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Abstract: The crystal structures of five new chalcones derived from N-ethyl-3-acetylindole with
different substituents were investigated: (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-
one (3a); (E)-3-(3-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3b); (E)-1-(1-ethyl-1H-
indol-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (3c); (E)-1-(1-ethyl-1H-indol-3-yl)-3-mesitylprop-
2-en-1-one (3d); and (E)-1-(1-ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one (3e). The molecular
packing of the studied compounds is controlled mainly by C–H···O hydrogen bonds, C–H···π
interactions, and π···π stacking interactions, which were quantitatively analyzed using Hirshfeld
topology analysis. Using density functional theory (DFT) calculations, the order of polarity (3b
< 3d < 3e < 3a < 3c) was determined. Several chemical reactivity indices such as the ionization
potential (I), electron affinity (A), chemical potential (µ), hardness (η), electrophilicity (ω) and
nucleophilicity (N) indices were calculated, and these properties are discussed and compared.
In addition, the antiproliferative activity of the five new chalcones was studied.

Keywords: chalcone; indole; crystal structure; cytotoxic activity

1. Introduction

The class of compounds based on an indole scaffold is of immense chemical and biological
significance [1,2]. Among the nitrogen containing heterocycles, indole is the parent core in a large
number of naturally occurring bioactive compounds. Indole and its derivatives have received
significant attention because of their wide range of biological activities including antimicrobial,
anticancer, anti-HIV, antileishmanial, and anti-inflammatory activities [3]. Many natural, as well as
synthetic, indole analogs are potent anticancer agents. Recently, Reyes and coworkers isolated a family
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of indole alkaloids, aplicyanins, from the Antarctic tunicate Aplidiumcyaneum [4]. The aplicyanins with a
bromoindole nucleus and 6-tetrahydropyrimidine at the C-3 position were found to be cytotoxic against
human tumor cell lines, including MDA-MB-231 (breast adenocarcinoma), A549 (lung carcinoma),
and HT-29 (colorectal carcinoma), via the inhibition of tubulin polymerization [5–10]. Hu et al. reported
indolylpyrimidine as a potent antiproliferative agent with average 50% inhibitory concentration (IC50)
values ranging from 5.01 to 14.36 µM against the tested cancer cell lines [11].

After heart disease, cancer is the prominent cause of deaths worldwide, and the identification
of potent and selective anticancer drugs with reduced side effects requires increasingly sophisticated
techniques in medicinal chemistry. Here, we report the synthesis, X-ray single crystal, DFT,
and Hirshfeld surface analysis. The selective anticancer activity of some indole-chalcone-based
compounds were evaluated using seven cancer cell lines and proved that ER-negative breast cancer
cells (MDA-MB-231) were more sensitive to some of the tested compounds than the ER-positive breast
cancer cell line (MCF-7).

2. Results

Synthesis

The requisite compounds chalcones were prepared by the reaction of N-ethyl-3-acetylindole and
aryl aldehyde derivatives with stirring in EtOH/H2O (1:1) with NaOH at room temperature for 24 h.
The product was produced in high yield (up to 90%), as shown in Scheme 1.
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Scheme 1. Synthesis of chalcones (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3a);
(E)-3-(3-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3b); (E)-1-(1-ethyl-1H-indol-3-yl)-3-
(4-methoxyphenyl)prop-2-en-1-one(3c); (E)-1-(1-ethyl-1H-indol-3-yl)-3-mesitylprop-2-en-1-one(3d);
and (E)-1-(1-ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one (3e).

3. Discussion

3.1. X-ray Structure

The structure and atom numbering of (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-
en-1-one (3a) are shown in Figure 1A. Having four molecular units per unit cell and one molecule per
asymmetric unit, 3a crystallized in the monoclinic crystal system and the P21/c space group. The most
important bond distances and angles are given in Table S2 (Supplementary data). The indole ring
is perfectly planar, and the p-bromophenyl moiety deviates by 13.21◦ from the mean plane of the
indole ring. The molecules are packed in the crystal structure via weak C–H···O hydrogen bonds
(Figure 1B) and the π–π stacking interactions, as shown in Figure 1C. Details regarding the hydrogen
bond parameters are given in Table 1. The shortest C···C contact distances among the stacked indole
rings are 3.408 and 3.484 Å for the C7···C8 and C1···C10 contacts, respectively.
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Table 1. Hydrogen bond parameters in the studied compounds.

