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Extended Materials and Methods 
 
S1. Potential of interaction between one kinesin head and MT in an ATPase cycle 

As mentioned in the main text, the available experimental data showed that the kinesin 
head in nucleotide-free, ATP or ADP.Pi state has a high binding energy to MT while in ADP 
state has a low binding energy [S1–S3]. Moreover, immediately after Pi release the head 
temporarily has a smaller binding energy to the local binding site (denoted by Ew1) on MT 
than to other unperturbed binding sites (denoted by Ew2 > Ew1) and after time tr, the binding 
energy of ADP-head to the local tubulin becoming Ew2, same as that to other tubulins. These 
changes of binding energy in an ATPase cycle can be explained as follows. In nucleotide-free, 
ATP or ADP.Pi state, the strong interaction between the head and local MT-tubulin induces 
conformational changes of the local tubulin [S4] (top panel inside box of Figure 1). After Pi 
release, the head changes rapidly its conformation from that in ADP.Pi form to that in ADP 
form, with the interaction between the ADP-head and MT-tubulin becoming weak. Since the 
weak interaction between the ADP-head and MT cannot induce conformational change of the 
MT-tubulin [S5], the deformed conformation of the local tubulin is then relaxed to the 
normally unchanged conformation in a time period of tr. Thus, there exists a time period of tr 
when the ADP-head has a very weak interaction with the local deformed tubulin with a 
binding energy Ew1 (middle panel inside box of Figure 1). After tr, the binding energy of the 
ADP-head to the local tubulin changes to Ew2 (bottom panel inside box of Figure 1). After 
ADP release, the nucleotide-free head interacts strongly with MT and the strong interaction 
induces rapidly conformational changes of the MT-tubulin, with the potential returning to top 
panel inside box of Figure 1. Based on the above, the potential of the kinesin head interacting 
with MT in an ATPase cycle can be described mathematically as follows. 

In nucleotide-free state the kinesin head binds strongly to MT, with the interaction 
potential being written as S S( , , , , , ) ( ) ( ) ( ) ( ) ( ) ( )x y zV x y z V x V y V z V V V        , where coordinate 
oxyz is defined in Figure 1,  ,   and   are angles characterizing respectively the nutation, 
rotation and precession motions (when the kinesin head is in the MT-binding site,  ,   
and   correspond to the angles of rotations in xoz, xoy and yoz planes, respectively). Term 
VSx(x) < 0 (with the maxima equal to zero) represents the interaction potential between the 
kinesin head and MT along a MT protofilament and is approximately shown inside box of 
Figure 1. The available crystal structural data of the single kinesin head bound with MT 
showed that the head is bound sterically to the position between the α-tubulin and β-tubulin 
along an MT filament and not bound to the position between the β-tubulin and α-tubulin and 
other positions [S4,S6]. Thus, we take the period of VSx(x), d = 8.2 nm, equal to the MT-tubulin 
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heterodimer repeat distance [S4,S6,S7]. Terms 0( ) exp ( ) /y yV y y y A      and 
 0( ) exp /z zV z z z A    denote the potential changes in the vertical and horizontal directions, 

respectively, with Ay and Az characterizing the interaction distances. Note that due to the 
steric restriction of MT, the position of the kinesin head is confined to the region y  y0. Terms 

 0( ) exp /V A      ,  0( ) exp /V A       and  0( ) exp /V A       denote the 
potential changes arising from the head rotations, with A , A  and A  characterizing the 
interaction angles. Here, we define 00 0 0 0 0y z        in the MT-binding state. These 
potential changes Vy(y), Vz(z), ( )V  , ( )V   and ( )V   are similar to the Morse potential 
form that describes the van der Waals interaction. To be consistent with the Debye length that 
is in the order of 1 nm in solution, we take Ay = Az = 1 nm and 

headr A =
headr A  =

headr A  = 1 nm, 
where the kinesin head is approximately a sphere of radius rhead = 2.5 nm. After ATP binding 
and then hydrolysis to ADP.Pi the kinesin head remains bound strongly to MT, with the 
interaction potential still being approximately described by S ( , , , , , )V x y z    . 

