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Abstract: Coal-based porous materials for supercapacitors were successfully prepared using Taixi
anthracite (TXA) by multi-stage activation. The characterization and electrochemical tests of activated
carbons (ACs) prepared in different stages demonstrated that the AC from the third-stage activation
(ACIII) shows good porous structures and excellent electrochemical performances. ACIII exhibited a
fine specific capacitance of 199 F g−1 at a current density of 1 A g−1 in the three-electrode system,
with 6 mol L−1 KOH as the electrolyte. The specific capacitance of ACIII remained 190 F g−1

even despite increasing the current density to 5 A g−1, indicating a good rate of electrochemical
performance. Moreover, its specific capacitance remained at 98.1% of the initial value after 5000
galvanostatic charge-discharge (GCD) cycle tests at a current density of 1 A g−1, suggesting that the
ACIII has excellent cycle performance as electrode materials for supercapacitors. This study provides
a promising approach for fabricating high performance electrode materials from high-rank coals,
which could facilitate efficient and clean utilization of high-rank coals.

Keywords: supercapacitor; multi-stage activation; coal-based electrodes; activated carbon;
electrochemical performance

1. Introduction

With the depletion of fossil energy, the storage and conversion of renewable energy has become
an urgent problem in the world today [1]. As a kind of high-efficiency energy storage device,
supercapacitors have attracted people’s attention due to their characteristics of fast charge-discharge
rate, high coulombic efficiency, excellent rate performance, and long cycle life [2–5]. Electrode materials
are the key factors determining the performance of supercapacitors. At present, they are mainly divided
into three categories: carbon materials, transition metal oxides, and conductive polymers [6,7]. Carbon
materials mainly include activated carbon (AC) [8,9], carbon fiber [10,11], carbon nanotubes [12,13],
carbon nanosheets [14,15], graphene [16–18], etc.

There are abundant coal resources in China, and coal will remain a major source of energy for
quite a long time in China. It is very significant and meaningful to research how to use coal efficiently
and cleanly, and convert cheap coal into usable materials. As is well-known, coal has become the most
commonly used precursor for production of AC because of its abundant resources, low cost, and high
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carbon content [19], and coal-based porous carbon has been widely researched for supercapacitor
electrodes. Dong et al. [20] reported interconnected porous carbon nanosheet/nickel foam composites
which were obtained from coal tar pitch coupled with KOH activation. Qin et al. [21] synthesized the
interconnected porous carbons from coal tar pitch and microcrystalline cellulose for high-performance
supercapacitors. Wang et al. [22] reported a porous carbon with the 1851 m2 g−1 specific surface
area prepared from Xinjiang anthracite through chemical activation with ZnCl2, where the specific
capacitance reaches 178 F g−1 at 1 A g−1. The chemical activators such as KOH were usually added
to coal in solid state to prepare coal-based electrode materials in most papers [23,24]. Although this
method could produce large surface areas AC, it led to a large amount of activator (activator and coal
with mass ratios of 3:1 to 5:1, commonly) and serious corrosion of equipment because the utilization of
activator is low, more importantly, the surface areas of the AC has not been effectively utilized through
the energy storage process. Therefore, it is necessary to find a low-cost, simple, and environmentally
friendly method to produce high-performance supercapacitors. In this work, impregnation method
was used to prepare AC with Taixi anthracite (TXA) as a precursor. First, the columnar coal strips were
carbonized and physical activated with CO2, then chemically activated after immersion with KOH
solution, next, re-impregnated with KOH solution, and activated again. CO2 activation can make the
material have a certain pore structure, which is beneficial to improving the effect of the impregnation
method. It is found that the electrochemical performance of the ACs can be effectively improved by
increasing the number of impregnation and activation processes. In addition, it is worth noting that
the mass ratio of the activator (KOH) to carbon is only about 1:3 in both chemical activations that
followed. The method of impregnation can reduce the KOH application amount so that the risk of
corrosion of equipment can be reduced too, and the remaining KOH can be recycled.

