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Abstract: Resistance to anti-cancer drugs is one of the main factors of treatment failure resulting
in high morbidity. Among the reasons of resistance, overexpression of efflux pumps leading to
multidrug resistance is an important issue that needs to be solved. Taiwanofungus camphoratus has
been used as a nutritional supplement to treat various cancers. However, its effects on the resistance
to chemotherapeutic agents are still unknown. In this study, we report four new chemical constituents
of T. camphoratus isolated from an ether extract: camphoratins K (1) and N (2) and benzocamphorins G
(3) and I (4). Furthermore, we evaluated zhankuic acids A–C for their P-glycoprotein (P-gp) inhibitory
effects. The results showed that zhankuic acid A was the most potent P-gp inhibitor compound
and (at 20 µM) could reverse drug resistance in human cancer cells, restoring an IC50 of 78.5 nM for
doxorubicin, of 48.5 nM for paclitaxel, and of 321.5 nM for vincristine, indicating a reversal fold of 48,
38, and 45 times, respectively. This study provides support for the use of T. camphoratus in the further
development of cancer therapy.
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1. Introduction

Treatment failure or metastasis are still the leading causes of death for cancer patients [1]. One of
the important factors causing treatment failure is drug resistance, which can be intrinsic or acquired [2,3].
Cancer stem cells [4], tumor microenvironment, and host effects are the main reasons of intrinsic
resistance, while efflux pumps, alteration of drug targets, degradation of anticancer drugs, and DNA
self-repair cause acquired resistance. In particular, overexpression of efflux pumps leads to multidrug
resistance (MDR) [2,3]. In order to increase the efficacy of anticancer drugs, strategies to reverse
multidrug resistance are extensively studied, and P-glycoprotein (P-gp) inhibitors have evolved to the
fourth generation [5–8]. However, because of their inability to of improve drug efficacy in patients
as well as their toxicity, P-gp inhibitors are not yet available in the clinic. Therefore, research is now
focusing on natural products, hoping to find safe and effective P-gp inhibitors [5–8].

Molecules 2019, 24, 3730; doi:10.3390/molecules24203730 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-1395-4834
https://orcid.org/0000-0003-3019-1138
http://www.mdpi.com/1420-3049/24/20/3730?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24203730
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 3730 2 of 11

Taiwanofungus camphoratus, previously named Ganoderma camphoratum, Antrodia cinnamomea,
or Antrodia camphorate (Polyporaceae, Aphyllophorales), whose Chinese name is Zhan-Ku or
Niu-Chang-Chih, is a kind of fungus parasitic to Cinnamomum kanehirai Hay (Lauraceae), found in
the inner part of old hollow trunks. Traditionally, it has been used as a kind of medicinal food
against intoxication from food, alcohol, and drugs and for its anti-diarrhea, anti-hypertensive,
anti-inflammatory, and hepatoprotective effects [9]. Recent studies have revealed that Niu-Chang-Chih
exerts immunomodulatory effects [10,11], anti-lung cancer effects [12–14], and tumor-suppressive effects
in metastatic patients unresponsive to or unwilling to use chemotherapy [15]. A recent published
review summarized the pharmacological effects of this mushroom [16] reporting its anticancer
activity against a large variety of cancers, including breast, cervical, ovarian, prostate, bladder,
colorectal, pancreatic, liver, and lung cancers, melanoma, leukemia, lymphoma, neuroblastoma,
and glioblastoma. Other biological activities include anti-inflammatory, anti-atopic dermatitis,
anti-cachexia, immunoregulatory, anti-obesity, anti-diabetic, anti-hyperlipidemic, anti-atherosclerotic,
anti-hypertensive, anti-platelet, anti-oxidative, anti-photodamaging, hepatoprotective, renoprotective,
neuroprotective, testis protecting, anti-asthmatic, osteogenic, osteoprotective, antiviral, antibacterial,
and wound healing properties [16]. The major chemical constituents of this fungus are
triterpenoids [17–19] and benzenoids [20,21]. Other components are steroids [22], diterpenoids [23],
terpenoids [24], lignans [22], maleic and succinic acid derivatives [25], etc. Although the extract of
T. camphoratus has been used as a nutritional supplement for treating cancers, the P-gp inhibitory
effects of its main constituents are still unknown. Therefore, in addition to reporting new chemical
constituents of T. camphoratus, this study reveals the P-gp inhibitory effects of zhankuic acids A–C.