Immediately after Pi release, the interaction potential becomes one that can be written as 

W Wx1( , , , , ) ( ) ( ) ( ) ( ) ( ) ( )y zV x y z V x V y V z V V V       , with VWx1(x) < 0 being approximately shown in 
the middle panel inside box of Figure 1 and Vy(y), Vz(z), ( )V  , ( )V   and ( )V   being the 
same as those defined above. Note that immediately after Pi release the binding affinity of 
kinesin for the local MT-binding site where the ADP.Pi-kinesin has just bound, Ew1, is smaller 
than at other MT-binding sites, Ew2. After a period of time, tr, the affinity of the local 
MT-binding site for ADP-head relaxes to the normal value and the interaction potential 
becomes W Wx2( , , , , ) ( ) ( ) ( ) ( ) ( ) ( )y zV x y z V x V y V z V V V       , with VWx2(x) being shown 
approximately in the bottom panel inside box of Figure 1. Note that the weak binding affinity 
of ADP-kinesin for MT, Ew2, is smaller than the strong binding affinity of nucleotide-free, 
ATP- or ADP.Pi-kinesin for MT, ES. 

Previous studies showed that for the case of monomeric kinesin such as KIF1A, 
asymmetric ratio d1/d2 of the potential (inside box of Figure 1) has a sensitive effect on the 
movement dynamics [S8–S10]. Here, we have checked that for the case of dimeric kinesin, the 
results for the movement dynamics (such as velocity and run length) are only determined 
sensitively by the depth of the weak potential well (Ew1 and Ew2) while the form of the 
potential (whether it is asymmetric or symmetric) has little effect on the results. This is 
understandable, because in the case of dimeric kinesin, in order for the motor to make a 
forward step, it is only required that the trailing head is detach from site I while the other 
head is bound fixedly to site II (Figure 1a). Since the detachment involves only the head to 
escape from the potential well, it is expected the detachment is only sensitively determined 
by the depth of the potential well while is insensitive to the potential form. In the calculations 
we take the potential having the form as shown inside box of Figure 1, with the asymmetric 
ratio d1/d2 = 3/5, as done before for monomeric KIF1A [S10]. 
 
S2. Potential characterizing the effect of NL docking of the MT-bound head on the movement of the 
tethered ADP-head 

In our model, the NL docking of the MT-bound head provides an energy barrier ENL to 
prevent the tethered ADP-head from moving backward but allow the head to move forward 
freely. Thus, the effect of the NL docking on the motion of the tethered ADP-head relative to 
the MT-bound head can be approximately characterized by a potential VNL(x) having the form 

NL NL( )V x E ,        x   0,                     (S1) 

NL NL( ) ( 1)V x E x   ,  0 < x   1,                  (S2) 
NL ( ) 0V x  ,           x > 1,                     (S3) 

where the MT-bound head is located at (x, y, z) = (0, 0, 0). 
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S3. Potential of interaction between two heads 

 We take the potential of interaction between two kinesin heads with the NL of the 
MT-bound head being undocked having the following form: 
 

     2 2 2
1 1 1

I I1
r

1 1 1

( , , , , , ) exp

                              exp exp exp

x x y y z z
V x y z E

A

A A A  

  

     

          
 

       
              

          (S4) 

 
where (x, y, z) is the center-of-mass coordinate of the detached ADP-head relative to that of 
the MT-bound head (which is taken as the origin of the coordinate) during one stepping 
period, (x1,y1,z1) is the position of the detached ADP-head in the intermediate state, 1 , 1  
and 1  are the nutation, rotation and precession angles of the detached ADP-head in the 
intermediate state, EI1 > 0 is the strong interaction strength and Ar = 1 nm characterizes the 
interaction distance. Based on the available structural data [S11], we take 1 180   , 1 80     
and 1  = 0 in the calculation, thus giving (x1,y1,z1) = head2 (cos80 ,sin80 ,0)r    . We have checked 
that taking other values of 1 , 1  and 1  has nearly no effect on our results. When the NL 
of the MT-bound head is docked, the potential is still described by Equation (S4), but with EI1 
being replaced with EI2 (< EI1). 
 
S4. Interaction between the NL and head 

 To determine the interaction between the NL and kinesin head, we determine the 
elasticity of the linker by using all-atom MD simulations (see Section S6), as used elsewhere 
[S12]. Here, we take the NL of wild-type Drosophila kinesin-1 as an example to describe the 
simulation procedure. We take residues 324 through 338 from the structural data (PDB 3KIN), 
where residues 325 – 338 constitute the NL. We adjust the line connecting the alpha carbon 
(CA) atom of residue 324 and that of residue 338 along a given direction. We fix the CA atom 
of the residue 324 and impose a series of constant forces on the CA atom of the residue 338 
along the given direction, as done before [S13]. We then calculate the distance, rNL, between 
the two terminal CAs of the NL after reaching equilibrium, and a distance is calculated using 
data of 20-ns simulation after reaching equilibrium. In the literature, the calculated data of the 
force-extension relation of a flexible peptide were usually fitted by using the worm-like-chain 
(WLC) model. However, it is noted that the simulated data of the force-extension relation of 
the kinesin’s NL are better fitted by using the exponential function than WLC model, 
especially at small values of pulling force (see Figure S1). Thus, here we use the exponential 
function to fit the simulated data 
 