2. Results and Discussion

2.1. Microstructure and Composition

The SEM images of TXA and the ACs obtained in each stage are shown in Figure 1. As shown
in Figure 1a, TXA has a dense surface and almost no obvious pores, which is attributed to the high
degree of coalification of anthracite, which has relatively low porosity. As illustrated in Figure 1b, after
the first stage of physical activation, some observable pores appear on the surface of the ACI and there
are some irregular fragments on the surface and in the crack of the ACI. As Figure 1c shows, after the
second stage of chemical activation, more pores (the large pores we can see on the SEM image) appear
on the surface of the ACII than ACI. This means the number of macropores of the ACII is increased,
which can shorten the distance of electrolyte ions diffusing into the micropores in supercapacitor,
thereby improving the electrochemical properties of electrode material [25,26]. Irregular fragments of
ACII are reduced due to washing with HCl solution and deionized water. ACII was used as the raw
material to repeat the impregnation with the KOH activator and activation process to obtain ACIII.
As illustrated in Figure 1d, compared with the SEM images of TXA, ACI, and ACII, the surface of ACIII

is more abundantly porous, and the ACIII appears to be loose and porous. It is speculated that ACIII

could have a better electrochemical performance as electrode materials. Furthermore, the TEM images
of ACIII (Figure 1e,f) show that its amorphous structure has a large number of pores [21].
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Figure 1. SEM images of Taixi anthracite (TXA) and activated carbons (ACs): (a) TXA; (b) ACI; (c) ACII; 
(d) ACIII; (e) and (f) TEM image of ACIII. 

The XRD patterns of TXA, ACI, ACII, and ACIII are presented in Figure 2. Due to the high degree 
of coalification, the sharp peak of 26o and the weak peaks of 43° are shown in the XRD of TXA, 
corresponding to the reflection of the (002) plane and (100) plane of the aromatic layer, respectively, 
indicating the presence of a microcrystalline graphitized structure [20,27,28]. Compared with TXA, 
the peak of ACI at 2θ=26° becomes relatively gentle, indicating that the degree of graphitization of 
AC decreases after physical activation. In the XRD patterns of ACII and ACIII, the (002) peak becomes 
weaker due to the internal erosion process of KOH activation [24,29], and the accumulation structure 
of the aromatic layer further changes to the amorphous structure, resulting in an increase in pores 
and facilitating the storage of charges. The small peak appeared at 44° of ACIII can be indexed to a 
superposition of the (101) reflections of the graphite structure [30]. This shows that ACIII after three 

Figure 1. SEM images of Taixi anthracite (TXA) and activated carbons (ACs): (a) TXA; (b) ACI; (c) ACII;
(d) ACIII; (e) and (f) TEM image of ACIII.

The XRD patterns of TXA, ACI, ACII, and ACIII are presented in Figure 2. Due to the high
degree of coalification, the sharp peak of 26◦ and the weak peaks of 43◦ are shown in the XRD of TXA,
corresponding to the reflection of the (002) plane and (100) plane of the aromatic layer, respectively,
indicating the presence of a microcrystalline graphitized structure [20,27,28]. Compared with TXA,
the peak of ACI at 2θ = 26◦ becomes relatively gentle, indicating that the degree of graphitization of
AC decreases after physical activation. In the XRD patterns of ACII and ACIII, the (002) peak becomes
weaker due to the internal erosion process of KOH activation [24,29], and the accumulation structure
of the aromatic layer further changes to the amorphous structure, resulting in an increase in pores
and facilitating the storage of charges. The small peak appeared at 44◦ of ACIII can be indexed to
a superposition of the (101) reflections of the graphite structure [30]. This shows that ACIII after
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three activations has a special structure between the disordered amorphous carbon phase and the
graphitic phase.
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Figure 3. FTIR spectra of TXA, ACI, ACII and ACIII. 

Figure 2. XRD patterns of TXA, ACI, ACII and ACIII.