2. Results and Discussion

2.1. Purification and Identification of Chemical Constituents

The basswood cultivated fruiting bodies of T. camphoratus (3.6 kg) were repeatedly extracted
with ether (4 × 10 L) for 3 days. The ether extract was concentrated in vacuo to afford a brown
syrup (370 g) and then partitioned between water and ether. The ether layer was chromatographed
repeatedly over silica gel, as described in Supplementary Materials. In total, 45 compounds were
obtained. Among them, two triterpenoids, camphoratins K (1) and N (2), and two benzenoids,
benzocamphorins G (3) and I (4), were isolated and characterized from T. camphoratus for the
first time. Other known isolated compounds were triterpenoids, including methyl antcinate A
(5), antcins A (6), C (12), and K (18), zhankuic acid A methyl ester (7), zhankuic acids A (8),
B (11), C (9), and D (10), camphoratins E (13) and F (14), methyl antcinate (15), antcamphins
A (19), B (16), and D (17); terpenoids, including 1-hydroxy-p-menth-3-en-2-one (20), nerolidol
(21), coenzyme Q (22), 4-acetylantroquinonol B (23); steroids, including ergosterol (24), ergosterol
peroxide (25), camphoratin I (26); lignans, including sesamin (27) and 4-hydroxysesamin (28);
and benzenoids, including antrocamphins A (30) and B (29), benzocamphorins C (37), D (44),
E (43), F (31), and H (32), methyl 3,4,5-trimethoxybenzoate (33), methyl 2,3,4,5-tetramethoxy
benzoate (34), 1-methyl-2,3,4,5-trimethoxy benzene (35), 2,3,6-trimethoxy-5-methylphenol (36),
methyl 2,5-dimethoxy-3,4-methylenedioxybenzoate (38), 4,5-dimethoxy-6-methyl-1,3-benzodioxole
(39), 4,7-dimethoxyl-5-methyl-1,3-benzodioxole (40), 2,3-(methylenedioxy)-4-methyl-5-methylphenol
(41), 2,2,5,5-tetramethoxyl-3,4,3,4-bimethylenedioxyl-6,6-dimethylbiphenyl (42), and tetracanyl ferulate
(45) (see Supplementary Materials for their references).

2.2. Structural Elucidations of Camphoratins K (1) and N (2) and Benzocamphorins G (3) and I (4)

Camphoratin K (1) was isolated as a white powder, and its sodiated molecular formula,
C33H54O4Na, was established from a sodium adduct ion peak at m/z 537.3917 in high-resolution
electrospray ionization mass spectrometric (HR-ESI–MS) analysis. The infrared (IR) absorption bands
at 3427, 1714, 1643, 1455, and 891 cm−1 were in agreement with the presence of a hydroxyl group,
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an ester, and a terminal double bond. In its 1H-NMR spectrum, there were proton signals for five
methyl singlets at δ 0.80 (6H, s, CH3-18, 29), 0.97 (3H, s, CH3-19), 0.99 (3H, s, CH3-30), 1.01 (3H, s,
CH3-31), 2.04 (3H, s, CH3-33), two methyl doublets at δ 1.01 (3H, d, J = 6.8 Hz, CH3-27) and 1.02 (3H, d,
J = 6.8 Hz, CH3-26), and four protons at δ 2.22 (1H, sept, J = 6.8 Hz, H-25), 3.22 (1H, dd, J = 4.4 Hz,
11.6 Hz, H-3), 3.69 (2H, m, H-21), 5.05 (1H, dd, J = 5.8, 9.4 Hz, H-15). The 13C-, DEPT- and HMQC
NMR spectra showed 33 carbon signals composed of 8 methyls at δ 15.4, 16.4, 18.3, 19.1, 21.4, 21.8, 21.9,
28.0; 9 methylenes at δ 18.2, 20.8, 26.4, 27.7, 28.2, 30.6, 31.4, 35.5, 36.0; 1 oxygenated methylene at δ
62.0; 2 oxygenated methines at δ 76.0, 78.9, and 1 terminal olefinic carbon at δ 106.4, which indicated a
triterpene skeleton. An acetyl group was assigned to link to C-15 from HMBC spectral correlations of
H-15 (δ 5.05) to C-16 (δ 36.0) and C-32 (δ 171.1). A terminal olefinic group and an isopropyl group were
built up via 2J, 3J-HMBC correlations of CH3-26 (δ 1.02) to C-24 (δ 156.1), C-25 (δ 33.7), and C-27 (δ 21.9)
and H-28 (δ 4.73 and 4.67) to C-23 (δ 31.4), C-24 (δ 156.1), and C-25 (δ 33.7). Other HMBC correlations
indicated a sulphurenic acid skeleton with a hydroxyl methylene [H-21 (δ 3.69) to C-17 (δ28.0)/C-20 (δ
43.2)] instead of an acid connected to C-20. This C-21 hydroxyl substitution is novel and rare among
all isolates from T. camphoratus (Figure 1).
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Figure 1. Structure of camphoratin K (1) (a) and its key COSY (b), HMBC (c), and NOESY (d) correlations.

