Synthesis and Biochemical Evaluation of Lid-Open DAmino Acid Oxidase Inhibitors

Bence Szilágyi ${ }^{1}$, Csilla Hargitai ${ }^{2}$, Ádám A. Kelemen ${ }^{1}$, Anita Rácz ${ }^{3}$, György G. Ferenczy ${ }^{1}$, Balázs Volk ${ }^{2, *}$ and György M. Keserú ${ }^{1, *}$
1 Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; szilagyi.bence@ttk.mta.hu (B.S.); kelemen.adam@ttk.mta.hu (Á.A.K.); ferenczy.gyorgy@ttk.mta.hu (G.G.F.)
2 Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary; hargitai.csilla@egis.hu (C.H.)
${ }^{3}$ Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; racz.anita@ttk.mta.hu (A.R.)
* Correspondence: volk.balazs@egis.hu (B.V.); keseru.gyorgy@ttk.mta.hu (G.M.K.); Tel.: +36-1-803-5874 (B.V.); Tel.: +36-1-382-6821 (G.M.K.)

Contents

Synthesis of compounds 9-13 1
Synthesis of compounds 16-26 3
Results from differential scanning fluorimetry (DSF) measurements 4
Result from the coupled HRP/Amplex Red assay for compound 13. 5
Limit dose $(20 \mu \mathrm{M})$ screening results obtained for compounds 8-13 and 16-26. 6
Experimental 6
References 17

Synthesis of compounds 9-13

The preparation of the target compounds was realized by coupling three components (Scheme S1). The precursor of the head group 28 [1] was prepared from 3,4,6-trichloropyridazine (27) in a nucleophilic substitution reaction carried out with benzyl alcohol. Derivatives 31a-f [2] carrying the corresponding substituent of the aromatic moiety were prepared from the appropriate acetophenone derivatives 29a-f using diethyl carbonate (30). The synthesis of the linker part was started from resorcinol (32). First, benzyl protecting groups were applied to the molecule 33 [3] and then iodine was introduced to give 34 [4]. Following a Sonogashira reaction with trimethylsilylacetylene leading to 35 , compound 36 [5] as the third building block was obtained by removing the trimethylsilyl group of 35 . This was followed by linking the components. First, compounds 28 and 36 were coupled and the benzyl protecting groups of derivative 37 were removed. The resulting 38 [6] was coupled with the appropriately substituted benzoylacetic acid ethyl ester derivatives 31a-f to give the expected products $\mathbf{8 - 1 3}$.

Scheme S1. Synthesis of the derivatives of 8 substituted on the benzene ring of the aromatic part.

$$
\begin{array}{|l|}
\hline \text { a, 16: } R^{1}=H \\
\text { b, 17: } R^{1}=3-M e \\
\text { c, 18: } R^{1}=3-\mathrm{OMe} \\
\text { d, 19: } R^{1}=4-\mathrm{Me} \\
\hline
\end{array}
$$

48a-d, 50a-c

Scheme S2. Preparation of compounds 16-26.

Synthesis of compounds 16-26

The preparation of the target compounds was realized by coupling two components: the appropriate linker 45a-d, 48a-d and 50a-c equipped with the substituted aryl group and the head group 56 (see Scheme S2). The synthesis of the aryl substituted linkers $\mathbf{4 5 a - d}, \mathbf{4 8 a - d}$ and 50a-c is shown in Scheme S3. The head group 56 was prepared as shown in Scheme S4.

Scheme S3. Preparation of linkers containing a substituted aromatic moiety.
For the preparation of 1,5-dihydro-2H-pyrrolo[3,2-d]pyrimidine-2,4(3H)-dione derivatives 45a-d, 6methyluracil (39) was used as the starting material (Scheme). In the first step, it was nitrated to give 40 [7] followed by the introduction of benzyl protecting groups to give compound 41 . Then, 42 was prepared with dimethylformamide dimethyl acetal (DMF-DMA). The cyclization of the second ring occurred after the nitro group was reduced. For derivatization, the resulting molecule 43 was reacted with bromobenzene derivatives substituted at position 3 or 4 in the presence of a copper catalyst. Following the coupling reactions, the benzyl protecting groups were removed to provide the linker derivatives with the desired aromatic moiety 45a-d.

In case of the 1,2,3,4-tetrahydroisoquinoline compounds $48 \mathbf{a}-\mathbf{d}$, the synthesis was carried out starting from 8 -chloro-3,4-dihydroisoquinoline hydrochloride (46, Scheme) [8]. The derivatization was carried out by palladium(0) catalyzed coupling reaction using the corresponding phenylboronic acids, to give compounds 47 followed by the reduction of the 3,4-dihydroisoquinoline ring to 1,2,3,4-
tetrahydroisoquinoline with sodium borohydride. The synthesis of the headgroup 56 has been completed according to Scheme S4.

Scheme S4. Synthesis of the headgroup
The formation of the dimethylene spacer was accomplished by a Wittig reaction, however, for this reaction, the corresponding phosphine salt had to be prepared. First, chloromethyl-benzyl ether (51) was reacted with triphenylphosphine (Scheme). The thus-formed phosphonium salt 52 was converted under basic conditions to the corresponding phosphorane that was then reacted with compound 53. After the isolation of the expected derivative 54, the benzyl group was removed, and the double bond of the side chain was saturated in one step by catalytic hydrogenation. The resulting compound 55 was reacted with methanesulfonic acid chloride to form 56 equipped by the appropriate leaving group for the alkylation reaction. Finally, the headgroup was coupled to the linker derivatives using inorganic bases in acetonitrile at $100^{\circ} \mathrm{C}$ (Error! Reference source not found.). In the case of pyrrolopyrimidine linkers $\mathbf{4 5 a} \mathbf{- d}$, the different basicity of the amide nitrogen atoms was used to carry out the reaction regioselectively. Here, test reactions were carried out using various inorganic bases $\left(\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}\right.$ and $\left.\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Potassium carbonate was the first base the use of which led to the formation of the desired products $57 \mathrm{a}-\mathrm{d}$, while the other isomer was not formed in any case. After the coupling, carboxylic acid esters were hydrolyzed in dioxane-water (1:1) to give the target compounds 16-19. Reactions starting from tetrahydroisoquinolines 48a-d and 50a-c were accomplished in an analogous manner, via esters $58 \mathbf{a}-\mathbf{g}$ that were finally hydrolized to the target compounds 20-26.

Results from differential scanning fluorimetry (DSF) measurements

| D3 (reference) | Pr\|c|c|c| |
| :---: | :---: | :---: | :---: |

Result from the coupled HRP/Amplex Red assay for compound 13

Compound 13 was evaluated in both the KYNA and the coupled HRP/Amplex red assays. Assay conditions are summarized in the table below.

	HRP/Amplex assay	KYNA assay
Substrate	D-Ala	D-Kyn
hDAAO original concentration	$1 \mu \mathrm{~g} / 1500 \mu \mathrm{~L}$ buffer	$1 \mu \mathrm{~g} / 400 \mu \mathrm{~L}$ buffer
hDAAO assay concentration	$0.25 \mu \mathrm{~g} / 1500 \mu \mathrm{~L}$ buffer	$0.25 \mu \mathrm{~g} / 400 \mu \mathrm{~L}$ buffer
FAD conc. in assay	$5 \mu \mathrm{M}$	$5 \mu \mathrm{M}$
Ligand conc. in assay	$20 \mu \mathrm{M}$	$20 \mu \mathrm{M}$
Buffer	Tris	Tris
Buffer pH	8	8
Incubation period	No	Yes $\left(1\right.$ hour, $\left.37^{\circ} \mathrm{C}\right)$
Type of the measurement	Kinetic $(45 \mathrm{~min})$	single point detection
Detection	fluorescent	fluorescent
Excitation	544	340
Emission	590	396
Assay interference	Yes	No
Ligand autofluorescence	No	No

Dose response curve obtained for compound $\mathbf{1 3}$ using the HRP/Amplex red assay

Limit dose ($20 \mu \mathrm{M}$) screening results obtained for compounds 8-13 and 16-26
Inhibition percentages with standard deviations are plotted in the figure below.