The electrochemical properties of activated carbon are also affected by the functional groups on the
surface. Therefore, FTIR tests were carried out on the samples. As shown in Figure 3, the absorption
peaks at 2972 and 2920 cm−1 correspond to the stretching vibration of C-H [31], and the absorption
peak at 1380 cm−1 corresponds to the in-plane bending vibration of C-H [32]. The absorption peaks at
845, 795, and 742 cm−1 conform to the out-of-plane bending vibration of C-H [33]. Moreover, the peak
at about 1640 cm−1 is consistent with the stretching vibration of C=C, and the peak at 1610 cm−1

matches with the stretching vibration of the aromatic skeleton, indicating that there is a certain degree
of graphitization structure in TXA, which is consistent with the analysis of XRD. It is found that after
physical activation, the absorption peaks of ACFS at 1640 and 1610 cm−1 become weak, indicating that
the activation process could reduce the graphitization degree of the sample, which is also confirmed in
the XRD analysis. In addition, the absorbance for the aromatic skeleton stretching vibration in the
FTIR spectrum is further weakening after chemical activation. All samples show a relatively wide
band at 3430 cm−1, corresponding to the stretching vibration of hydroxyl [32,34]. TXA has a distinct
band at 1040 cm−1, corresponding to the bending vibration of C-O [6], which gradually weakens in
ACI, ACII, and ACIII, indicating partial cleavage of C-O bonds during activation.
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Two distinct peaks appear in the XPS spectra of TXA and the samples at approximately 285
and 532 Ev, corresponding to C1s and O1s, as shown in Figure 4a. The C1s spectra of the samples
are separated into four peaks by curve fitting, and are located at the binding energy of 284.8, 285.0,
286.4, and 288.9 Ev, corresponding to C-C, C-O, C=O, and O-C=O functional groups [26,35]. This also
proves the presence of oxygen-containing functional groups on the surface of the samples. It has been
reported that the wettability of the material in aqueous solution is improved due to the presence of
oxygen-containing functional groups [36,37], which also contributes to the improvement of the specific
capacitance of the electrode.
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N2 adsorption-desorption analysis of ACI, ACII and ACIII was performed, as shown in Figure 5a.
According to the classification of International Union of Pure and Applied Chemistry (IUPAC), the N2

adsorption-desorption isotherms of Acs belong to the combination of Type I isotherm and Type IV
isotherm, indicating that there are a large number of micropores and a certain number of mesopore
in the three samples [26]. The ACIII shows a large adsorption capacity in the range of low relative
pressure and a very obvious H4 hysteresis loop in the range of 0.4 to 1 relative pressure, proving a large
number of mesoporous pores in ACIII [24]. As illustrated in Figure 5b, most of the pore diameters of
ACI are below 1 nm and only a few pores diameters of ACI range from 3 to 4 nm. The pore diameters
of ACII are bigger than ACI in the range of 0.5–1 nm, revealing that the KOH exhibits a remarkable
effect of hole-expanding during the first chemical activation. The pores of ACII were further developed
through the process of impregnation and chemical activation again to produce ACIII, not only the
number of the pores with diameters of 0.5–2.5 nm increased, but also a large number of mesopores
appeared at a diameter of 3–4 nm. Chmiola et al. found that the pores with diameters of 0.6–1 nm can
effectively increase the specific capacitance [38]. Specific capacitance can be increased by increasing the
number of micropores with suitable pore diameter. In addition, increasing the number of mesopores
can effectively increase the ion diffusion channel, reduce the diffusion resistance and improve the
utilization of micropores, thereby facilitating the electrochemical performance of the material [39].
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Figure 5. N2 adsorption-desorption isotherms (a) and pore size distribution (b) of ACI, ACII  
and ACIII. 

The pore structure parameters of the samples are listed in Table 1. Compared with ACI, the 
specific surface area (SBET) and micropore volume (Vmic) of ACII are reduced, but the mesopore volume 
(Vmes) and average pore diameter (Dap) are increased, indicating that the carbon in the inner wall of 
the micropores reacts with KOH to enlarge the pore diameter through one-stage activation. The 
largest contribution to surface area is micropores. In other words, the more micropores of the same 
quality sample are available, the larger the specific surface area it has. So ACII has more mesopores 
and macropores than ACI, and a larger average pore diameter than ACI, but the specific surface area 
of ACII is smaller than ACI, because ACI has more micropores than ACII. The SBET, total pore volume 
(Vt), Vmic and Vmes of ACIII are obviously increased, proving that the AC which has undergone 
impregnation and chemical activation again exhibits more abundant pores, including the 
enlargement of small pores and generation of new pores. This is consistent with previous SEM 
analysis.  