Camphoratin N (2) appeared as a pale yellow solid with sodiated molecular formula C30H42O6Na
(m/z 521.2876). The presence of an 8(9)-ene-7,11-dione moiety was proposed along with those of a
carboxyl group and a hydroxyl group, according to a UV maximum at 267 nm and IR absorptions at
3495, 1736, 1713, 1674, 1458, and 901 cm−1, respectively. Comparison of its 13C-NMR data with those of
antcamphin I [18] indicated the presence of an additional oxygenated methyl group. Assignment of
the oxygenated methyl group attached to a terminal carboxylate was based on the HMBC correlation
of CH3-26 (δ 3.67) to C-26 (δ 175.0). Also, 12α-OH and 29α-CH3 were suggested via the NOE
enhancements of H-12 (δ 4.11)/CH3-18 (δ 0.67) and CH3-19 (δ 1.54)/H-4 (δ 2.43) (Figure 2). According to
a previous study, camphoratin N could include a pair of epimers (25 S/R) that have identical NMR
data [18].
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Benzocamphorin G (3), a colorless syrup, was isolated via thin-layer chromatography and has
the pseudomolecular formula of C13H12O3Na, constructed from the sodiated peak at m/z 239.0686 in
HR-ESI–MS analysis. Characteristic absorption bands in its IR spectrum revealed alkynes (2205 cm−1),
conjugated carbonyls (1667 cm−1), and alkenes (1607 cm−1). UV absorption maxima were at 268 and
296 nm. A comparison of its NMR spectra data with those of antrocamphin A [18] indicated similar
proton peaks at δ 5.44 (1H, s, terminal alkene), 5.55 (1H, s, terminal alkene), 3.82 (3H, s, OCH3), 2.22 (3H,
s, CH3-3), and 2.01 (3H, s, CH3-3′) as well as downfield shift of one aromatic proton (δ 5.99, 1H, s, H-6)
and loss of two methoxy signals. 13C- and DEPT-135 NMR spectra revealed a similar pattern to that of
antrocamphin A, except for a pair of ortho-carbonyls (δ 181.1 and 181.3), a downfield shift of C-6 (δ
107.0), and a loss of two methyl carbons. The positions of the ortho-carbonyls were assigned to be at
C-1 and C-2 via HMBC correlations of H-6 (δ 5.90)/ with C-1 (δ 183.1), with C-2 (δ 181.3), with C-4 (δ
129.4), with C-5 (δ 158.8); and of CH3-3 (δ 2.22) with C-2 (δ 181.3), with C-3 (δ 144.6), with C-4 (δ 129.4),
with C-1′ (δ 81.7), respectively. Therefore, the structure of benzocamphorin G was established and is
shown in Figure 3.
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Benzocamphorin I (4) was also isolated via thin-layer chromatography as colorless syrup.
HR-ESI–MS analysis indicated its pseudomolecular formula as C18H18O8Na (m/z 385.0898). No alkynes
and alkene characteristic peaks were detected in its IR spectrum. Three pairs of proton signals revealed
two methyls (δ 1.99, 2.05), two methylenedioxy groups (δ 5.98, 6.00), and two methoxys (δ 3.89, 3.90).
Further 13C-, DEPT, and HSQC spectra indicated a benzocamphorin D skeleton [19] with an oxygen
linkage between two phenyl groups. However, one methoxy signal was lacking, and an oxygenated
aromatic carbon was present compared to benzocamphorin D [19], showing the methoxy group was
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replaced by a hydroxyl group. Thus, the structure of benzocamphorin I was determined and is shown
in Figure 4.
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2.3. P-gp Inhibitory Effects of the Extract of T. camphoratus