Experimental

General Information

Melting points were determined on an OptiMelt SRS (Sunnyvale, CA, USA) and are uncorrected. NMR measurements were performed on System 500 NMR spectrometer (Varian, Palo Alto, CA, USA) or a Varian System 300 NMR spectrometer, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were measured at room temperature $\left(25^{\circ} \mathrm{C}\right)$ in an appropriate solvent. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are expressed in parts per million (δ) referenced to TMS or residual solvent signals. Reactions were monitored with silica gel $60 \mathrm{~F}_{254}$ TLC plates (Merck, Darmstadt, Germany). All chemicals and solvents were used as purchased. HPLC-MS measurements were performed using a LC-MS-2020 device (Shimadzu, Kyoto, Japan) equipped with a Reprospher 100 C18 ($5 \mu \mathrm{~m}, 100 \times$ 3 mm) column and positive-negative double ion source (DUIS \pm) with a quadrupole mass spectrometer in a range of $50-1000 \mathrm{~m} / \mathrm{z}$. Sample was eluted with gradient elution using eluent $\mathrm{A}(0.1 \%$ formic acid in water) and eluent B (0.1% formic acid in acetonitrile). Flow rate was set to $1.5 \mathrm{~mL} / \mathrm{min}$. The initial condition was 0% B eluent, followed by a linear gradient to 100% B eluent by 2 min , from 2 to $3.75 \mathrm{~min} 100 \%$ B eluent was retained, and from 3.75 to 4.5 min back to initial condition and retained to 5 min . The column temperature was kept at $30^{\circ} \mathrm{C}$ and the injection volume was $1 \mu \mathrm{l}$. High resolution mass spectrometric measurements were performed using a Q-TOF Premier mass spectrometer (Waters, Milford, MA, USA) in positive electrospray ionization mode.

Chemistry

6-\{2-[4-(4-Chlorophenyl)-7-hydroxy-2-oxo-2H-chromen-6-yl]ethyl\}-4-hydroxypyridazin-3(2H)-one (9). To the solution of 6-[2-(2,4-dihydroxyphenyl)ethyl]-4-hydroxypyridazin-3(2H)-one (38, $100 \mathrm{mg}, 0.40 \mathrm{mmol}$) in methanesulfonic acid (5 mL) was added ethyl 3-(4-chlorophenyl)-3-oxopropanoate ($31 \mathrm{a}, 91 \mathrm{mg}, 0.40 \mathrm{mmol}$). The reaction mixture was stirred at RT for 1 h , then it was quenched with distilled water (10 mL), and the precipitate was filtered and washed with isopropyl alcohol (5 mL) and purified by preparative HPLC (water-acetonitrile 10% to 100% acetonitrile) to give compound 9 ($9.0 \mathrm{mg}, 0.022 \mathrm{mmol}, 6 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.76(1 \mathrm{H}, \mathrm{s}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{s})$, $6.52(1 \mathrm{H}, \mathrm{s}), 6.10(1 \mathrm{H}, \mathrm{s}), 2.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS (ESI+) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cl}: 411.0748$, found: 411.0748 .

4-Hydroxy-6-\{2-[7-hydroxy-4-(4-methylphenyl)-2-oxo-2H-chromen-6-yl]ethyl\}pyridazin-3(2H)-one (10). To the solution of 6-[2-(2,4-dihydroxyphenyl)ethyl]-4-hydroxypyridazin- $3(2 H)$-one ($38,100 \mathrm{mg}, 0.40 \mathrm{mmol}$) in methanesulfonic acid (5 mL) was added ethyl 3-(4-methylphenyl)-3-oxopropanoate ($31 \mathrm{~b}, 82 \mathrm{mg}, 0.40$ $\mathrm{mmol})$. The reaction mixture was stirred at RT for 1 h , then it was quenched with distilled water (10 mL), and the precipitate was filtered and washed with isopropyl alcohol $(5 \mathrm{~mL})$ and purified by preparative HPLC (water-acetonitrile 10% to 100% acetonitrile) to give the title compound 10 ($7.0 \mathrm{mg}, 0.018 \mathrm{mmol}, 5 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.70(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}$: 391.1294, found: 391.1293.

6-\{2-[4-(3-Chlorophenyl)-7-hydroxy-2-oxo-2H-chromen-6-yl]ethyl\}-4-hydroxypyridazin-3(2H)-one (11). To the solution of 6-[2-(2,4-dihydroxyphenyl)ethyl]-4-hydroxypyridazin-3(2H)-one (38, $100 \mathrm{mg}, 0.40 \mathrm{mmol}$) in methanesulfonic acid (5 mL) was added ethyl 3-(3-chlorophenyl)-3-oxopropanoate ($31 \mathrm{c}, 91 \mathrm{mg}, 0.40 \mathrm{mmol}$). The reaction mixture was stirred at RT for 1 h , then it was quenched with distilled water (10 mL). The
precipitate was filtered and washed with isopropyl alcohol (5 mL) and purified by preparative HPLC (water-acetonitrile 10% to 100% acetonitrile) to give compound $11\left(8.0 \mathrm{mg}, 0.019 \mathrm{mmol}, 12 \%\right.$ yield). ${ }^{1} \mathrm{H}-$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.75(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}$, $1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI+) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cl}: 411.0748$, found: 411.0747.

4-Hydroxy-6-\{2-[7-hydroxy-4-(3-methylphenyl)-2-oxo-2H-chromen-6-yllethylfpyridazin-3(2H)-one (12). To a solution of 6-[2-(2,4-dihydroxyphenyl)ethyl]-4-hydroxypyridazin-3(2H)-one ($38,100 \mathrm{mg}, 0.40 \mathrm{mmol}$) in methanesulfonic acid (5 mL) was added ethyl 3 -(3 -methylphenyl)-3-oxopropanoate ($31 \mathrm{~d}, 82 \mathrm{mg}, 0.40$ $\mathrm{mmol})$. The reaction mixture was stirred at RT for 1 h , then it was quenched with distilled water (10 mL). The precipitate was filtered and washed with isopropyl alcohol (5 mL) and purified by preparative HPLC (water-acetonitrile 10% to 100% acetonitrile) to give compound $12\left(6.0 \mathrm{mg}, 0.015 \mathrm{mmol}, 4 \%\right.$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz, DMSO- d_{6}) $\delta 10.70(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H})$. HRMS (ESI $) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O} 5: 391.1294$, found: 391.1293.