Figure 5. N2 adsorption-desorption isotherms (a) and pore size distribution (b) of ACI, ACII and ACIII.

The pore structure parameters of the samples are listed in Table 1. Compared with ACI, the specific
surface area (SBET) and micropore volume (Vmic) of ACII are reduced, but the mesopore volume (Vmes)
and average pore diameter (Dap) are increased, indicating that the carbon in the inner wall of the
micropores reacts with KOH to enlarge the pore diameter through one-stage activation. The largest
contribution to surface area is micropores. In other words, the more micropores of the same quality
sample are available, the larger the specific surface area it has. So ACII has more mesopores and
macropores than ACI, and a larger average pore diameter than ACI, but the specific surface area of
ACII is smaller than ACI, because ACI has more micropores than ACII. The SBET, total pore volume
(Vt), Vmic and Vmes of ACIII are obviously increased, proving that the AC which has undergone
impregnation and chemical activation again exhibits more abundant pores, including the enlargement
of small pores and generation of new pores. This is consistent with previous SEM analysis.

Table 1. The pore structure parameters of TXA and ACs.

Samples SBET (m2 g−1) Vt (cm3 g−1) Vmic (cm3 g−1) Vmes (cm3 g−1) Vmes/Vt (%) Dap (nm)

ACI 591.3 0.2715 0.2263 0.0156 16.7 1.84
ACII 466.1 0.2274 0.2058 0.0216 18.7 1.95
ACIII 984.6 0.5219 0.3993 0.1226 23.5 2.12
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The pore structure of electrode materials has a great influence on electrochemical characteristics.
The macropore, like a reservoir, is the place where ions are stored, and the mesopore is the channel
for ions to be transported rapidly, moreover, the micropore provides the place for effective charge
accumulation. The macropore, mesopore, and micropore are responsible for each other. Therefore,
appropriate pore size distribution is conducive to improving the capacitance. As shown in Scheme 1,
the raw coal itself has fewer pores. A large number of pores are formed in ACI by one-stage activation,
which is mainly microporous, but the few mesopores and macropores that appear in ions cannot move
rapidly enough. In the second stage, KOH is impregnated into the pores of the ACI, while more pores
with larger pore sizes were generated through the reaction of KOH with the carbon on the pore walls
after second-stage activation. Therefore, the mesoporosity of ACII increases. In the third stage, more
KOH enter into the pores of ACII through impregnation and react with the carbon on the pore walls of
ACII. After that, part of the micropores of ACII are reamed to form mesopores, and a large number of
new, deeper and more developed micropores are generated around the mesopores. The specific surface
area of the activated carbon increased from 591.3 m2 g−1 to 984.6 m2 g−1 after being activated twice.
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Scheme 1. Schematic of the synthesis strategy of ACs.

The possible pathways for preparation strategy of AC and pore formation were proposed based
on the above characterizations, as displayed in Scheme 1. Firstly, TXA was physically activated with
CO2 to obtain ACI, which has a certain amount of micropores and a small amount of mesopores.
Secondly, ACI was impregnated in KOH solution, while K+ was attaching to the surface of ACI and
partly entering into the larger diameter pores. Then ACI was chemically activated to produce ACII,
and the pore size of ACII increased obviously due to K+ etching. After the impregnation treatment for
ACII, the pore structure was further developed in the subsequent chemical activation process because
of the larger pore, leading to transferring more K+ into its interior structures. In addition, the use of the
impregnation method can make the K+ relatively uniform into the pores of the ACs, which may reduce
the local excessive etching and the pore collapse due to the uneven distribution of K+. The ACIII with
more mescopores and high specific surface area was prepared through three-step activation.
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2.2. Electrochemical Performance