A pilot study using methanol as a solvent was done to evaluate the P-gp inhibitory effects of
the extract of T. camphoratus (Figure 5). The methanol extract was further partitioned using water
and EtOAc. Therefore, the methanol extract (TAM), the EtOAc layer (TAE), and the water layer
(TAW) were tested using human stably P-gp-expressing cells (ABCB1/Flp-InTM-293) in a calcein AM
(acetoxymethyl) uptake assay [26]. The increased intracellular calcein fluorescence corresponded to the
inhibition level of P-gp efflux function. The methanol extract as well as the EtOAc layer and the water
layer exhibited P-gp inhibitory activities at concentrations of 10 and 20 µM. The methanol extract and
the EtOAc layer exhibited inhibition in a dose-dependent manner. Moreover, the methanol extract
at 20 µM (TAM 20) showed P-gp inhibition comparable to that of the first-generation P-gp inhibitor
verapamil at a concentration of 2.5 µM.
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Figure 5. The inhibitory effects of the methanol extract at 10 and 20 µM concentrations (TAM 10, TAM
20), the EtOAc layer (TAE 10, TAE 20), the water layer (TAW 10, TAW 20) and verapamil at 2.5 µM
concentration (VER 2.5) on P-glycoprotein (P-gp) in ABCB1/Flp-InTM-293 cells. * denotes p < 0.05
compared with the intracellular calcein fluorescence in the control group. The numbers, 2.5, 10, 20,
indicate the µM concentrations.

2.4. Zhankuic Acids A–C Inhibited P-gp Efflux Function

Although four new compounds were isolated, they were in little amount. In order to better
understand the main P-gp inhibitory effects of T. camphoratus, three of its major components, zhankuic
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acids (ZAs) A–C, were evaluated for their ability to inhibit P-gp using the calcein AM uptake assay.
ZAs A, B, C inhibited P-gp efflux function in a concentration-dependent manner (Figure 6). Among the
tested compounds, ZA-A demonstrated the most significant P-gp inhibitory effect.Molecules 2019, 24, x FOR PEER REVIEW 6 of 11 
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Figure 6. The concentration-dependent inhibitory effects of zhankuic acids (ZAs) A, B, C on P-gp in
ABCB1/Flp-InTM-293 cells. * denotes p < 0.05 compared with the intracellular calcein fluorescence in
control group.

2.5. The MDR Reversal Effects of ZAs A, B, C

To examine the MDR reversal effects of ZAs A, B, C, the cytotoxicity of a combination of these
triterpenoids and chemotherapeutic drugs was evaluated in HeLaS3 and MDR KBvin cells. The IC50

of doxorubicin, paclitaxel, and vincristine in HeLa cells were 104 nM, 4.65 nM, and 41.5 nM, while in
KBvin cells they were 3750 nM, 1824 nM, and 14,540 nM, indicating high multidrug resistance of the
cells. When ZAs A–C were combined with the chemotherapeutic agents, the IC50 of doxorubicin,
paclitaxel, and vincristine in MDR KBvin cells were significantly decreased (Table 1). Reversal folds
were calculated by dividing the IC50 of the individual chemotherapeutic drug by the IC50 of the
compound–drug combinations. ZA-A possessed the most significant MDR reversal effect among the
tested compounds. It (20 µM) reversed drug resistance leading to an IC50 of 78.5 nM for doxorubicin,
of 48.5 nM for paclitaxel, and of 321.5 nM for vincristine, corresponding to reversal folds of 48, 38,
and 45, respectively.
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Table 1. The cytotoxic IC50 and reversal fold of drug resistance for ZAs A, B, C in combination with
chemotherapeutic drugs in HeLaS3 and MDR KBvin cells.