D–H···A D–H (Å) H···A (Å) D···A (Å) D–H···A (◦) Symm. Codei

3a
C14–H14A···O1i 0.930 2.390 3.307 (7) 167.7 x, 3/2 − y, −1/2 + z
C18–H18B···O1i 0.971 2.733 3.420 (1) 128.5 1 − x, 2 − y, 1 − z

3b
C10–H10A···O1i 0.931 2.526 3.447 (5) 170.8 x, 3/2 − y, −1/2 + z
C13–H13A···O1i 0.931 2.391 3.269 (5) 157.1 x, 3/2 − y, −1/2 + z

3c
C2–H2A···O2i 0.930 2.562 3.474 (2) 166.8 −1 + x, −1 + y, 1 + z

C18–H18B···O1i 0.960 2.617 3.441 (2) 144.1 x, −1 + y, z
3d

C18–H18B···O1i 0.971 2.697 3.564 (5) 149.0 −x, 1 − y, 1 − z
3e

C13–H13A···O1i 0.930 2.460 3.291 (3) 148.8 1 − x, 2 − y, 1 − z

The structure and atom numbering of (E)-3-(3-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-
en-1-one (3b) are shown in Figure 2A. Having four molecular units per unit cell and one molecule per
asymmetric unit, 3b crystallized in the monoclinic crystal system and the P21/c space group. The most
important bond distances and angles are given in Table S2 (Supplementary data). The m-bromophenyl
moiety deviates from the mean plane of the indole ring more than that in 3a, probably because of the
presence of the bulky Br atom at the meta position. The twist angle between the mean plane of the
indole ring and the m-bromophenyl moiety is 25.96◦. The molecules are packed in the crystal structure
via weak C–H···O hydrogen bonds and C–H···π interactions, as shown in Figure 2B,C, respectively.
C–H···O hydrogen bonds occur between the carbonyl oxygen atom as the hydrogen bond acceptor
and the neighboring C–H groups as the hydrogen bond donors (Table 1). The C–H···π interactions
occurred between the C–H hydrogen atoms from the methyl group and the carbon atoms from the
phenyl group of the indole moiety. The shortest C–H···π contact distances are 2.992 and 2.993 Å for the
C4···H19B and C5···H19B contacts, respectively.

The structure and atom numbering of (E)-1-(1-ethyl-1H-indol-3-yl)-3-(4-methoxyphenyl)prop-2-
en-1-one (3c) are shown in Figure 3A. In this case, compound 3c crystallized in the triclinic crystal
system and the P-1 space group, having two molecular units per unit cell and one molecule per
asymmetric unit. The most important bond distances and angles are given in Table S2 (Supplementary
data). In this case, the p-methoxyphenyl group showed smaller twist (12.20◦) from the mean plane
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of the indole ring compared to those in compounds 3a and 3b. The methoxy group O-atom as a
hydrogen acceptor site connects the molecules via C–H···O hydrogen bonds with the neighboring C–H
bonds (Figure 3B). In addition, the indole rings are connected by C–H···π interactions between one
hydrogen atom from the CH2 group with the four C-atoms in the indole five-membered ring, as shown
in Figure 3C. The C–H···π contact distances range from 2.909 Å (C7···H19B) to 2.980 Å (C1···H19B).
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The structure and atom numbering of (E)-1-(1-ethyl-1H-indol-3-yl)-3-mesitylprop-2-en-1-one (3d)
are shown in Figure 4A. Like 3c, this compound crystallized in the triclinic crystal system and the
P-1 space group, having two molecular units per unit cell and one molecule per asymmetric unit.
The most important bond distances and angles are given in Table S2 (Supplementary data). In this
case, the mesitylene ring showed a similar twist from the mean plane of the indole ring to that of 3c
(11.98◦). In this case, the carbonyl group O-atom is the hydrogen bond acceptor site and one C–H
bond from the CH2 group connect the molecules via C–H···O hydrogen bonds (Table 1), thus forming
disconnected dimers of 3d, as shown in Figure 4B. In addition, the molecules are connected by C–H···π
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interactions between the stacked aryl moieties. The hydrogen atoms from the methyl substituents at
the aryl moiety form C–H···π contacts with the aromatic π-system from another aryl moiety (Figure 4C).
The C–H···π contact distances range from 2.914 Å (C16···H20B) to 2.934 Å (C17···H20B).
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The structure and atom numbering of (E)-1-(1-ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one
(3e) are shown in Figure 5A. Having four molecular units per unit cell and one molecule per asymmetric
unit, 3e crystallized in the monoclinic crystal system and the P21/c space group. The most important
bond distances and angles are given in Table S2 (Supplementary data). In this case, the furanyl ring
showed the least twist from the mean plane of the indole ring (3.47◦) of the studied compounds.
The carbonyl group O-atom and one C–H bond from the furanyl ring connect the molecules via C–H···O
hydrogen bonds, forming disconnected dimers of 3e (Figure 5B). Details regarding the hydrogen bond
parameters are given in Table 1. In addition, the molecules are connected by π···π stacking interactions
between the stacked molecular units. The C···C contact distances ranges from 3.437 Å (C8···C10) to
3.496 Å (C8···C9) (Figure 5C).
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3.2. Analysis of Molecular Packing