The electrochemical properties of ACI, ACII, and ACIII were evaluated by galvanostatic
charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy
(EIS) tests with a 6 mol L−1 KOH aqueous solution as electrolyte solution in the three-electrode system.
The GCD curves of the three samples at 1 A g−1 current density, as taken in Figure 6a, show that all
curves are highly symmetric triangles, indicating that the electrode materials have typical double layer
capacitor characteristics and good electrochemical reversibility [40,41]. Clearly, ACIII shows the longest
discharge time, indicating that it has the largest specific capacitance among the three samples under
the same test conditions [42,43]. Besides, according to the Equation (1), the specific capacitances of ACI,
ACII, and ACIII at 1 A g−1 are 81, 106, and 199 F g−1, respectively. Compared with ACI and ACII, ACIII

has a significant increase in specific capacitance, which is 2.45 times that of ACSF and 1.88 times that
of ACII, proving the importance of re-impregnation and activation of activated carbon. In addition,
the voltage drop of the three activated carbon samples at a current density of 1 A g−1 are shown in
Figure 6b. The voltage drops of ACI, ACII, and ACIII are 0.0312, 0.0275, and 0.0148 V, respectively,
and the values decrease in turn, indicating that the internal resistance of the electrode is reduced [21].
This may be related to the fact that multiple activation increases the pore size and reduces the diffusion
resistance. Magnification performance is one of the key factors affecting the practical application of
electrode materials. The specific capacitances of ACI, ACII, and ACIII at different current densities
are shown in Figure 6c. It is clear that at the same current density, the specific capacitance of ACIII is
much higher than ACI and ACII, reaching 206 F g−1 at 0.5 A g−1. Even if the current density reaches
5 A g−1, the specific capacitance of ACIII is still 190 F g−1, showing excellent rate performance. This is
due to the more reasonable pore size distribution of ACIII, especially the increase of mesopores, which
is conducive to the rapid transmission of electrolyte ions.

Figure 6d shows the CV curves for all samples at a scan rate of 10 mV s−1. All curves exhibit
an approximately rectangular character, exhibiting excellent capacitive behavior, which illustrates
that the capacitance of all samples is primarily derived from the electrical double-layer capacitance
behavior [44–46]. Moreover, it is observed that the CV curve has a certain degree of distortion, which
is due to the pseudo capacitance effect provided by the fast redox reaction of oxygen-containing
functional groups [47]. It is well known that the integral area of the CV curve corresponds to the
capacitance of the supercapacitor. Therefore, ACIII has the largest specific capacitance at the same
scanning rate. Besides, the CV curve of ACIII at a scan rate of 5 to 100 mV s−1 is exhibited in Figure 6e.
Even at relatively high scan rates, the CV curve of ACIII remains approximately rectangular, exhibiting
good electrochemical behavior, due to the presence of a large number of mesopores facilitating the
rapid transmission of electrolyte ions within the pores, which is in accordance with the analysis of GCD.