   NL NL NLexpF r a br                        (S5) 
 
where a and b are constants. Then the force on the detached head, which results from the 
stretched NL, can be calculated by using Equation (S5). 
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Figure S1. Force-extension relation of the NL of Drosophila kinesin-1 (Kin114) head. Dots represent the 
results obtained by using all-atom MD simulations. Red line is the fit curve with WLC model, 

      2
p c c4 1 1 4Bf x k T L x L x L

    
 

, where the contour length Lc = 5.26 nm and the persistence 
length Lp = 0.56 nm. Blue line is the fit curve with Equation (S5),    NL NL NLexpF r a br , with a = 
7.064 10–5 pN and b = 3.148 nm–1. 
 
S5. Equations for the mechanical stepping of the motor and its dissociation from MT 

 In this work, for simplicity of analysis, we do not consider the dissociation of the 
nucleotide-free or ATP- or ADP.Pi-head from MT, because in nucleotide-free, ATP and 
ADP.Pi states the kinesin head binds to MT strongly. First, we present equations for the 
movement of the ADP-head relative to the nucleotide-free or ATP- or ADP.Pi-head bound 
fixedly to MT. We define the coordinate oxyz as shown in Figure 1, where the origin of the 
coordinate (0,0,0) is at the center-of-mass position of the MT-bound head. We consider the 
translation motion of the ADP-head in three dimensions (denoted by coordinates x, y and z) 
and rotation in three directions. The rotation is described by nutation motion (characterized 
by angle  ), rotation motion (characterized by angle  ) and precession motion 
(characterized by angle  ). When the kinesin head is in the MT-binding site,  ,   and   
correspond to the angles of rotations in xoz, xoy and yoz planes, respectively. 

As done in the single molecule optical trapping assays [S14–S16], we consider a bead 
with diameter of 2Rbead attached to the coiled-coil stalk of the dimer and an external force 
acting on the bead. With one kinesin head bound fixedly to MT at position (0,0,0), the 
translation and rotation of the other ADP-head relative to the MT-bound head in viscous 
solution can be described by Langevin equations [S17]: 

W NLI
NL

( , , , , , ) ( )( , , , , , )
( )

2x x
V x y z V xV x y zx r x

F t
t x x x r

     


               
 

                                    when bead beadx x x       (S6) 
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   

W NLI
NL

bead bead bead

( , , , , , ) ( )( , , , , , )

2

              sgn ( )
2 2

x

x

V x y z V xV x y zx r x
F

t x x x r

d d
C x x x x H x x t

     



               
              

  

when bead beadx x x  ,     (S7) 

   ( ) ( )bead
bead bead bead0 sgn 0 ( )

2 2
bead bead
x x x

x d d
C x x H x F t

t


                 
, 

                                         when bead beadx x x  ,     (S8) 

   ( ) ( )bead
bead bead beadsgn ( )

2 2
bead bead
x x x

x d d
C x x x x H x x F t

t


                  
, 

                                      when bead beadx x x  ,    (S9) 

 W I
NL bead

( , , , , , ) ( , , , , , )
( )

2y y
V x y z V x y zy r y

F C y y t
t y y r

     


               
, 

when  y < 1 nm,    (S10) 
W I

NL
( , , , , , ) ( , , , , , )

( )
2y y

V x y z V x y zy r y
F t

t y y r

     


             
, 

when  y   1 nm,   (S11) 

   ( ) ( )bead
bead bead0 ( )bead bead

y y y
y

C y y y F t
t




        
, when y < 1 nm,  (S12) 

 ( ) ( )bead
bead0 ( )bead bead

y y y
y

C y F t
t




      
,           when  y   1 nm,   (S13) 

W I
NL

( , , , , , ) ( , , , , , )
( )

2z z
V x y z V x y zz r z

F t
t z z r

     


             
,           (S14) 

W I( , , , , , ) ( , , , , , )
( )

V x y z V x y z
t

t 
      

 
 

    
  

,                   (S15) 