Hirshfeld surfaces mapped over dnorm, the shape index (SI), and the curvedness for the studied
compounds are shown in Figure S1 (Supplementary data). A summary of the most important contacts
and their percentages are shown in Figure 6 and Table 2, respectively. All the studied systems contained
many H···H, O···H, and C···H contacts. The H···H contacts range from 41.4% (compound 3a) to 64.4%
(compound 3d), and the percentage of O···H hydrogen bonds is highest in compound 3e (12.8%) and is
lowest in compound 3b (7.8%). Most of these hydrogen bonds are considered short contacts and are
important in the molecular packing of all the studied compounds, as indicated from the sharp spikes
of these interactions in the corresponding fingerprint plots (see Figure 7). The strongest hydrogen
bond was observed in compound 3a (2.243 Å), whereas the weakest was observed in compound 3d
(2.601 Å). The two bromo-substituted compounds form many short Br···H interactions, ranging from
14.4% (compound 3b) to 16.0% (compound 3a). It is clear from Figure 8 that the Br···H interactions
are more significant in the latter (3.045 Å, Br1···H2A) compared to the former (3.203 Å, Br1···H19A).
Most of the studied compounds show significant π···π stacking interactions as well as C–H···π stacking
interactions. The percentages of the C···C/C···N contacts range from 5.6% (compound 3b) to 8.0%
(compound 3a). Those π···π stacking interactions appeared as blue/red triangles in the shape index
maps of the studied molecules. On the other hand, the C···H contact percentages ranges from 21.1%
(compounds 3d and 3e) to 28.0% (compound 3b). These appear in the shape index maps as a large red
hole, which is related to the aromatic π-systems involved in the C–H···π interactions.
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Figure 6. Summary of the intermolecular interactions and their percentages in the crystal structures of
the studied compounds.

Table 2. List of all intermolecular contacts and their percentages using Hirshfeld Topology analysis.

3a 3b 3c 3d 3e

Br . . . Br 0.9 0.6
Br . . . C 0.1 1.0
Br . . . H 16.0 14.4
O . . . H 8.0 7.8 12.0 7.5 12.8
C . . . N 1.7 1.0 0.9 1.3 2.0
C . . . C 6.3 4.6 5.5 5.7 7.1
C . . . H 25.5 28.8 26.3 21.1 21.1
N . . . O
C . . . O 1.7 3.5
N . . . H 0.3 0.8
O . . . O
H . . . H 41.4 41.5 52.8 64.4 53.5



Molecules 2019, 24, 3728 7 of 12

Molecules 2019, 24, x FOR PEER REVIEW 7 of 13 

 

Figure 6. Summary of the intermolecular interactions and their percentages in the crystal structures 
of the studied compounds. 

Table 2. List of all intermolecular contacts and their percentages using Hirshfeld Topology analysis. 

 3a 3b 3c 3d 3e 
Br…Br 0.9 0.6    

Br…C 0.1 1.0    

Br…H 16.0 14.4    

O…H 8.0 7.8 12.0 7.5 12.8 
C…N 1.7 1.0 0.9 1.3 2.0 
C…C 6.3 4.6 5.5 5.7 7.1 
C…H 25.5 28.8 26.3 21.1 21.1 
N…O      

C…O   1.7  3.5 
N…H  0.3 0.8   

O…O      

H…H 41.4 41.5 52.8 64.4 53.5 

  

 

3d 3e  

   
3a 3b 3c 

Figure 7. The decomposed fingerprint (FP) plots of the O···H contacts in the studied compounds: 
Sharper spikes indicate shorter O···H contacts. The O···H contacts are the shortest in compound 3a 
and the longest in 3d. 