HeLa KBvin

IC50 ± SD (nM) RF 1 IC50 ± SD (nM) RF 1

Doxorubicin 104.5 ± 6.36 1 3750 ± 70.7 1
+Verapamil (2.5 µM) 83.61 ± 3.12 * 1.2 705.21 ± 19.13 * 5.3

+ZA-A (10 µM) 76.000 ± 1.41 * 1.4 420 ± 56.6 * 8.9
+ZA-A (20 µM) 51.500 ± 2.12 * 2 78.5 ± 3.53 * 47.8
+ZA-B (10 µM) 103.000 ± 1.43 1 2050 ± 72.5 1.8
+ZA-B (20 µM) 66.500 ± 4.94 * 1.6 1200 ± 23.5 * 3.1
+ZA-C (10 µM) 101.500 ± 2.12 1 2100 ± 25.3 1.8
+ZA-C (20 µM) 83.000 ± 1.42 * 1.3 1800 ± 45.7 * 2.1

Paclitaxel 4.65 ± 0.21 1 1824 ± 125.87 1
+Verapamil (2.5 µM) 0.95 ± 0.03 * 4.9 75.81 ± 4.95 * 24.1

+ZA-A (10 µM) 1.650 ± 0.07 * 2.8 143.5 ± 4.94 * 12.7
+ZA-A (20 µM) 0.450 ± 0.08 * 10.3 48.5 ± 2.12 * 37.6
+ZA-B (10 µM) 1.900 ± 0.14 * 2.4 228.5 ± 2.23 * 8
+ZA-B (20 µM) 0.750 ± 0.07 * 6.2 141.5 ± 4.78 * 12.9
+ZA-C (10 µM) 4.000 ± 0.28 1.2 253.6 ± 5.16 * 7.2
+ZA-C (20 µM) 3.700 ± 0.56 1.3 221.8 ± 2.54 * 8.2

Vincristine 41.5 ± 0.74 1 14540 ± 719.13 1
+Verapamil (2.5 µM) 37.9 ± 0.64 1.1 370.81 ± 8.34 * 39.2

+ZA-A (10 µM) 6.450 ± 1.06 * 6.4 2187 ± 30.7 * 6.6
+ZA-A (20 µM) 3.450 ± 0.77 * 12 321.5 ± 3.53 * 45.2
+ZA-B (10 µM) 8.350 ± 1.17 * 5 2252 ± 11.31 * 6.5
+ZA-B (20 µM) 5.700 ± 0.98 * 7.3 1355.5 ± 30.41 * 10.7
+ZA-C (10 µM) 31.500 ± 2.47 1.3 2484 ± 55.15 * 5.9
+ZA-C (20 µM) 16.500 ± 0.71 * 2.5 971.5 ± 37.8 * 15

1 RF: Reversal fold; * p < 0.05 compared with substrate drugs transport with the tested compounds.

3. Materials and Methods

3.1. General

The spectroscopic data of the purified compounds including optical rotations ([α]25
D ), UV, and IR

spectra were recorded on a Jasco P-2000 digital polarimeter (Jasco, Tokyo, Japan), a Hitachi U-0080D
diode array spectrophotometer (Hitachi, Tokyo, Japan), and a Jasco FT/IR-4100 spectrophotometer
(Jasco, Tokyo, Japan), respectively. The mass spectra were collected on a Shimadzu LC-MS 8040
spectrometer (Shimadzu, Kyoto, Japan). The HRMS data were obtained on a JMS-T100LP spectrometer
(Jeol, Tokyo, Japan). 1H-, 13C-, and 2D NMR spectra were recorded on the Bruker AV-500 and Avance
III-400 NMR spectrometers (Bruker, Billerica, MA, USA). The deuterated solvents were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Other chemicals used in this study were provided by Merck
KGaA (Darmstadt, Germany). Column chromatography was performed on silica gels in different
mesh sizes (70–230 and 230–400 mesh, Kieselgel 60, Merck KGaA, Darmstadt, Germany). Thin-layer
chromatography (TLC) was conducted on precoated Kieselgel 60 F 254 plates (Merck KGaA, Darmstadt,
Germany). The spots on TLC were detected by UV light or spraying with 10% (v/v) H2SO4 followed by
heating at 110 ◦C for 10 min.