W I( , , , , , ) ( , , , , , )
( )

V x y z V x y z
t

t 
      

 
 

    
  

,                    (S16) 

W I( , , , , , ) ( , , , , , )
( )

V x y z V x y z
t

t 
      

 
 

    
  

,                    (S17) 

 
where 2 2 2r x y z   , and xbead and ybead denote respectively x and y coordinates of the 
center-of-mass position of the bead (for simplicity but without loss of generality, the 
translation motion of the bead in the z coordinate is not considered here). W ( , , , , , )V x y z     is 
the potential of the ADP-head interacting with MT-binding site during the period after Pi 
release and before ADP release with the other nucleotide-free or ATP- or ADP.Pi-head bound 
fixedly to MT (see Section S1), VNL(x) is the potential characterizing the effect of the NL 
docking to the MT-bound head on the motion of the detached ADP-head (see Section S2), 

I ( , , , , , )V x y z     is the potential of interaction between two kinesin heads (see Section S3), FNL 
is the force acting on the ADP-head that results from the stretching of NLs (see Section S4), 
and d = 8.2 nm is the distance between two successive binding sites along a MT protofilament. 
For the longitudinal or x-component of the external force, Fx, the vertical or y-component is 
calculated by 0tany xF F   and  0 bead bead CCsin R R l   , where lCC = 54 nm is the length of 
the coiled-coil stalk of the kinesin dimer and 2Rbead = 0.44 μm  as used in the experiments 
[S14–S16]. Fx is defined as negative when it points backward (i.e., the –x direction) and 
positive when it points forward (i.e., the +x direction), while Fy is defined as positive when it 
points upward (i.e., the +y direction). It is considered that the x-component of the interaction 
force between the bead and the kinesin dimer acts only on the NL of the head that has a larger 
distance to the bead along the x direction, and when the distance between a kinesin head and 
bead along the x direction is smaller than d/2 no internally elastic force exists between them. 



6 
 

Function sgn(x) is the sign function and function H(x) is defined as follows: H(x) = 1 if x > 0 
and H(x) = 0 if x   0. It is noted that when the two heads are bound simultaneously to MT 
each head experiences a vertical force because the two heads have the same distance to the 
bead along the y direction, and when only one head is bound to MT and the other head is 
detached from MT only the MT-bound head experiences a vertical force because the distance 
of the bead to the MT-bound kinesin head along the vertical y direction is larger than that to 
the detached kinesin head. For approximation, we consider here that when the ADP-head is 
in the range of 0   y < 1 nm (when bound to MT the kinesin head is in the position of y = 0) 
the ADP-head experiences the vertical force, and when in other ranges (y   1 nm) the 
ADP-head experiences no vertical force. The connection between the bead and C-terminus 
ends of the NLs is characterized by an elastic linear spring with a spring constant C. In the 
calculation we take C = 0.1 pN/nm (we have checked that varying value of C has little effect 
on the calculated results). 

Due to the steric restriction of MT and considering the size of the kinesin head with 
radius rhead = 2.5 nm, it is required that y   y0 = 0 and r   2rhead = 5 nm. Due to the steric 
restriction of MT and considering the size of the bead with radius Rbead, it is required that ybead 
  Rbead. The drag coefficients on the kinesin head are 0 head6x y z r       and 

3
0 head8 r         , where 0  is the solution viscosity in the vicinity of MT. Since the 

viscosity in the vicinity of MT is larger than that far away from MT, we take 
1 1

0 0.02 g cm  s    that is about 2-fold larger than that in water. ( )i t  (i = x, y, z,  ,  ,  ) 
is the fluctuating Langevin force on the kinesin head, with ( )i t  = 0, ( ) ( ')i jt t  = 0 (i  j) 
and ( ) ( ' ) =2 ( ') i i B it t k T t t    , where kBT is the thermal energy. The drag coefficients on the 
bead are ( ) ( )

0 bead6bead bead
x y R    . Terms ( ) ( )bead

x t  and ( ) ( )bead
y t  are the fluctuating 

Langevin forces on the bead along the x and y directions, respectively, with ( ) ( ) 0bead
j t   (j 