4-Hydroxy-6-\{2-[7-hydroxy-4-(3-methoxyphenyl)-2-oxo-2H-chromen-6-yllethylpyridazin-3(2H)-one (13). To the solution of 6-[2-(2,4-dihydroxyphenyl)ethyl]-4-hydroxypyridazin-3(2H)-one (38, $100 \mathrm{mg}, 0.40 \mathrm{mmol}$) in methanesulfonic acid (5 mL) was added ethyl 3 -(3-methoxyphenyl)-3-oxopropanoate ($31 \mathrm{e}, 89 \mathrm{mg}, 0.40$ $\mathrm{mmol})$. The reaction mixture was stirred at RT for 1 h , then it was quenched by distilled water (10 mL). The precipitate was filtered and washed with isopropyl alcohol (5 mL) and purified by preparative HPLC (water-acetonitrile 10% to 100% acetonitrile) to give compound 13 ($14.0 \mathrm{mg}, 0.035 \mathrm{mmol}, 9 \%$). ${ }^{1} \mathrm{H}$-NMR (500 MHz, DMSO- d_{6}) $\delta 10.76(1 \mathrm{H}, \mathrm{s}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H})$, $6.13(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $160.60,159.95,159.81,158.22,155.62,154.34,136.92,130.22,128.05,125.29,121.96,120.86,115.71,114.02$, $110.72,110.56,109.11,102.63,55.31,34.36,28.69$. HRMS (ESI ${ }^{+}$) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}$: 407.1243, found: 407.1243.

1,3-Dibenzyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (43).

To the solution of 6-methyl-5-nitropyrimidine-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-dione ($40,5.00 \mathrm{~g}, 29.2 \mathrm{mmol}$) in DMF (190 $\mathrm{mL}), \mathrm{Na}_{2} \mathrm{CO}_{3}(7.75 \mathrm{~g}, 73.1 \mathrm{mmol})$ and benzyl bromide $(8.67 \mathrm{~mL}, 73.0 \mathrm{mmol})$ were added. The reaction mixture was stirred at RT for 16 h , then water (270 mL) was added. The solution was washed with ethyl acetate ($3 \times 250 \mathrm{~mL}$). The combined organic phase was dried over MgSO_{4}, filtered and evaporated. The combined organic phase was dried over MgSO_{4}, filtered and evaporated to give 1,3-dibenzyl-6-methyl-5-nitropyrimidine-2, $4\left(1 \mathrm{H}, 3 \mathrm{H}\right.$) -dione ($41,8.03 \mathrm{~g}, 22.8 \mathrm{mmol}, 78 \%$ yield) as pale yellow crystals. Mp $134-136^{\circ} \mathrm{C}$. LC-MS [M+H] ${ }^{+} 352 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{dd}, \mathrm{J}=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.15$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.85,150.64,149.55,135.71$, 134.62, 129.53, 129.51, 128.73, 128.58, 128.31, 126.35, 126.34, 49.09, 45.92, 16.09.

To the solution of 1,3-dibenzyl-6-methyl-5-nitropyrimidine-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-dione ($41,10.00 \mathrm{~g}, 28.5 \mathrm{mmol}$) in DMF (20 mL), DMF-DMA ($7.4 \mathrm{~mL}, 72.7 \mathrm{mmol}$) was added and stirred for 2 h at $65^{\circ} \mathrm{C}$. The reaction mixture was cooled to RT, methanol (5 mL) was added, then diethyl ether (100 mL) was added dropwise. The orange solid was filtered, washed with diethyl ether (20 mL), then dried to give 1,3-dibenzyl-6-[(E)-2-(dimethylamino)ethenyl]-5-nitropyrimidine-2,4(1H,3H)-dione ($42,9.10 \mathrm{~g}, 22.4 \mathrm{mmol}, 79 \%$ yield). Mp $155-157^{\circ} \mathrm{C}$. LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 407 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 6 \mathrm{H})$, $7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.43(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.65,151.29,150.50,150.07,136.62,136.18,129.41,129.23,128.54,127.96$, 127.86, 126.30, 81.21, 49.79, 45.36.

To the solution of 1,3-dibenzyl-6-[(E)-2-(dimethylamino)ethenyl]-5-nitropyrimidine-2,4(1H,3H)-dione $(42,1.00 \mathrm{~g}, 2.46 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$, Pd on carbon $(100 \mathrm{mg})$ was added, and hydrogenated under 5 bar H_{2} pressure for 30 min . The suspension was filtered through Celite and washed with THF $(2 \times 10 \mathrm{~mL})$. The crued product was purified by flash column chromatography (hexane-ethyl acetate, from 1:0 to 7:3) to give compound 43 ($163 \mathrm{mg}, 0,49 \mathrm{mmol}, 20 \%$ yield). LC-MS [M+H]: $332 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 10.76$ $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H})$, 5.15 (s, 2H).

General procedure for the preparation of 5-substituted $1 H$-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione derivatives 45a-d.

To the solution of 1,3-dibenzyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (43) in NMP, CuBr (2.00 eq), $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.05 \mathrm{eq})$ and the corresponding aryl bromide (3.30 eq) were added, then the suspension was heated to $170{ }^{\circ} \mathrm{C}$ under argon atmosphere for 3 days. The mixture was filtered through celite and washed with THF twice, then purified by reverse phase flash column chromatography. After the isolation of the desired product 44a-d, it was dissolved in THF (30 mL) . $300 \mathrm{~m} / \mathrm{m} \% \mathrm{Pd}$ on carbon was added and hydrogenated in autoclave under 5 bar H_{2} pressure for 3 days at $170^{\circ} \mathrm{C}$ (the pressure at $170{ }^{\circ} \mathrm{C}$ was ca. 22 bar). It was cooled to RT, the suspension was filtered through celite and washed with THF. After removal of the solvent, the expected product was obtained.

Synthesis of 5-phenyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45a).

The reaction was carried out according to the general procedure, starting from 450 mg (1.36 mmol) 1,3-dibenzyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (43), 4 mL NMP, 390 mg (2.72 mmol) $\mathrm{CuBr}, 153 \mathrm{mg}$ $(1.44 \mathrm{mmol}) \mathrm{Na}_{2} \mathrm{CO}_{3}, 482 \mu \mathrm{~L}(4.6 \mathrm{mmol})$ bromobenzene to give 1,3-dibenzyl-5-phenyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione ($44 \mathrm{a}, 338 \mathrm{mg}, 0.83 \mathrm{mmol}, 61 \%$ yield). LC-MS [M+H] ${ }^{+}: 408 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 9 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{dd}, J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.51$, 151.61, 138.39, 137.71, 136.87, 136.15, 131.04, 128.73, 128.67, 128.63, 128.23, 127.81, 127.71, 127.34, 127.20, $125.54,110.26,96.22,48.68,44.48$. The reaction was carried out according to the general procedure, starting from $338 \mathrm{mg}(0.83 \mathrm{mmol})$ 1,3-dibenzyl-5-phenyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (44a), 1.01 g Pd on carbon to give 5-phenyl- $1 H$-pyrrolo[3,2-d]pyrimidine- $2,4(3 H, 5 H)$-dione ($45 \mathrm{a}, 28.0 \mathrm{mg}, 0.125 \mathrm{mmol}$, 15% yield). LC-MS [M+H]+: $228 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 10.65$ (bs, 2H), 7.46-7.39 (m, 5H), 7.36 $(\mathrm{d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 155.01,151.11,138.25,137.29,131.74,128.46$, 127.00, 125.04, 109.30, 96.51.