Figure 7. The decomposed fingerprint (FP) plots of the O···H contacts in the studied compounds:
Sharper spikes indicate shorter O···H contacts. The O···H contacts are the shortest in compound 3a and
the longest in 3d.
Molecules 2019, 24, x FOR PEER REVIEW 8 of 13 

 

  

3b 3a 

Figure 8. The decomposed FP plots of the Br···H contacts in compounds 3b (left) and 3a (right): The 
sharper spikes in the FP plot of compound 3a indicate shorter contact distances compared to 3b. 

3.3. Reactivity Studies 

 of the studied compounds (ionization potential (I), electron affinity (A), chemical potential (μ), 
hardness (η), softness (S), electronegtivity (x), electrophilicity (ω) and nucleophilicity (N) indices 
were calculated using Equations (1)–(6) [12–20], and the results are listed in Table 3. These descriptors 
were used to understand the pharmacological and biological reactivity of the compounds. 

I = -EHOMO, (1) 

A = -ELUMO, (2) 

η = (I-A), (3) 

μ = - (I + A)/2, (4) 

ω = μ2/2η, (5) 

N = EHOMO(Nucleophile) − EHOMO(TCE) (6) 

The results show that compound 3d is the hardest molecule while 3b is the softest. Based on the 
chemical potentials, the most electron donating system is compound 3d. In agreement with this 
conclusion, the electrophilicity index of the studied compounds decreases in the order 3b > 3a > 3e > 
3d > 3c. In addition, 3b has the highest electrophilicity index [19], which is consistent with the 
presence of a strong electron-withdrawing substituent on the phenyl ring. 

The nucleophilicity N index [20] is referred to tetracyanoethylene (TCE), which is the most electrophilic 
neutral species. Hence, the expected least nucleophilic neutral species which allowed convenient handling of a 
nucleophilicity scale of positive values. It is clear that, the order of the compounds according to the global 
nucleophilicity index is 3c>3e>3d>3a>3b. Among the studied compounds, 3b has the highest nucleophilic 
characters among the others. 

Table 3. The calculated dipole moment (μ), EHOMO, and ELUMO and the calculated reactivity indices 
(eV) of the studied compounds calculated using B3LYP/6-311G(d,p) method. 

 3a 3b 3c 3d 3e 

Figure 8. The decomposed FP plots of the Br···H contacts in compounds 3b (left) and 3a (right):
The sharper spikes in the FP plot of compound 3a indicate shorter contact distances compared to 3b.

3.3. Reactivity Studies

The reactivity indices of the studied compounds (ionization potential (I), electron affinity
(A), chemical potential (µ), hardness (η), softness (S), electronegtivity (x), electrophilicity (ω) and
nucleophilicity (N) indices were calculated using Equations (1)–(6) [12–20], and the results are listed in
Table 3. These descriptors were used to understand the pharmacological and biological reactivity of
the compounds.
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I = −EHOMO, (1)

A = −ELUMO, (2)

η = (I − A), (3)

µ = −(I + A)/2, (4)

ω = µ2/2η, (5)

N = EHOMO(Nucleophile) − EHOMO(TCE) (6)

Table 3. The calculated dipole moment (µ), EHOMO, and ELUMO and the calculated reactivity indices
(eV) of the studied compounds calculated using B3LYP/6-311G(d,p) method.

3a 3b 3c 3d 3e

µ 5.650 3.866 7.282 5.352 5.573
EHOMO −5.909 −5.949 −5.676 −5.812 −5.730
ELUMO −2.132 −2.175 −1.758 −1.771 −1.887

∆E 3.777 3.773 3.918 4.041 3.843
I 5.91 5.95 5.68 5.81 5.73
A 2.13 2.18 1.76 1.77 1.89
η 3.78 3.77 3.92 4.04 3.84
µ -4.02 -4.06 -3.72 -3.79 -3.81
x 4.02 4.06 3.72 3.79 3.81
S 0.26 0.27 0.26 0.25 0.26
ω 2.14 2.19 1.76 1.78 1.89
N 3.46 3.42 3.69 3.56 3.64

The results show that compound 3d is the hardest molecule while 3b is the softest. Based on
the chemical potentials, the most electron donating system is compound 3d. In agreement with this
conclusion, the electrophilicity index of the studied compounds decreases in the order 3b > 3a > 3e >

3d > 3c. In addition, 3b has the highest electrophilicity index [19], which is consistent with the presence
of a strong electron-withdrawing substituent on the phenyl ring.