3.2. Plant Materials

The fresh fruiting bodies of T. camphoratus were provided by TWHERB Biomedical Co., LTD,
Hsinchu, Taiwan (APACC-OG-100-034) in September 2009. The fungus was identified by Dr. Tun-Tschu
Chang (Taiwan Forestry Research Institute, Taipei, Taiwan). A voucher specimen (TSWu 2009-001-010)
was deposited in the School of Pharmacy, National Cheng Kung University, Tainan, Taiwan.
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3.3. Extraction and Isolation

The fruiting bodies of T. camphoratus (3.6 kg) were extracted with Et2O (4 × 10 L) for 3 days.
The Et2O extract was concentrated to afford a brown syrup (370 g) and then partitioned between H2O
and Et2O. The ether layer was chromatographed on silica gel and eluted with MeOH in chloroform
(0–100% of MeOH, gradient) to obtain 10 fractions, (Fractions 1–10) monitored by TLC. Fraction 2
underwent silica gel column chromatography using n-hexane–EtOAc (10:1) to obtain compound
3 (7 mg). Fractions 3 and 4 were combined and subjected to silica gel column chromatography,
eluted successively with a step gradient of n-hexane–EtOAc (3:1 to 1:2) to yield compounds 1 (15 mg)
and 4 (7 mg). Fractions 5 and 9 were combined and chromatographed on a column of silica gel,
eluted successively with a step gradient of CHCl3–MeOH as eluent to yield compound 2.

3.3.1. Camphoratin K (1)

Colorless powder; [α]25
D +111.2 (c 0.2, MeOH); IR (KBr) νmax: 3427, 2959, 2942, 2885, 1714, 1643,

1455, 1374, 1266, 1249, 1031, 891 cm−1; UV (MeOH) λmax: 243, 253 nm; ESI–MS m/z 537 [M + Na]+;
HR-ESI-MS m/z 537.3917 ([M + Na]+) (Calcd. for C33H44O4Na: 531.3920); 1H-NMR (CDCl3, 400 MHz)
δ 5.05 (1H, dd, J = 5.8, 9.4 Hz, H-15), 4.73 (1H, s, H-28), 4.67 (1H, s, H-28), 3.67 (3H, s, OCH3), 3.69 (1H,
m, H-21), 3.22 (1H, dd, J = 4.4, 11.6 Hz, H-3), 2.22 (1H, sept, J = 6.8 Hz, H-25), 2.12 (1H, m, H-16), 2.11
(1H, m, H-23), 2.10 (1H, m, H-7), 2.04 (1H, m, H-11), 2.03 (1H, m, H-7), 2.01 (1H, m, H-20), 1.93 (1H, m,
H-12), 1.91 (2H, m, H-11, H-23), 1.73 (1H, m, H-1), 1.63 (2H, m, H-2, H-22), 1.61 (1H, m, H-12), 1.56 (1H,
m, H-6), 1.55 (1H, m, H-2), 1.50 (1H, m, H-22), 1.48 (1H, m, H-6), 1.46 (1H, m, H-17), 1.22 (1H, m, H-1),
1.02 (3H, d, J = 6.8 Hz, H-26), 1.02 (3H, s, H-31), 1.01 (1H, m, H-5), 1.01 (3H, d, J = 6.8 Hz, H-27), 0.99
(3H, s, H-30), 0.97 (3H, s, H-19), 0.80 (3H, s, H-18), 0.80 (3H, s, H-29). 13C-NMR (CDCl3, 100 MHz) δ
171.1 (C-32), 156.1 (C-24), 135.5 (C-9), 132.8 (C-8), 106.4 (C-28), 78.9 (C-3), 76.0 (C-15), 62.0 (C-21), 51.0
(C-13), 50.1 (C-5), 44.4 (C-14), 43.2 (C-20), 38.8 (C-4), 37.1 (C-10), 36.0 (C-16), 35.5 (C-1), 33.7 (C-25), 31.4
(C-23), 30.6 (C-12), 28.2 (C-6), 28.0 (C-17), 28.0 (C-31), 27.7 (C-2), 26.4 (C-11), 21.9 (C-27), 21.8 (C-26),
21.4 (C-33), 20.8 (C-7), 19.1 (C-19), 18.3 (C-31), 18.2 (C-22), 16.4 (C-18), 15.4 (C-29).