Synthesis of 5-(3-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45b).
The reaction was carried out according to the general procedure, starting from 450 mg (1.36 mmol) 1,3-dibenzyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (43), 4 mL NMP, 390 mg (2.72 mmol) CuBr, 153 mg $(1.44 \mathrm{mmol}) \mathrm{Na}_{2} \mathrm{CO}_{3}, 550 \mu \mathrm{~L}(4.60 \mathrm{mmol})$ 3-bromotoluene to give 1,3-dibenzyl-5-(3-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione ($44 \mathrm{~b}, 388.0 \mathrm{mg}, 0.915 \mathrm{mmol}, 68 \%$ yield). LC-MS [M+H]+: $422 \mathrm{~m} / \mathrm{z}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}$, $4 \mathrm{H}), 6.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 154.51,151.67,138.64,138.39,137.78,136.77,136.21,131.08,128.75,128.71,128.69,128.43,128.23$,
$127.72,127.36,127.19,126.15,122.89,110.38,96.04,48.69,44.48,21.33$. The reaction was carried out according to the general procedure, starting from $388 \mathrm{mg}(0.92 \mathrm{mmol})$ 1,3-dibenzyl-5-(3-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (44b), 1.16 g Pd on carbon to give 5-(3-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2, $4(3 H, 5 H)$-dione ($45 \mathrm{~b}, 31.0 \mathrm{mg}, 0.128 \mathrm{mmol}, 14 \%$ yield). LC-MS [M+H]+: $242 \mathrm{~m} / \mathrm{z}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 10.65(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.41-$ $7.12(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 155.06,151.21,138.26,138.00,137.29$, 132.34, 128.31, 127.73, 125.61, 122.27, 109.35, 96.45, 20.87.

Synthesis of 5-(3-methoxyphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45c).
The reaction was carried out according to the general procedure, starting from 450 mg (1.36 mmol) 1,3-dibenzyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (43), 4 mL NMP, 390 mg (2.72 mmol) $\mathrm{CuBr}, 153 \mathrm{mg}$ (1.44 mmol) $\mathrm{Na}_{2} \mathrm{CO}_{3}, 575 \mu \mathrm{~L}$ (4.60 mmol) 3-bromoanisole to give 1,3-dibenzyl-5-(3-methoxyphenyl)-1 H -pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (44c, $307 \mathrm{mg}, 0.72 \mathrm{mmol}, 53 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 438 \mathrm{~m} / \mathrm{z}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.36,154.13,151.34,139.15,137.52,136.69,135.95,130.94,129.02$, $128.46,128.40,127.96,127.44,127.09,126.94,117.46,113.15,111.53,109.94,96.03,55.11,49.04,44.21$. The reaction was carried out according to the general procedure, starting from 307 mg (0.73 mmol) 1,3-dibenzyl-5-(3-methoxyphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (44c), 921 mg Pd on carbon to give 5-(3-methoxyphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione ($45 \mathrm{c}, 40.0 \mathrm{mg}, 0.155 \mathrm{mmol}, 16 \%$ yield). LC-MS [M+H] ${ }^{+}: 258 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 10.63(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 159.14,155.00,151.09,139.31,137.40,131.80$, 129.20, 117.06, 112.83, 111.05, 109.30, 96.50, 55.31.

Synthesis of 5-(4-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45d).
The reaction was carried out according to the general procedure, starting from 450 mg (1.36 mmol) 1,3-dibenzyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (43), 4 mL NMP, $390 \mathrm{mg}(2.72 \mathrm{mmol}) \mathrm{CuBr}, 153 \mathrm{mg}$ $(1.44 \mathrm{mmol}) \mathrm{Na}_{2} \mathrm{CO}_{3}, 560 \mu \mathrm{~L}(4.60 \mathrm{mmol}) 4$-bromotoluene to give 1,3-dibenzyl-5-(4-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione ($44 \mathrm{~d}, 380 \mathrm{mg}, 0.90 \mathrm{mmol}, 66 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 422 \mathrm{~m} / \mathrm{z}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.03(\mathrm{~m}, 12 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, \mathrm{~J}=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.52,151.64,137.78,137.76$, $136.65,136.20,135.97,130.97,129.24,128.75,128.71,128.20,127.69,127.34,127.18,125.40,110.35,95.93,48.66$, $44.45,21.06$. The reaction was carried out according to the general procedure, starting from 380 mg (0.90 mmol) 1,3-dibenzyl-5-(4-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (44d), 1.14 g Pd on carbon to give 5-(4-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45d, $37.0 \mathrm{mg}, 0.153$ mmol, 17% yield). LC-MS [M+H] ${ }^{+}: 242 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.98(\mathrm{~s}, 1 \mathrm{H}), 10.63(\mathrm{~s}, 1 \mathrm{H}), 7.35$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (300 MHz, DMSO- d_{6}) $\delta 155.09,151.18,137.12,136.49,135.92,131.69,128.94,124.94,109.36,96.29,20.54$.

General procedure for the preparation of 8-substituted 3,4-dihydroisoquinoline derivatives 47a-d.
In a microwave tube, to the solution of 8-chloro-3,4-dihydroisoquinoline hydrochloride (46) in a toluene-water mixture (3:1, 4 mL), potassium fluoride (4.00 eq), tetrakis(triphenylphosphine)palladium(0) $(0.015 \mathrm{eq})$, and the corresponding phenylboronic acid (1.2 eq) were added and reacted in a microwave
reactor at $120^{\circ} \mathrm{C}$ for 4 h . The phases were separated, the organic layer was dried over MgSO_{4}, filtered and evaporated. The crude product was purified by reverse phase flash column chromatography.

8-Phenyl-3,4-dihydroisoquinoline (47a). The reaction was carried out according to the general procedure, starting from $300 \mathrm{mg}(1.49 \mathrm{mmol}) 8$-chloro-3,4-dihydroisoquinolin hydrochloride (46), $344 \mathrm{mg}(5.93 \mathrm{mmol})$ potassium fluoride, $25.0 \mathrm{mg}(0.022 \mathrm{mmol})$ tetrakis(triphenylphosphine)palladium(0), $217 \mathrm{mg}(1.78 \mathrm{mmol}$) phenylboronic acid to give 8-phenyl-3,4-dihydroisoquinoline ($47 \mathrm{a}, 140 \mathrm{mg}, 0.57 \mathrm{mmol}, 38 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 208 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}$, 2H), 2.91-2.86 (m, 2H).

8-(3-Methylphenyl)-3,4-dihydroisoquinoline (47b). The reaction was carried out according to the general procedure, starting from 300 mg (1.49 mmol) 8 -chloro-3,4-dihydroisoquinolin hydrochloride (46), 344 mg $(5.93 \mathrm{mmol})$ potassium fluoride, $25.0 \mathrm{mg}(0.022 \mathrm{mmol})$ tetrakis(triphenylphosphine) palladium(0), 243 mg (1.78 mmol) m-tolylboronic acid to give 8 -(3-methylphenyl)-3,4-dihydroisoquinoline ($47 \mathrm{~b}, 148 \mathrm{mg}, 0.67$ $\mathrm{mmol}, 45 \%$ yield $)$. LC-MS $[\mathrm{M}+\mathrm{H}]^{\dagger}: 222 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$.

8-(3-Methoxyphenyl)-3,4-dihydroisoquinoline (47c). The reaction was carried out according to the general procedure, starting from $300 \mathrm{mg}(1.49 \mathrm{mmol}) 8$-chloro-3,4-dihydroisoquinolin hydrochloride (46), 344 mg $(5.93 \mathrm{mmol})$ potassium fluoride, $25.0 \mathrm{mg}(0.022 \mathrm{mmol})$ tetrakis(triphenylphosphine)palladium(0), 271 mg (1.78 mmol) (3-methoxyphenyl)boronic acid to give 8-(3-methoxyphenyl)-3,4-dihydroisoquinoline ($47 \mathrm{c}, 172$ $\mathrm{mg}, 0.73 \mathrm{mmol}, 49 \%$ yield). LC-MS [M+H]+: $238 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 2 \mathrm{H})$.

