC-STAMP CCAAGGAGTCGTCCATGATT GGCTGCTTTGATCGTTTCTC

TRAP GATGACTTTGCCAGTCAGCA ACATAGCCCACACCGTTCTC
GAPDH AACTTTGGCATTGTGGAAGG ACACATTGGGGGTAGGAACA

4.6. Western Blot

Western blotting was conducted as previously described [47]. Briefly, BMMs were incubated in
the same manner as real-time PCR assays, after which cells were washed with phosphate-buffered
saline (PBS) and lysed in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100,
1 mM sodium fluoride, 1 mM sodium vanadate, and 1% deoxycholate) containing protease inhibitors.
Next, the supernatant containing proteins were subjected to 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE). Separated proteins were subsequently transferred to a polyvinylidene
difluoride (PVDF) membrane (Millipore Corporation, Billerica, MA, USA), after which membranes were
blocked with 5% skim milk in TBST (10 mM Tris-HCl pH 7.5, 150 mM NaCl, and 0.1% Tween 20) for
1 h at room temperature. Blocked membranes were then incubated overnight at 4◦C with a primary
antibody, after which they were incubated with secondary antibody conjugated to horseradish peroxidase
for 2 h at room temperature. Finally, the membranes were developed with CLAROTM Mucho (bio-D,
Gwangmyeong, Korea) using the LAS-4000 luminescent image analyzer (Fuji Photo Film Co. Ltd.,
Tokyo, JP).

4.7. Bone Pit Formation Assay

BMMs were cultured with RANKL (10 ng/mL) and M-CSF (30 ng/mL) in 10% FBS α-MEM for
3 days and then treated with vehicle (0.1% DMSO) or BSC-W for additional 3 days on an Osteo Assay
Plate (24 well plate; Corning Inc., Corning, NY, USA) at a density of 6 × 104 cells/well. Cells were
removed with sodium hypochlorite (5%) for 5 min, after which the pit area was observed under a light
microscope (magnification, 50×; Leica Microsystems, Wetzlar, Germany) and measured using the
Image J software (NIH, Bethesda, MD, USA).

4.8. Statistical Analysis

All quantitative data are presented as the means ± standard deviations of three replicate experiments.
The treatment groups were compared individually with the control group. Statistical differences were
identified by Student’s t-tests and probability (p) values < 0.05 were considered significant (p-values * <0.05,
** <0.01, and *** <0.001).

5. Conclusions

The water extract of Boseokchal (BSC-W) inhibited osteoclast differentiation by blocking the
expression of NFATc1 during RANKL-induced osteoclastogenesis. It was also confirmed that
the expression levels of osteoclast differentiation/activation factors, such as TRAP, DC-STAMP,
and cathepsin K, decreased with the decreased expression of NFATc1 by BSC-W. Therefore, BSC-W could
be a useful functional food or a therapeutic agent for treatment of bone diseases such as osteoporosis.
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