3.3.2. Camphoratin N (2)

Yellow solid; [α]25
D +194.9 (c 0.1, MeOH); IR (KBr) νmax: 3495, 2944, 2926, 2892, 1736, 1713, 1674,

1458, 1378, 1238, 1200, 1167, 1065, 901 cm−1; UV (MeOH) λmax: 267 nm; ESI–MS m/z 521 [M + Na]+;
HR-ESI-MS m/z 521.2876 ([M + Na]+) (Calcd. for C30H42O6Na: 521.2879); 1H-NMR (CDCl3, 400 MHz)
δ 4.91 (1H, s, H-28), 4.87 (1H, s, H-28), 4.11 (1H, s, H-12), 3.67 (3H, s, OCH3), 3.13 (1H, q, J = 7.1 Hz,
H-25), 3.03 (1H, dd, J = 7.3, 12.4 Hz, H-14), 2.93 (1H, ddd, J = 2.7, 7.0, 2.7 Hz, H-1), 2.55 (1H, m, H-6),
2.54 (1H, m, H-2), 2.45 (1H, m, H-6), 2.43 (1H, m, H-4), 2.41 (1H, m, H-2), 2.40 (1H, m, H-15), 2.11 (1H,
m, H-23), 1.99 (1H, m, H-16), 1.99 (1H, m, H-5), 1.96 (1H, m, H-23), 1.87 (1H, m, H-17), 1.58 (1H, m,
H-22), 1.55 (1H, m, H-16), 1.54 (3H, s, H-19), 1.47 (1H, m, H-1), 1.44 (1H, m, H-15), 1.42 (1H, m, H-20),
1.28 (3H, d, J = 7.1 Hz, H-27), 1.20 (1H, m, H-22), 1.04 (3H, d, J = 6.6 Hz, H-29), 0.97 (3H, d, J = 6.5,
H-21), 0.67 (3H, s, H-18). 13C-NMR (CDCl3, 100 MHz) δ 210.7 (C-3), 201.9 (C-11), 200.1 (C-7), 150.3
(C-9), 148.4 (C-24), 145.3 (C-8), 80.4 (C-12), 49.3 (C-13), 48.5 (C-5), 45.6 (C-17), 43.9 (C-4), 41.7 (C-14),
39.0 (C-6), 37.9 (C-10), 37.5 (C-2), 35.3 (C-20), 34.5 (C-1), 33.8 (C-22), 31.2 (C-23), 26.8 (C-16), 23.8 (C-15),
17.9 (C-21), 16.3 (C-19), 11.4 (C-18).

3.3.3. Benzocamphorin G (3)

Colorless syrup; IR (KBr) νmax: 2937, 2205, 1667, 1607, 1588, 1450, 1365, 1273, 1230, 1078, 853 cm−1;
UV (MeOH) λmax: 268, 296 nm; ESI-MS m/z 239 [M + Na]+; HR-ESI–MS m/z 239.0686 ([M + Na]+)
(Calcd. for C13H12O3Na: 239.0684); 1H-NMR (CDCl3, 400 MHz) δ 5.90 (1H, s, H-2), 5.55 (1H, s, H-4′),
5.44 (1H, s, H-4), 3.82 (3H, s, OCH3), 2.22 (3H, s, CH3-5), 2.01 (3H, s, CH3-3′). 13C-NMR (CDCl3, 100
MHz) δ 183.1 (C-1), 181.3 (C-6), 158.8 (C-3), 144.6 (C-5), 129.4 (C-4), 126.2 (C-3′), 125.1 (C-4′), 108.7
(C-2′), 107.0 (C-2), 81.7 (C-1′), 56.3 (OCH3), 23.0 (CH3-3′), 14.5 (CH3-5).
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3.3.4. Benzocamphorin I (4)