8-(4-Methylphenyl)-3,4-dihydroisoquinoline (47d). The reaction was carried out according to the general procedure, starting from $300 \mathrm{mg}(1.49 \mathrm{mmol}) 8$-chloro-3,4-dihydroisoquinolin hydrochloride (46), 344 mg $(5.93 \mathrm{mmol})$ potassium fluoride, $25.0 \mathrm{mg}(0.022 \mathrm{mmol})$ tetrakis(triphenylphosphine)palladium(0), 243 mg (1.78 mmol) p-tolylboronic acid to give 8-(4-methylphenyl)-3,4-dihydroisoquinoline ($47 \mathrm{~d}, 131 \mathrm{mg}, 0.61$
 $7.28-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.

General procedure for the preparation of 8-substituted 1,2,3,4-tetrahydroisoquinoline derivatives 48a-d, 50a-c.
To the solution of the corresponding 8-substituted 3,4-dihydroisoquinoline in methanol, NaBH_{4} (1.1 eq) was added at $0^{\circ} \mathrm{C}$, then the mixture was stirred at RT for 1 h . After the reaction was completed, water was added to the mixture, and washed with DCM twice. The organic phase was dried over MgSO_{4}, filtered and evaporated. The product was used in the next step without further purification.

8-Phenyl-1,2,3,4-tetrahydroisoquinoline (48a). The reaction was carried out according to the general procedure, starting from $140 \mathrm{mg}(0.68 \mathrm{mmol})$ 8-phenyl-3,4-dihydroisoquinoline (47 a), 2.7 mL methanol, 28.0 mg (0.740 mmol) NaBH_{4} to give 8 -phenyl-1,2,3,4-tetrahydroisoquinoline ($48 \mathrm{a}, 106 \mathrm{mg}, 0.51 \mathrm{mmol}, 75 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 210 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.91(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H})$.

8-(3-Methylphenyl)-1,2,3,4-tetrahydroisoquinoline (48b). The reaction was carried out according to the general procedure, starting from $148 \mathrm{mg}(0.67 \mathrm{mmol})$ 8-(3-methylphenyl)-3,4-dihydroisoquinoline (47 b), 2.8 mL methanol, 28.0 mg (0.740 mmol) NaBH_{4} to give 8-(3-methylphenyl)-1,2,3,4-tetrahydroisoquinoline (48b, 103 $\mathrm{mg}, 0.46 \mathrm{mmol}, 69 \%$ yield $)$. LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 224 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=$ 6.0 Hz, 2H), $2.40(\mathrm{~s}, 3 \mathrm{H})$.

8-(3-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (48c). The reaction was carried out according to the general procedure, starting from 172 mg (0.73 mmol) 8-(3-methoxyphenyl)-3,4-dihydroisoquinoline (47 c), 2.7 mL methanol, 30.0 mg (0.793 mmol) NaBH_{4} to give 8-(3-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (48c, $123 \mathrm{mg}, 0.52 \mathrm{mmol}, 71 \%$ yield $)$. LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 240 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dt}, J=5.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H})$.

8-(4-Methylphenyl)-1,2,3,4-tetrahydroisoquinoline (48d). The reaction was carried out according to the general procedure, starting from 131 mg (0.59 mmol) 8-(4-methylphenyl)-3,4-dihydroisoquinoline (47 d), 2.9 mL methanol, 25.0 mg (0.661 mmol) NaBH_{4} to give) 8-(4-methylphenyl)-1,2,3,4-tetrahydroisoquinoline (48d, $102 \mathrm{mg}, 0.46 \mathrm{mmol}, 78 \%$ yield. LC-MS [M+H]+: $224 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

4-Methyl-8-piperidin-1-yl-1,2,3,4-tetrahydroisoquinoline (50a). The reaction was carried out according to the general procedure, starting from $1.46 \mathrm{~g}(6.81 \mathrm{mmol}) 8$-piperidin-1-yl-3,4-dihydroisoquinoline (49 a), 30 mL methanol, 283 mg (7.49 mmol) NaBH_{4} to give 4-methyl-8-piperidin-1-yl-1,2,3,4-tetrahydroisoquinoline (50a, $1.20 \mathrm{~g}, 5.59 \mathrm{mmol}, 82 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 217 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.82-2.67(\mathrm{~m}, 6 \mathrm{H}), 1.69-$ 1.60 (m, 4H), 1.53 (s, 2H).

4-Methyl-8-morpholin-4-yl-1,2,3,4-tetrahydroisoquinoline (50b). The reaction was carried out according to the general procedure, starting from $1.40 \mathrm{~g}(6.47 \mathrm{mmol}) 8$-morpholin-4-yl-3,4-dihydroisoquinoline (49 b), 28 mL methanol, $270 \mathrm{mg}(7.14 \mathrm{mmol}) \mathrm{NaBH}_{4}$ to give 4-methyl-8-morpholin-4-yl-1,2,3,4-tetrahydroisoquinoline (50b, $1.13 \mathrm{~g}, 5.17 \mathrm{mmol}, 80 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]+: 219 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=12.3,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.11(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 6 \mathrm{H})$.

4-Methyl-8-pyrrolidin-1-yl-1,2,3,4-tetrahydroisoquinoline (50c). The reaction was carried out according to the general procedure, starting from 2.00 g (9.99 mmol) 8-pyrrolidin-1-yl-3,4-dihydroisoquinoline (49 c), 40 mL methanol, $416 \mathrm{mg}(11 \mathrm{mmol}) \mathrm{NaBH}_{4}$ to give 4-methyl-8-pyrrolidin-1-yl-1,2,3,4-tetrahydroisoquinoline (50c, $1.76 \mathrm{~g}, 8.69 \mathrm{mmol}, 87 \%$ yield). LC-MS [M+H]+: $203 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.21-3.09(\mathrm{~m}, 6 \mathrm{H}), 2.93(\mathrm{dd}, J=14.9$, $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 4 \mathrm{H})$.
[(Benzyloxy)methyl](triphenyl)phosphonium chloride (52). To the solution of [(chloromethoxy)-methyl]benzene $(51,11.30 \mathrm{~g}, 72.2 \mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$, triphenylphosphine ($20.70 \mathrm{~g}, 78.9 \mathrm{mmol}$) was added and stirred at $90{ }^{\circ} \mathrm{C}$ for 16 h . The white precipitate was filtered and dried in vacuum. [(benzyloxy)methyl](triphenyl)phosphonium chloride (52, $23.40 \mathrm{~g}, 55.9 \mathrm{mmol}, 78 \%$ yield) was produced. Mp 170-173 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.93(\mathrm{td}, J=7.2,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.84-7.75(\mathrm{~m}, 12 \mathrm{H}), 7.33(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H})$.