In order to make further evaluation of the ACs performance as electrode materials of
supercapacitors, EIS analysis are performed. Figure 6f is the Nyquist plots of the samples, in which the
illustration is an enlarged view of the high frequency region. Clearly, all curves show a diagonal line in
the low frequency region and a semicircle in the high frequency region. In general, the slope of the
linear portion of the Nyquist diagram in the low frequency region is related to the diffusion resistance
caused by the diffusion/transmission of the electrolyte ions in the electrolyte and the electrode material,
and the larger the slope, the closer the supercapacitor is to the ideal capacitor behavior [48–50]. Then the
slope of ACIII is obviously greater than that of ACI and ACII, indicating that ACIII has smaller diffusion
resistance, which is consistent with the analysis of N2 adsorption and desorption test. The diameter of
the semicircle in the high frequency region corresponds to the charge transfer resistance (Rct) [51,52].
It is clear that the Rct of ACI, ACII, and ACIII in the illustration in Figure 6f increases sequentially, due to
the decrease in the degree of graphitization of AC during the activation process, which is in accord with
the XRD analysis. In addition, the solution resistance (RS) can be obtained from the Z’ axis intercept of
the Nyquist plot [4], and the RS values of all samples are very small, which also reflects the excellent
electrochemical performance of the prepared materials. The cyclic stability is also an important index
for evaluating the performance of supercapacitors. Therefore, the 5000 GCD cycle tests were executed
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for ACIII at 1 A g−1, as shown in Figure 7. It is worth noting that in the first 200 cycles, the specific
capacitance of ACIII increases significantly, indicating that the AC electrodes undergo electrochemical
activation in the incipient charge and discharge processes. And during electrochemical activation,
the suitable charge-discharge cycles can promote the electrolyte ions to be completely inserted into
the pores of AC, thus improving the availability of the surface area of the charge storage [53]. More
impressively, the specific capacitance of the ACIII remained at 98.1% of the initial value after 5000
cycles, showing excellent cycle performance. Based on the above analysis, ACIII exhibits relatively
high specific capacitance, excellent rate performance, and reliable cycle stability, which is more in line
with practical application requirements.Molecules 2019, 24, x FOR PEER REVIEW 9 of 15 
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electrodes at different scan rates; (f) Nyquist plots of AC electrodes. 
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3. Materials and Methods

3.1. Materials

Anthracite collected from Taixi, Ningxia province was taken as the precursor of ACs. Its proximate
and ultimate analyses are shown in Table 2. Coal tar as the binder of columnar ACs was purchased
from Jiangsu Weitian Chemical Group Company. KOH and hydrochloric acid used in the experiment
were purchased from Sinopharm Chemical Reagent Co., Ltd. Acetylene black, anhydrous ethanol
and potassium nitrate were purchased from Xiqiao Chemical Co., Ltd. All chemical reagents were of
analytical grade and used directly without further purification.

Table 2. Proximate and ultimate analyses of Taixi anthracite.

Proximate Analysis (wt.%) Ultimate Analyses (wt.%, daf)

Mad Ad VMdaf FCdaf
a C H Oa N S

1.45 3.88 7.67 92.33 94.67 2.49 1.90 0.75 0.19

ad: air dry basis; d: dry basis; daf: dry and ash-free basis.a By difference.

3.2. Preparation of AC

3.2.1. Pretreatment of TXA

TXA was crushed and ground to below 200 mesh. Then 100 g TXA thoroughly stirred by adding
2 g KNO3, 32.5 g coal tar and 5 ml deionized water. After that, it was pressed into cylindrical strips
having a diameter of 2.8 mm by a plodder. Finally, the strips were naturally dried and broken until
they were 1–2 cm long.

3.2.2. The First-Stage Activation by Physical Activation

The treated strip was put into muffle furnace at room temperature and heated at 12 ◦C min−1 to
600 ◦C under nitrogen flow for carbonization. After carbonization, the sample was activated with CO2

as activator in a horizontal tube furnace with a heating rate of 12 ◦C min−1 from room temperature
to 900 ◦C, and kept at 900 ◦C for 2 h. The sample was cooled to room temperature and then washed
several times with 1 mol L−1 HCl solution, followed by washing with deionized water until the solution
was neutral. Afterwards, the sample was dried at 80 ◦C for 24 h and denoted as the first-stage activated
carbon (ACI).
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3.2.3. The Second-Stage Activation by Chemical Activation

ACI was impregnated in 12 mol L−1 KOH solution and magnetically stirred for 24 h at room
temperature. The sample was then filtered and dried at 80 ◦C for 24 h. In addition, the sample was
weighed before and after immersion, and the corresponding mass ratio of alkali to carbon was about
1:3 by difference method. After that, the sample was placed in a tube furnace with N2 as a shielding
gas and heated from room temperature to 800 ◦C at 12 ◦C min−1 for 1 h. Then the activated sample
was cooled to room temperature and washed several times with 1 mol L−1 HCl solution, followed by
washing with deionized water until the solution was neutral. The resulting columnar AC was then
dried at 80 ◦C for 24 h and denoted as activated carbon from the second-stage activation (ACII).