= x, y), ( ) ( )( ) ( ) 0bead bead
x yt t    and ( ) ( )( ) ( ')bead bead

j jt t   = ( )2 ( ')bead
B jk T t t  . The initial 

conditions for equations (S6) – (S17) are: (
0 0 00 0 0, ,, , ,x y z    ) = (–d, 0, 0, 0, 0, 0), xbead0 = –d/2 + Fx/C, 

and ybead0 = Fy/(2C). 
 Then, we present equations for the movement of kinesin when two heads are in ADP 
state. When both ADP-heads are bound simultaneously to MT, one head relative to the other 
head can still be described by equations (S6) – (S17). If one head is detached from MT with an 
affinity of Ew1, it would most probably bind immediately to other MT-bound ADP-head due 
to the high binding energy EI1 between them because the NL of the MT-bound ADP-head is 
undocked. If one head is detached from MT with an affinity of Ew2, it would either rebind 
immediately to MT or bind immediately to other MT-bound ADP-head. When the two 
ADP-heads are bound together strongly, the movement of the MT-bound ADP-head relative 
to MT can be described by the following equations [S17]: 
 

       

     
   

 

2 2W
NL bead bead bead CC

2 2 bead
bead bead bead CC 2 2

bead bead

, , , , ,

   

x

x

V x y zx
F x x y y R l

t x
x x

H x x y y R l t
x x y y

  



             
            

,      (S18) 

       

     
   

   

2 2

NL bead bead bead CC

2 2 bead
bead bead bead CC 2 2

bead bead

    

bead bead
x

bead
x x

x
F x x y y R l

t
x x

H x x y y R l F t
x x y y



           
             

,    (S19) 

       

     
   

 

2 2W
NL bead bead bead CC

2 2 bead
bead bead bead CC 2 2

bead bead

, , , , ,

     

y

y

V x y zy
F x x y y R l

t y

y y
H x x y y R l t

x x y y

  



             
            

,        (S20) 
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       

     
   

   

2 2bead
NL bead bead bead CC

2 2 bead
bead bead bead CC 2 2

bead bead

      

bead
y

bead
y y

y
F x x y y R l

t
y y

H x x y y R l F t
x x y y



           
             

,    (S21) 

   W , , , , ,
z z

V x y zz
t

t z

  



   

 
,                                  (S22) 

   W , , , , ,V x y z
t

t 
   




   
 

,                                (S23) 

   W , , , , ,V x y z
t

t 
   




   
 

,                                  (S24) 

   W , , , , ,V x y z
t

t 
   




   
 

.                                  (S25) 

 
where FNL is the force acting on the MT-bound ADP-head that results from the stretched NLs 
(see Section S4). Here, for simplicity of treatment, the bead and C-terminus end of the NL of 
MT-bound ADP-head are implicitly considered to be rigidly connected. The initial conditions 
for Eqs. (S18) – (S25) are: (

0 0 00 0 0, ,, , ,x y z    ) = (0, 0, 0, 0, 0, 0), xbead0 = 
  2 2

bead CC NL x x yR l l F F F    (xbead0 = 0 when Fx = 0), and ybead0 = 
  2 2

bead CC NL y x yR l l F F F    (ybead0 = Rbead + lCC when Fx = Fy = 0), where NLl  is the length of 
the NL under a pulling force of magnitude 2 2

x yF F . 
 
S6. Monte-Carlo simulations of processive movement and dissociation of the motor 

 Using equations (S6) – (S25) we can simulate the mechanical step of the movement of a 
kinesin head following Pi release relative to the other MT-bound kinesin head and the 
dissociation of the dimer from MT by using stochastic Runge–Kutta algorithm, as done before 
[S18,S19]. Then, we can simulate processive movement of the dimer by also considering 
continuous ATPase activities, which can be simulated using Monte Carlo algorithm, as used 
before [S19]. In the Monte Carlo simulations, during each time step t  ( t  = 10–4 s in our 
simulation) a random number ran is generated with uniform probability between 0 and 1. The 
state transition with rate constant ki (i = T, H, Pi, NL, D) takes place if ran   Pi and the 
transition does not take place if ran > Pi. Here, i iP k t   is the probability of state transition 
in each time step t , kT = kb[ATP] represents ATP binding rate to the nucleotide-free head, 
with kb being the second-order rate constant for ATP binding and [ATP] being the ATP 
concentration, kH represents the rate constant of ATP hydrolysis, kPi represents the rate 
constant of Pi release, kNL represents the rate constant of NL docking into the motor domain 
of MT-bound head when the detached ADP-head is in the intermediate position, and kD 
represents the rate constant of ADP releasing from ADP-head. 