Ethyl 4-[(E)-2-(benzyloxy)ethenyl]-1H-pyrrole-2-carboxylate (54). The suspension of [(benzyloxy)methyl](triphenyl)phosphonium chloride (52, $9.00 \mathrm{~g}, 21.5 \mathrm{mmol}$) in dry THF (100 mL) was stirred and cooled to $-78{ }^{\circ} \mathrm{C}$, then butyllithium solution was added dropwise ($7.75 \mathrm{~mL}, 19.4 \mathrm{mmol}$), and stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . To this solution, ethyl 4-formyl- 1 H -pyrrole-2-carboxylate ($53,0.90 \mathrm{~g}, 5.38 \mathrm{mmol}$) dissolved in dry THF $(10 \mathrm{~mL})$ was added dropwise and the reaction was warmed to RT and stirred for 16 h. The organic layer was washed with water, dried over MgSO_{4}, filtered and purified by flash chromatography in hexane-ethyl acetate to give ethyl 4-[(E)-2-(benzyloxy)ethenyl]-1H-pyrrole-2carboxylate (54, $0.80 \mathrm{~g}, 2.95 \mathrm{mmol}, 55 \%$ yield). LC-MS [M+H] ${ }^{+}: 272 \mathrm{~m} / \mathrm{z} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15$ $(\mathrm{s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ $(\mathrm{s}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 4-(2-hydroxyethyl)-1H-pyrrole-2-carboxylate (55). To the solution of ethyl 4-[(E)-2-(benzyloxy)ethenyl]$1 H$-pyrrole-2-carboxylate ($54,0.217 \mathrm{~g}, 0.8 \mathrm{mmol}$) in methanol (15 mL), Pd on carbon ($0.022 \mathrm{~g}, 10 \mathrm{~m} / \mathrm{m} \%$) was added and hydrogenated for 2 days at $110{ }^{\circ} \mathrm{C}$. It was cooled to RT, the suspension was filtered through celite and washed with methanol ($3 \times 5 \mathrm{~mL}$). After removal of the solvent, ethyl 4-(2-hydroxyethyl)-1H-pyrrole-2-carboxylate (56, $0.11 \mathrm{~g}, 0.6 \mathrm{mmol}, 75 \%$ yield) was obtained. LC-MS [M+H]+: $184 \mathrm{~m} / \mathrm{z}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 4-\{2-[(methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56). To the solution of ethyl 4-(2-hydroxyethyl)-1H-pyrrole-2-carboxylate ($55,1.27 \mathrm{~g}, 6.89 \mathrm{mmol}$) in dry THF (140 mL), triethylamine (0.963 $\mathrm{mL}, 6.89 \mathrm{mmol}$) and methanesulfonyl chloride $(0.535 \mathrm{~mL}, 6.89 \mathrm{mmol})$ were added at RT and stirred for 16 h. The crude product was used in the next step without further purification. LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 262 \mathrm{~m} / \mathrm{z}$.

General procedure for the preparation of ester derivatives 57 and 58.
To the solution of the corresponding linker part 45a-d, 48a-d, 50a-c in acetonitrile, $\mathrm{K}_{2} \mathrm{CO}_{3}$ and ethyl 4-$\left\{2-\left[\left(\right.\right.\right.$ methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56) were added and stirred at $100^{\circ} \mathrm{C}$ for 16 h . The solvent was evaporated and the crude product was purified by reverse phase flash chromatography.

Ethyl 4-[2-(2,4-dioxo-5-phenyl-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl)ethyl]-1H-pyrrole-2-carboxylate (57a). The reaction was carried out according to the general procedure, starting from 22.0 mg (0.097 mmol) 5-phenyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45a), $27.0 \mathrm{mg}(0.194 \mathrm{mmol}, 2.00 \mathrm{eq}) \mathrm{K}_{2} \mathrm{CO}_{3}, 28 \mathrm{mg}$ $(0.10 \mathrm{mmol}, 1.10 \mathrm{eq})$ ethyl 4-\{2-[(methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56) to give ethyl 4-[2-(2,4-dioxo-5-phenyl-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl)ethyl]-1H-pyrrole-2-carboxylate (57a, $8.0 \mathrm{mg}, 0.0204 \mathrm{mmol}, 21 \%$ yield). LC-MS [M+H]+: $393 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-\{2-[5-(3-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2carboxylate (57b). The reaction was carried out according to the general procedure, starting from 31.0 mg (0.128 mmol) 5-(3-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine- $2,4(3 H, 5 H)$-dione (45 b), 35 mg (0.26 mmol , $2.00 \mathrm{eq}) \mathrm{K}_{2} \mathrm{CO}_{3}, 37.0 \mathrm{mg}(0.141 \mathrm{mmol}, 1.10 \mathrm{eq})$ ethyl $4-\{2-[($ methylsulfonyl)oxy]ethyl $\}-1 \mathrm{H}$-pyrrole-2carboxylate (56) to give ethyl 4-\{2-[5-(3-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylate (57b, $13.0 \mathrm{mg}, 0.032 \mathrm{mmol}, 25 \%$ yield). LC-MS [M+H] ${ }^{+}$: $407 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-\{2-[5-(3-methoxyphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylate $(57 \mathrm{c})$. The reaction was carried out according to the general procedure, starting from 21.0 mg (0.082 mmol) 5-(3-methoxyphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45c), 23.0 mg (0.164
mmol, 2 eq) $\mathrm{K}_{2} \mathrm{CO}_{3}, 24 \mathrm{mg}(0.09 \mathrm{mmol}, 1.1 \mathrm{eq})$ ethyl $4-\{2-[($ methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2carboxylate (56) to give ethyl 4-\{2-[5-(3-methoxyphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylate (57c, $7.0 \mathrm{mg}, 0.016 \mathrm{mmol}, 20 \%$ yield). LC-MS [M+H]+: 423 m / z.

Ethyl 4-\{2-[5-(4-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2carboxylate (57d). The reaction was carried out according to the general procedure, starting from 37.0 mg (0.153 mmol) 5-(4-methylphenyl)-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (45d), 42.0 mg (0.306 mmol, 2.00 eq$) \mathrm{K}_{2} \mathrm{CO}_{3}, 44 \mathrm{mg}(0.17 \mathrm{mmol}, 1.10 \mathrm{eq})$ ethyl $4-\{2-[($ methylsulfonyl)oxy]ethyl $\}-1 \mathrm{H}$-pyrrole-2carboxylate (56) to give ethyl 4-\{2-[5-(4-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylate (57d, $15.0 \mathrm{mg}, 0.0367 \mathrm{mmol}, 24 \%$ yield). LC-MS [M+H] : $407 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-[2-(8-phenyl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58a). The reaction was carried out according to the general procedure, starting from $24.0 \mathrm{mg}(0.115 \mathrm{mmol}) 8$-phenyl-1,2,3,4tetrahydroisoquinoline (48a), $64 \mathrm{mg}(0.46 \mathrm{mmol}, 4.00 \mathrm{eq}) \mathrm{K}_{2} \mathrm{CO}_{3}, 30.0 \mathrm{mg}(0.115 \mathrm{mmol}, 1.00 \mathrm{eq})$ ethyl 4-\{2-[(methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56) to give ethyl 4-[2-(8-phenyl-3,4-dihydro-isoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58a, $18.0 \mathrm{mg}, 0.0483 \mathrm{mmol}, 42 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]^{+}: 375 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-\{2-[8-(3-methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58b). The reaction was carried out according to the general procedure, starting from 26.0 mg (0.115 mg) 8-(3-methylphenyl)-1,2,3,4-tetrahydroisoquinoline ($48 \mathbf{b}$), $64 \mathrm{mg}(0.46 \mathrm{mmol}, 4.00 \mathrm{eq}) \mathrm{K}_{2} \mathrm{CO}_{3}, 30.0 \mathrm{mg}(0.115$ mmol, 1.00 eq) ethyl 4-\{2-[(methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56) to give ethyl 4-\{2-[8-(3-methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58b, $8.0 \mathrm{mg}, \quad 0.0207$ mmol, 18\% yield). LC-MS [M+H]+: $389 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-\{2-[8-(3-methoxyphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58c). The reaction was carried out according to the general procedure, starting from 28.0 mg (0.115 mmol) 8-(3-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (48c), 64.0 mg ($0.46 \mathrm{mmol}, 4.00 \mathrm{eq}$) $\mathrm{K}_{2} \mathrm{CO}_{3}, 30 \mathrm{mg}(0.12$ mmol, 1.00 eq) ethyl 4-\{2-[(methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56) to give ethyl 4-\{2-[8-(3-methoxyphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58c, $24.0 \mathrm{mg}, 0.0598$ mmol, 52% yield). LC-MS [M+H]+: $405 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-\{2-[8-(4-methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58d). The reaction was carried out according to the general procedure, starting from 26.0 mg (0.115 mmol) 8-(4-methylphenyl)-1,2,3,4-tetrahydroisoquinoline (48 d), $64 \mathrm{mg}(0.46 \mathrm{mmol}, 4.00 \mathrm{eq}) \mathrm{K}_{2} \mathrm{CO}_{3}, 30.0 \mathrm{mg}(0.115 \mathrm{mmol}$, $1.00 \mathrm{eq})$ ethyl $4-\{2-[($ methylsulfonyl)oxy]ethyl $\}-1 H$-pyrrole-2-carboxylate (56) to give ethyl 4-\{2-[8-(4-methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58d, $13.0 \mathrm{mg}, \quad 0.0334$ mmol, 29\% yield). LC-MS [M+H]+: $389 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-[2-(8-piperidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58e). The reaction was carried out according to the general procedure, starting from 25.0 mg (0.115 mmol) 4-methyl-8-piperidin-1-yl-1,2,3,4-tetrahydroisoquinoline (50a), $64 \mathrm{mg}(0.46 \mathrm{mmol}, 4.00 \mathrm{eq}) \mathrm{K}_{2} \mathrm{CO}_{3}, 30.0 \mathrm{mg}(0.115 \mathrm{mmol}$, $1.00 \mathrm{eq})$ ethyl 4-\{2-[(methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56) to give ethyl 4-[2-(8-piperidin1 -yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58e, $16.0 \mathrm{mg}, 0.0414 \mathrm{mmol}, 36 \%$ yield). LC-MS $[\mathrm{M}+\mathrm{H}]+382 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-[2-(8-morpholin-4-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58f). The reaction was carried out according to the general procedure, starting from 25.0 mg (0.115 mmol) 4-methyl-8-morpholin-4-yl-1,2,3,4-tetrahydroisoquinoline (50b), $64 \mathrm{mg}(0.46 \mathrm{mmol}, 4.00 \mathrm{eq}) \mathrm{K}_{2} \mathrm{CO}_{3}, 30.0 \mathrm{mg}(0.115$ mmol, 1.00 eq$)$ ethyl 4 -\{2-[(methylsulfonyl)oxy]ethyl\}-1H-pyrrole-2-carboxylate (56) to give ethyl 4-[2-(8-morpholin-4-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58f, $15.0 \mathrm{mg}, 0.0391$ mmol, 34% yield). LC-MS [M+H] $: 384 \mathrm{~m} / \mathrm{z}$.