The nucleophilicity N index [20] is referred to tetracyanoethylene (TCE), which is the most
electrophilic neutral species. Hence, the expected least nucleophilic neutral species which allowed
convenient handling of a nucleophilicity scale of positive values. It is clear that, the order of the
compounds according to the global nucleophilicity index is 3c > 3e > 3d > 3a > 3b. Among the studied
compounds, 3b has the highest nucleophilic characters among the others.

3.4. Biological Activity

The anticancer activities of the synthesized chalcone derivatives were tested against seven cancer
cell lines: ER-positive MCF-7 and triple negative MDA-MB-231 breast cancer cells, liver cancer (HepG2
and HuH-7), prostate cancer (PC-3), colon cancer (HCT-116), and oral cancer (SAS) (Table 4). The triple
negative breast cancer cells (MDA-MB-231) were more sensitive to the tested compounds (3a–e) than
the ER-positive breast cancer cell line (MCF-7), where their IC50 values ranged from 13 to 19 µM,
which is comparable to that of cisplatin (15 µM) (Table 4). Compounds 3b, 3d, and 3e showed moderate
anticancer activity only against HepG2 and not the other hepatocellular carcinoma cell line (HuH-7),
unlike cisplatin, which was active against both liver cancer cell lines. Compounds 3c and 3d did not
show cytotoxic activity against the oral, prostate or colon cancer cell lines.
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Table 4. IC50 values of the tested chalcone derivatives against seven cancer cell lines: The symbol ±
represents the standard deviation from three independent experiments. The viability of the cells was
detected using the MTT assay. NA means that the compound did not show cytotoxic activity at 50 µM.

Type Breast Oral Prostate Colon Liver

Cell line MCF-7 MDA-MB-231 SAS PC-3 HCT-116 HuH-7 HepG2

3a 30 ± 2 15 ± 1 30 ± 1.5 30 ± 2.2 20 ± 1.3 28.4 ± 1.67 20 ± 1.5

3b >50 13 ± 0.5 29 ± 3 >50 25 ± 2.1 NA 15 ± 0.57

3c >50 19 ± 1.6 NA NA NA NA 25 ± 0.97

3d 50 ± 5.5 18.5 ± 1 NA NA NA NA 25 ± 1.7

3e 35 ± 3 18 ± 2.4 32 ± 2 42 ± 3 30 ± 2.5 29.2 ± 3.4 29 ± 1.4

cisplatin 9 ± 0.3 15 ± 1.6 4.5 ± 0.4 12 ± 1 8 ± 1.3 14.7 ± 2 10 ± 1.2

4. Materials and Methods

4.1. General Procedure for the Synthesis of Chalcones 3a–e

The chalcones were prepared following a reported procedure [21–23].

(E)-3-(4-Bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3a) [22,23]. Yield 1.75 g (4.95 mmol, 93%);
m.p. 139–140 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ: 1.49 (t, 3H, J = 7.2 Hz, CH3), 4.17 (q, 3H, J = 7.2 Hz,
CH2), 7.23–7.29 (m, 4H, Ar–H and CH=CH), 7.41 (q, 4H, J = 6.8 Hz, Ar–H), 7.64 (d, 1H, J = 15.2 Hz,
CH=CH), 7.82 (s, 1H, Ar–H), 8.42–8.45 (m, 1H, Ar–H); 13C-NMR (100 MHz, DMSO-d6) δ: 15.1, 41.8,
109.8, 117.6, 122.7, 123.0, 123.6, 123.8, 124.4, 126.9, 129.5, 131.9, 133.7, 133.3, 136.7, 139.5, and 183.8;
IR (KBr, cm−1) vmax = 3449, 3041, 2977, 1645, 1610, 1588, 1525, 1481, 1469, 1454, 1399, 1310, 1241, 1267,
1268, 1016, 978, 835, 771, 744, 718, 675, and 478; Anal. Calcd. for C19H16BrNO: C, 64.42; H, 4.55; N, 3.95;
Found: C, 64.31; H, 4.67; N, 4.15; Liquid chromatography (LC)/mass spectrometry (MS) (electrospray
ionization (ESI), m/z): [M+], found 353.00, C19H16BrNO for 353.04.