Colorless syrup; IR (KBr) νmax: 3276, 2936, 2892, 1496, 1457, 1443, 1232, 1115, 1070, 1051, 956 cm−1;
UV (MeOH) λmax: 265, 284 nm; ESI-MS m/z 385 [M + Na]+; HR-ESI–MS m/z 385.0898 ([M + Na]+)
(Calcd. for C18H18O8Na: 385.0899); 1H-NMR (CDCl3, 400 MHz) δ 6.00 (2H, OCH2O-2′,3′), 5.98 (2H,
OCH2O-3′,4′), 5.97 (1H, s, H-6′), 5.17 (1H, s, OH-5), 3.90 (3H, s, OCH3-4), 3.89 (3H, s, OCH3-2′), 2.05
(3H, s, CH3-1′), 1.99 (3H, s, CH3-1). 13C-NMR (CDCl3, 100 MHz) δ 136.8 (C-3, 137.4 (C-2′), 136.1
(C-6, C-3′), 135.5 (C-5′), 135.0 (C-4), 134.4 (C-2), 133.4 (C-4′), 129.4 (C-5), 116.9 (C-1), 109.5 (C-6′),
101.8 (OCH2O-3′,4′), 101.8 (OCH2O-2, 3), 60.1 (OCH3-4), 60.0 (OCH3-2), 59.8 (OCH3-2′), 15.9 (CH3-1′),
9.4 (CH3-1).

3.4. Culture of Cell Lines

Human stably P-gp-expressing cells (ABCB1/Flp-InTM-293) were established and cultured in
DMEM as in a previous study [27]. The human cervical epithelioid carcinoma cell line HeLaS3 was
purchased from Bioresource Collection and Research Center (Hsinchu, Taiwan), and the multi-drug
resistant human cervical cancer cell line KBvin was kindly provided by Dr. Kuo-Hsiung Lee (University
of North Carolina, Chapel Hill, NC, USA). All cancer cell lines were cultured in RPMI-1640 containing
10% FBS, at 37 ◦C in a humidified atmosphere of 5% CO2.

3.5. Calcein AM Uptake Assay

The calcein AM uptake assay was performed to evaluate the inhibitory effect of the test compounds
on human P-gp efflux function. To be brief, 1 × 105 cells/well were seeded in 96-well black plates
overnight. Before starting the assay, the cells were washed and pre-incubated with warm Hanks′

balanced salt solution (HBSS) for 30 min. Then, the test compounds were added, and incubation was
carried out for 30 min. Calcein-AM was added after washing with warm PBS. The BioTek Synergy
HT Multi-Mode Microplate Reader was utilized to detect calcein fluorescence (excitation/emission
wavelength = 485 nm/528 nm) at 37 ◦C every 3 min for 30 min. Each experiment was performed at
least three times, each in triplicate on different days.

3.6. SRB Cytotoxicity Assay and Reversal Fold Calculation

Briefly, after 72 h of treatment with series concentrations of chemotherapeutic drugs with or
without the test compounds, 50% trichloroacetic acid (TCA) was added to fix the cells for 30 min.
After air-drying, the cells were stained with 0.04% sulforhodamine B (SRB) for 30 min and washed
with 1% acetic acid. The bound stain was solubilized in 10 mM Tris base, and the absorbance was
measured by a Synergy HT Multi-Mode Microplate Reader (BioTek, Winooski, VT, USA) at 515 nm.
Reversal folds were calculated by dividing the IC50 of each drug by the IC50 of the compound–drug
combination treatment.

4. Conclusions

Although numerous anti-cancer drugs are marketed, resistance to cancer treatments is still the top
reason for cancer death. Multidrug resistance is largely due to the high expression of efflux pumps.
T. camphoratus, a medicinal fungus, was reported to exhibit anti-cancer properties, but its effects toward
cancer multidrug resistance are unknown. In this study, four new chemical constituents, camphoratins
K (1) and N (2) and benzocamphorins G (3) and I (4), were reported for the first time, and the main
constituents of T. camphoratus, zhankuic acids A–C, were found to have P-gp inhibitory effects in a
dose dependent manner. In addition, zhankuic acid A (20 µM), the most potent P-gp inhibitor, could
effectively reverse MDR in KBvin cells, leading to an IC50 of 78.5 nM for doxorubicin, of 48.5 nM for
paclitaxel, and of 321.5 nM for vincristine, corresponding to reversal folds of 48, 38, and 45, respectively.
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