Ethyl 4-[2-(8-pyrrolidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58g). The reaction was carried out according to the general procedure, starting from 23.0 mg (0.115 mmol) 4-methyl-8-pyrrolidin-1-yl-1,2,3,4-tetrahydroisoquinoline (50c), 64 mg ($0.46 \mathrm{mmol}, 4.00 \mathrm{eq}$) $\mathrm{K}_{2} \mathrm{CO}_{3}, 30.0 \mathrm{mg}(0.115$ mmol, 1.00 eq$)$ ethyl 4 -\{2-[(methylsulfonyl)oxy]ethyl $\}-1 H$-pyrrole-2-carboxylate (56) to give ethyl 4-[2-(8-pyrrolidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58g, $8.0 \mathrm{mg}, \quad 0.0219$ mmol, 19\% yield). LC-MS [M+H]+: $368 \mathrm{~m} / \mathrm{z}$.

General procedure for the preparation of carboxylic acid derivatives 16-26.
The solution of the corresponding esters ($\mathbf{5 7 a - d}, \mathbf{5 8 a}-\mathbf{g}$) in dioxane- $1 \mathrm{M} \mathrm{NaOH}(1: 1,4 \mathrm{~mL})$ was stirred for 2 h , then set to pH 7 with 1 M HCl solution and the solvent was removed. The resulting crude product was suspended with ethanol $(2 \mathrm{~mL})$ and filtered. After the evaporation of the solvent, the expected product was obtained.

4-[2-(2,4-Dioxo-5-phenyl-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl)ethyl]-1H-pyrrole-2-carboxylic acid (16). The reaction was carried out according to the general procedure, starting from 4.0 mg (0.01 mmol) ethyl 4-[2-(2,4-dioxo-5-phenyl-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl)ethyl]-1H-pyrrole-2carboxylate (57a) to give 4-[2-(2,4-dioxo-5-phenyl-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl)-ethyl]-1H-pyrrole-2-carboxylic acid (16, $2.9 \mathrm{mg}, 0.0079 \mathrm{mmol}, 80 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $11.59(\mathrm{~s}, 1 \mathrm{H}), 10.85(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{td}, J=8.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $160.78,154.80,150.87,138.66,132.30,127.68,122.94,122.23,121.06,115.54,109.91,97.25,59.80,45.23,25.17$. HRMS (ESI ${ }^{+}$m/z [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}$: 387.1069, found: 387.1068.

4-\{2-[5-(3-Methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2carboxylic acid (17). The reaction was carried out according to the general procedure, starting from 7.0 mg (0.015 mmol) ethyl 4-\{2-[5-(3-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylate (57b) to give 4-\{2-[5-(3-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (17, $3.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 61 \%$ yield). ${ }^{1} \mathrm{H}-$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 10.83(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-$ $3.94(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 160.76,154.74,150.88,138.85$, 138.61, 138.42, 132.26, 128.72, 128.32, 126.18, 122.94, 122.84, 122.23, 122.16, 121.38, 121.06, 115.54, 109.93, 97.11, 59.80, 45.22, 25.17, 21.27. HRMS (ESI $\left.{ }^{+}\right) m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}: 401.1226$, found: 401.1220.

4-\{2-[5-(3-Methoxyphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-
carboxylic acid (18). The reaction was carried out according to the general procedure, starting from 3.0 mg (0.0060 mmol) ethyl 4-\{2-[5-(3-methoxyphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylate (57c) to give 4-\{2-[5-(3-methoxyphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (18, $1.5 \mathrm{mg}, 0.0038 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H}-$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 10.83(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$
$(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.81$, $160.77,159.59,154.75,150.85,139.70,139.00,129.67,122.94,122.23,121.05,117.72,115.55,113.50,111.66$, $109.91,59.80,55.82,44.18,25.61,25.17,14.86$. HRMS (ESI $+\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{5}: 395.1355$, found: 395.1357.

4-\{2-[5-(4-Methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (19). The reaction was carried out according to the general procedure, starting from 7.0 mg (0.018 mmol) ethyl 4-\{2-[5-(4-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro-3H-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylate (57d) to give 4-\{2-[5-(4-methylphenyl)-2,4-dioxo-1,2,4,5-tetrahydro$3 H$-pyrrolo[3,2-d]pyrimidin-3-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (19, $3.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 10.88-10.74(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}$, 2H), 2.77-2.72 (m, 2H), $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 160.76,154.80,150.87,138.70,137.13$, 136.30, 132.19, 122.92, 122.23, 122.16, 121.38, 121.07, 115.53, 109.96, 96.98, 59.80, 45.21, 25.17, 20.99. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}$: 401.1226, found: 401.1228.