As mentioned above, we take the followings into consideration to study the dissociation 
of the dimer from MT. When one head of the dimer in nucleotide-free, ATP or ADP.Pi state 
binds strongly to MT, the binding affinity of the head to the MT is very large so that the 
dissociation of the dimer from the MT is negligible. This implies that only when two heads 
are simultaneously in ADP state the dissociation of the dimer is taken into account. In the 
calculations, when both heads move to positions of y > 10 nm, the dimer is considered to 
dissociate from MT. 
 In Figure S8, we show three typical simulated traces of displacement of the 
center-of-mass position of kinesin-5 dimer along the MT filament (x axis) versus time at 5 μM  
ATP and under no load. From each trace we can obtain the run length (the total displacement) 
and velocity (the total displacement being divided by the total time before dissociation) of the 
trace. The mean run length and velocity of a kinesin dimer at a given ATP concentration and a 
given load are computed using 1000 simulated traces. 
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S7. All-atom MD simulations of the force-extension relation of the NL 

The all-atom MD simulations are carried out by using GROMACS5.1 [S20] with 
OPLS-AA/L all-atom force field [S21]. To avoid the edge effect, the distance between the 
peptide of the NL and the boundary of the box is at least 1.5 nm and much longer along the 
direction of the pulling force to stretch the NL. We add solvent and necessary ions with 
favorable concentration. Counter-ions are also added to neutralize the system. All MD 
simulations are run at 300K and 1 bar. The time step is set as 2 fs, and the output data is 
updated every ps. All chemical bonds are constrained using LINCS algorithm [S22]. The 
short-range electrostatics interaction and the cutoff for van der Waals interaction is set as 1 
nm. Velocity-rescaling temperature coupling [S23] and Berendsen pressure coupling [S24] are 
used. The energy minimization is performed using the steepest descent method. Before the 
dynamic simulations, the systems are equilibrated successfully for 2 ns at 300 K and 1 bar 
pressure in the NVT ensemble and NPT ensemble, respectively. For calculations of the 
force-extension relation of the NL, after a 20-ns constant force-extension simulation, the 
distance between the two terminal CAs of the linker is extracted from the output trace files 
using the VMD1.9.2 [S25]. 
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SI figures. 
. 

. 
. 
Figure S2. Force-extension relations of the NL of KIF3A and KIF3B heads (Kin217). Dots represent the 
results obtained by using all-atom MD simulations. Lines are the fit curves with Equation (S5), with a = 
2.388 10–3 pN and b = 2.021 nm–1 for KIF3A head, and a = 4.64710–6 pN and b = 3.113 nm–1 for KIF3B 
head. 



11 
 

. 
Figure S3. Force-extension relation of the NL of kinesin-5 head (Kin518). Dots represent the results 
obtained by using all-atom MD simulations. Line is the fit curve with Equation (S5), with a = 1.900 10–4 
pN and b = 2.307 nm–1. 
. 
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. 

. 
Figure S4. Force-extension relation of the NL of Kin514 head. Dots represent the results obtained by 
using all-atom MD simulations. Line is the fit curve with Eq. (S5), with a = 1.438 10–4 pN and b = 3.010 
nm–1. 
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. 

 
Figure S5. Force-extension relations of the NLs of Kin214 heads. Dots represent the results obtained by 
using all-atom MD simulations. Lines are the fit curves with Equation (S5), with a = 9.247 10–5 pN and 
b = 3.114 nm–1 for KIF3A head, and a = 1.196 10–6 pN and b = 4.091 nm–1 for KIF3B head. 
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Figure S6. Force-extension relation of the NL of Kin117 head. Dots represent the results obtained by 
using all-atom MD simulations. Line is the fit curve with Equation (S5), with a = 1.060 10–3 pN and b = 
2.150 nm–1. 
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. 
Figure S7. Model of asymmetric or limping stepping of kinesin-1, kinesin-2 and kinesin-5 homodimers 
with a non-zero distance ( ) between the C-terminus end of one NL and that of another NL at 
saturating ATP. For odd steps (from a to c), before stepping the NL of each head in 2HB state is 
stretched to a length ( )

i 2 2Or d    (a) and after stepping the NL is stretched to a length 
( )

f 2 2Or d    (c). For even steps (from c to e), before stepping the NL is stretched to a length 
( )

i 2 2Er d    (c) and after stepping the NL is stretched to a length ( )
f 2 2Er d    (e). 
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. 
Figure S8. Three typical simulated traces of displacement of the center-of-mass position of kinesin-5 
dimer along the MT filament (x axis) versus time at 5 M ATP and under no load. Note that after 
dissociation from MT the position of the motor along the MT filament changes randomly. 