3.2.4. The Third-Stage Activation by Chemical Activation

The procedure described in 2.2.3 for ACII was repeated and the resulting AC was recorded as
activated carbon for the third stage (ACIII).

3.3. Characterizations

The microstructure of ACs was analyzed by scanning electron microscopy (SEM, Hitachi, Su8020)
with a field emission scanning electron microanalyzer at 5 kV. Transmission electron microscope
measurements were carried out on a microscope (TEM, FEI, Tecnai G2 F20) at 200 kV. X-ray diffraction
(XRD) analysis was performed at 40 kV and 30 mA using a Bruker D8 Advance diffractometer with a
Cu Ka X-ray source, the scan range was between 5 and 90◦. Fourier transform infrared (FTIR) spectra of
the samples were obtained by a Nicolet is 5 infrared spectrometer by using pressed KBr pellets. X-ray
photoelectron spectroscopy (XPS) was implemented on an ESCALAB 250Xi (Thermo Fisher) instrument
with monochromatized Al Kα probe beam. The energy scale was corrected with C1s peak at 284.8 eV
as internal standard. The transmit power is 250 W and it was used for wide-range scanners and narrow
scans over the ranges of 0–900 eV and 282–292 eV respectively, at a pass energy of 100 eV and 20 eV,
respectively. The background was subtracted use a function of Shirley. The N2 adsorption-desorption
isotherm was measured at 77 K using an Autosorb-1 type adsorbent manufactured by Quantachrome,
and the specific surface areas (SBET) were calculated by the Brunauer-Emmett-Teller (BET) equation.
The total pore volume (Vt) of the sample was calculated from the relative pressure (P/P0) of 0.99.
The pore size distribution was calculated by density functional theory (DFT). The average pore diameter
(Dap) of the sample was calculated from Equation (1).

Dap =
4Vt

SBET
(1)

3.4. Electrochemical Measurement

Briefly, the AC we prepared was pulverized to pass through a 200-mesh sieve. 20 mg AC powder,
2.5 mg acetylene black, and 2.5 mg polytetrafluoroethylene were mixed into ethanol, followed by
ultrasonic treatment for 5 min. Then the mixture was uniformly applied to long strips of foamed nickel,
and dried in vacuum at 80 ◦C for 24 h. The active mass of the electrode was ca. 2 mg cm−2. All samples
were electrochemically tested in a 6 mol/L KOH solution with nickel foam coated with ACs as working
electrode, platinum sheet as the counter electrode, and Hg/HgO electrode as the reference electrode.

The GCD tests were performed at room temperature using a NEWARE BTS high precision battery
detection system at a current density of 0.5–5 A g−1. Cyclic voltammetry (CV) tests were measured
using a CHI66D electrochemical workstation (CH Instrument, Shanghai, China) at a voltage range of −1
to 0 V. Electrochemical impedance spectroscopy (EIS) measurements were conducted at an open circuit
potential with an AC amplitude of 10 mV over a frequency range of 1 mHz to 100 kHz. The specific
capacitance under three-electrode system was calculated according to Equation (2):
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C =
I∆t

m∆V
(2)

where I (A) is the discharge current; m (g) is the mass of the AC; ∆t (s) is the discharge time interval;
∆V (V) is the voltage difference during the corresponding discharge time.

4. Conclusions

In conclusion, a lot of micropores in ACI were generated through carbonization and physical
activation with CO2 as an activator. The volumes of micropores and mesopores in ACIII were increased
significantly more than that in ACI after two impregnations of KOH solution and two activations at
800 ◦C for 1 h. When using the ACs as active substances in the three-electrode system, the specific
capacitance of ACIII was 206 F g−1 at 0.5 A g−1, much higher than ACI and ACII. It shows higher
specific capacitance, excellent rate performance, and good cycling stability of ACIII. In addition,
the impregnation method can reduce the dosage of KOH and reduce the corrosion of equipment during
the activation process. The method adopted in this paper may pave the way for industrial production
of carbon-based electrode materials for high high-performance supercapacitors.
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