(E)-3-(3-Bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3b) [23]. Yield 1.60 g (4.53 mmol, 85%);
m.p. 126–127 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ: 1.54 (t, 3H, J = 5.6 Hz, CH3), 4.22 (q, 2H, J = 5.6 Hz,
CH2), 7.25–7.36 (m, 5H, Ar–H and CH=CH), 7.49 (t, 2H, J = 8.8 Hz, Ar–H), 7.68–7.78 (m, 2H, J = 15.2 Hz,
Ar–H and CH=CH), 7.92 (s, 1H, Ar–H), 8.50–8.53 (m, 1H, Ar–H); 13C-NMR (100 MHz, DMSO-d6)
δ: 15.3, 42.0, 109.9, 117.7, 122.9, 123.01, 123.2, 123.8, 125.1, 127.05, 127.3, 130.3,130.4, 132.6, 134.03,
136.8, 137.6, 139.3, and 183.7; IR (KBr, cm−1) vmax = 3445, 3042, 2971, 1643, 1617, 1585, 1521, 1482,
1467, 1455, 1399, 1312, 1242, 1261, 1264, 1012, 976, 837, 777, 744, 715, 673, and 474; Anal. Calcd. for
C19H16BrNO: C, 64.42; H, 4.55 N, 3.95; found: C, 64.65; H, 4.38; N, 4.17; LC/MS (ESI, m/z): [M+ found
353.00, C19H16BrNO for 353.04.

(E)-1-(1-Ethyl-1H-indol-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (3c) [23]. Yield 1.60 g (5.2 mmol, 98%);
m.p. 123–124 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ: 1.52 (t, 3H, J = 6.4 Hz, CH3), 3.82 (s, 3H, OCH3)
4.18 (q, 2H, J = 7.2 Hz, CH2), 6.88 (d, 1H, J = 8.8 Hz, Ar–H), 7.2–7.33 (m, 4H, J = 8.4 Hz, Ar–H and
CH=CH), 7.55 (d, 2H, J = 8.8 Hz, Ar–H), 7.76 (d, 1H, J = 15.2 Hz, Ar–H), 7.87 (s, 1H, Ar–H), 8.50–8.52
(m, 1H, Ar–H); 13C-NMR (100 MHz, DMSO-d6) δ: 15.1, 41.7, 55.3, 109.6, 114.6, 117.7, 121.6, 122.4, 123.0,
123.3, 127.0, 128.0, 129.7, 133.4, 136.6, 140.6, 161.0, and 184.4; IR (KBr, cm−1) vmax = 3431, 3104, 2988,
2947, 2832, 1749, 1679, 1645, 1589, 1527, 1514, 1426, 1377, 1332, 1243, 1207, 1125, 1108, 1006, 844, and 755;
Anal. Calcd. for C20H19NO2: C, 78.66; H, 6.27; N, 4.59; found: C, 78.85; H, 6.12; N, 4.85; LC/MS (ESI,
m/z): [M+], found 305.10, C20H19NO2 for 305.38.

(E)-1-(1-Ethyl-1H-indol-3-yl)-3-mesitylprop-2-en-1-one (3d) [23]. Yield 1.10 g (3.4 mmol, 65%); m.p. 83–84
◦C; 1H-NMR (400 MHz, DMSO-d6) δ: 1.52 (t, 3H, J = 7.6 Hz, CH3), 2.29 (s, 3H, CH3) 2.36 (s, 6H, CH3),
4.22 (q, 2H, J = 7.6 Hz, CH2), 6.91 (s, 2H, Ar–H), 6.99 (d, 1H, J = 16.4 Hz, CH=CH), 7.30–7.38 (m, 3H,
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Ar–H), 7.80 (s, 1H, Ar–H), 7.93 (d, 1H, J = 16.4 Hz, CH=CH), 8.50–8.53 (m, 1H, Ar–H); 13C-NMR
(100 MHz, DMSO-d6) δ: 15.3, 21.1, 21.3, 41.9, 109.8, 117.8, 122.7, 123.2, 123.6, 127.1, 129.1, 129.3, 132.3,
133.8, 136.8, 136.9, 137.9, 139.6, and 184.5; IR (KBr, cm−1) vmax = 3041, 2974, 1641, 1584, 1525, 1483, 1447,
1385, 1302, 1294, 1202, 1206, 1188, 1089, 1062, 992, 978, 862, 816, 772, 725, 601, 495, 449, and 422; Anal.
Calcd. for C22H23NO: C, 83.24; H, 7.30; N, 4.41; found: C, 83.52; H, 7.19; N, 4.61; LC/MS (ESI, m/z):
[M+], found 317.20; C22H23NO for 317.18.