4-[2-(8-Phenyl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid (20). The reaction was carried out according to the general procedure, starting from $9.0 \mathrm{mg}(0.024 \mathrm{mmol})$ ethyl 4-[2-(8-phenyl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58a) to give 4-[2-(8-phenyl-3,4-dihydro-isoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid (20, $5.9 \mathrm{mg}, 0.017 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 10.65(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=11.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{dt}, J=$ $10.2,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=$ $15.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.71$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.12,133.10,128.54,124.00,123.44,122.26,119.92,118.32,114.87$, $56.46,53.81,49.65,49.01,26.28,25.64,21.75$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}: 347.1760$, found: 347.1758.

4-\{2-[8-(3-Methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (21). The reaction was carried out according to the general procedure, starting from $4.0 \mathrm{mg}(0.01 \mathrm{mmol})$ ethyl 4 - $\{2-[8-(3-$ methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58b) to give 4-\{2-[8-(3-methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (21, $3.0 \mathrm{mg}, 0.0083$ $\mathrm{mmol}, 76 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 10.75(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.20$ $(\mathrm{m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=15.7,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 161.60,140.20,138.89,137.83,132.04,129.24,128.40,128.30,128.03$, $127.76,127.55,125.63,122.87,121.71,119.01,114.32,66.96,55.48,51.37,47.78,21.00 . \mathrm{HRMS}(E S I+) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$: 361.1916, found: 361.1917.

4-\{2-[8-(3-Methoxyphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (22). The reaction was carried out according to the general procedure, starting from $12.0 \mathrm{mg}(0.03 \mathrm{mmol})$ ethyl $4-\{2-[8-(3-$ methoxyphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58c) to give 4-\{2-[8-(3-methoxyphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (22, $9.4 \mathrm{mg}, 0.025$ $\mathrm{mmol}, 83 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 11.24$ (s, 1H), 7.35-7.32(m,2H), 7.25 (s, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.60-6.59(\mathrm{~m}, 1 \mathrm{H}), 4.31$ (dd, $J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 4 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.75$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 171.90,162.07,159.69,140.83,140.42,132.65,130.14,128.41,128.33$,
127.95, 126.25, 123.33, 122.16, 121.30, 119.59, 114.80, 114.74, 113.74, 55.91, 55.63, 51.58, 49.00, 48.06, 34.42, 25.63, 21.50. HRMS (ESI $) ~ m / z[M+H]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}: 377.1865$, found: 377.1867.

4-\{2-[8-(4-Methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (23). The reaction was carried out according to the general procedure, starting from $6.0 \mathrm{mg}(0.016 \mathrm{mmol})$ ethyl 4 -\{2-[8-(4-methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylate (58 d) to give 4 -\{2-[8-(4-methylphenyl)-3,4-dihydroisoquinolin-2(1H)-yl]ethyl\}-1H-pyrrole-2-carboxylic acid (23, $4.9 \mathrm{mg}, 0.014$ mmol, 85% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 11.08$ (s, 1H), 7.35 (d, J=7.6 Hz, 1H), 7.27$7.23(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=15.4,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI+) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}: 361.1916$, found: 361.1915.

4-[2-(8-Piperidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid (24). The reaction was carried out according to the general procedure, starting from $8.0 \mathrm{mg}(0.021 \mathrm{mmol})$ ethyl 4-[2-(8-piperidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58e) to give 4-[2-(8-piperidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid ($24,5.8 \mathrm{mg}, 0.0164 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H}-$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.57(\mathrm{~s}, 1 \mathrm{H}), 11.13(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=13.4,8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.37(\mathrm{dd}, J=11.6,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=18.6,11.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.79(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI ${ }^{+}$m/z [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}$: 354.2182, found: 354.2187.

4-[2-(8-Morpholin-4-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid (25). The reaction was carried out according to the general procedure, starting from $7.0 \mathrm{mg}(0.019 \mathrm{mmol})$ ethyl $4-[2-(8-$ morpholin-4-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate (58f) to give 4-[2-(8-morpholin-4-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid (25, $5.5 \mathrm{mg}, 0.0155$ mmol, 81% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.58(\mathrm{~s}, 1 \mathrm{H}), 11.42(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=15.0$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.63(\mathrm{~m}, 6 \mathrm{H}), 3.28(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=17.5,9.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.71-$ $2.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.09,150.34,133.26,128.54,124.50,124.26,123.41,122.23$, 120.04, 118.37, 114.86, 66.88, 56.42, 52.67, 49.54, 48.99, 48.53, 25.61, 21.62. HRMS (ESI ${ }^{+}$) $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}$: 356.1974, found: 356.1977.

4-[2-(8-Pyrrolidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid (26). The reaction was carried out according to the general procedure, starting from $4.0 \mathrm{mg}(0.011 \mathrm{mmol})$ ethyl 4 -[2-(8-pyrrolidin-1-yl-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]-1H-pyrrole-2-carboxylate ($\mathbf{5 8 g}$) to give 4-[2-(8-pyrrolidin-1-yl-3,4-dihydroisoquinolin-2(1 H)-yl)ethyl]-1H-pyrrole-2-carboxylic acid (26, $1.9 \mathrm{mg}, 0,0056 \mathrm{mmol}, 52 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.79(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}$, $6 \mathrm{H}), 2.35-2.33(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}: 340.2025$, found: 340.2023.

References

1. Farnaby, W.; Fieldhouse, C.; Hazel, K.; Kerr, C.; Kinsella, N.; Livermore, D.; Merchant, K.; Miller, D.. Pyridazinone compounds and their use as DAAO inhibitors; Int. Publ. Num.: WO2013027000.
2. Yuasa, Y.*; Tsuruta, H.; Yuasa, Y. Facile Synthesis of β-Keto Esters from Methyl Acetoacetate and Acid Chloride: The Barium Oxide/Methanol System1. 1998, 1996-1998.
3. Alvarez-Builla, J.; Vaquero, J.J.; Garcia Navio, J.L.; Cabello, J.F.; Sunkel, C.; Fau de Casa-Juana, M.; Dorrego, F.; Santos, L. 1,5-Bis- (N-benzyl-N,N-diethylammoninm) diethylether, dichloride (BBDE C1). A novel bis-ammonium salt as phase transfer catalyst. Tetrahedron 1990, 46, 967-978.
4. Tsukayama, M.; Kikuchi, M.; Kawamura, Y. Regioselective Prenylation of Phenols by Palladium Catalyst: Syntheses of Prenylphenols and Chromans. Heterocycles 1994, 38, 1487.
5. Thongsornkleeb, C.; Rabten, W.; Bunrit, A.; Tummatorn, J.; Ruchirawat, S. Facile access to 2,5-disubstituted-4-chloromethyl-3-iodofuran derivatives via ICl-mediated cyclization of 1-alkyl-2alkynylallylic alcohols. Tetrahedron Lett. 2012, 53, 6615-6619.
6. Terry-Lorenzo, R.T.T.; Chun, L.E.E.; Brown, S.P.P.; Heffernan, M.L.L.R.; Fang, Q.K.K.; Orsini, M.A.A.; Pollegioni, L.; Hardy, L.W.W.; Spear, K.L.L.; Large, T.H.H. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation. Biosci. Rep. 2014, 34, 487-499.
7. Bourke, D.G.; Burns, C.J.; Cuzzupe, A.N.; Feutrill, J.T.; Kling, M.R.; Nero, T.L.. N-containing heterocyclic compounds; Int. Publ. Num.: WO2009062258.
8. Hargitai, C.; Nagy, T.; Halász, J.; Koványi-Lax, G.; Németh, G.; Simig, G.; Volk, B. Synthesis and further transformations of 8-chloro-3,4-dihydroisoquinoline. Tetrahedron 2018, 74, 7009-7017.