(E)-1-(1-Ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one (3e) [23]. Yield 1.35 g (5.09 mmol, 95%); m.p.
74–75 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ: 1.54 (t, 3H, J = 7.2 Hz, CH3), 4.23 (q, 2H, J = 7.2 Hz, CH2),
7.32–7.37 (m, 3H, Ar–H), 7.42 (d, 1H, J = 15.6 Hz, CH=CH), 7.61 (d, 2H, J = 8.0 Hz, Ar–H), 7.69 (d,
2H, J = 8.0 Hz, Ar–H), 7.75 (d, 1H, J = 15.2 Hz, CH=CH), 7.92 (s, 1H, Ar–H), 8.49–8.51 (m, 1H, Ar–H);
13C-NMR (100 MHz, DMSO-d6) δ: 15.1, 41.7, 109.7, 112.3, 114.6, 117.7, 121.3, 123.0, 123.4, 126.9, 127.4,
133.8, 136.7, 144.0, 152.0, and 183.7; IR (KBr, cm−1) vmax = 3478, 3102, 3075, 2972, 2929, 1631, 1562, 1524,
1488, 1442, 1389, 1365, 1204, 1102, 1086, 964, 857, 832, 744, 578, and 653; Anal. Calcd. for C17H15NO2:
C, 76.96; H, 5.70; N, 5.28; found: C, 76.55; H, 5.95; N, 5.10; LC/MS (ESI, m/z): [M+], found 265.10,
C17H15NO2 for 265.11.

4.2. X-ray Structure Measurements

X-ray crystal data were collected on a Bruker APEX-II D8 Venture area diffractometer. Crystal data,
data collection, and structure refinement details are summarized in Table S1 (Supplementary data).
All H atoms were found in the difference Fourier maps.

4.3. DFT Calculations

The structures of the studied systems were optimized at the B3LYP/6-311G (d,p) level of theory
using Gaussian 09 [24]. In all cases, the input structures were taken from the CIF data obtained from
the corresponding X-ray single crystal structures. All optimized structures showed no imaginary
vibrations in the frequency calculations. All images were prepared in GaussView [25].

4.4. Hirshfeld Surface Analysis

The topology analyses were performed using Crystal Explorer 3.1 [26] to determine the percentages
of different intermolecular interactions in the crystal structure of the studied complexes.

4.5. Anticancer Activity Assays

The anticancer activities for the five compounds were evaluated against five different cancer
types (breast, oral, prostate, colon, and liver). The initial screening was performed at 50 µM, and the
inhibitory activity was detected using the crystal violet assay [27]. Subsequently, the compound
that showed inhibitory activity was further used in MTT assay for determination of the IC50 [28].
The standard deviation (±) was calculated from three independent experiments.

5. Conclusions

Five chalcone-based indole scaffolds were successfully synthesized from N-alkyl-3-acetylindole
and five aldehydes. Structures of the obtained chalcones were clarified, and the study of the chemical
behavior including (DFT) calculations, ionization potential (I), electron affinity (A), chemical potential
(µ), hardness (η), electrophilicity (ω) and nucleophilicity (N) indices and Hirshfeld surface analysis
were investigated. The anticancer activity of the synthesized chalcones was carried out and exhibited
more sensitivity to the triple negative breast cancer cells (MDA-MB-231) than the ER-positive breast
cancer cell line (MCF-7). Further investigation will be carried out in the near future.
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Supplementary Materials: The following are available online. Table S1: Crystal data and refinement details;
Table S2: Geometric parameters (bond distances (Å) and angles (◦)) of the studied compounds; Table S3:
The calculated geometric parameters (bond distances and angles) of the studied compounds; Figure S1:
The optimized molecular structures of the studied molecules.
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