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Abstract: In recent years, several catalyst-free site-specific reactions have been investigated for the
efficient conjugation of biomolecules, nanomaterials, and living cells. Representative functional
group pairs for these reactions include the following: (1) azide and cyclooctyne for strain-promoted
cycloaddition reaction, (2) tetrazine and trans-alkene for inverse-electron-demand-Diels–Alder
reaction, and (3) electrophilic heterocycles and cysteine for rapid condensation/addition reaction.
Due to their excellent specificities and high reaction rates, these conjugation methods have been
utilized for the labeling of radioisotopes (e.g., radiohalogens, radiometals) to various target molecules.
The radiolabeled products prepared by these methods have been applied to preclinical research,
such as in vivo molecular imaging, pharmacokinetic studies, and radiation therapy of cancer cells.
In this review, we explain the basics of these chemical reactions and introduce their recent applications
in the field of radiopharmacy and chemical biology. In addition, we discuss the significance, current
challenges, and prospects of using bioorthogonal conjugation reactions.

Keywords: radiolabeling; bioorthogonal reaction; click chemistry; site-specific reaction; radiopharmaceuticals;
radioisotopes; molecular imaging

1. Introduction

The term ‘click chemistry’ has been introduced to describe specific chemical reactions, which are
fast, reliable and can be selectively applied to the synthesis of functional materials and biomolecule
conjugates [1–6]. Click chemistry can be broadly defined as a ligation reaction in which two reactants
are joined under ambient conditions to provide the desired product in high chemical yield and short
time [7–10]. Over the last two decades, tremendous development and progress has been achieved in
these conjugation reactions to encompass wide substrate scopes in the click reaction. Additionally,
in several cases, these ligations proceed in aqueous media without significant decrease of the selectivity
and reaction rate. Furthermore, click chemistries enable the facile isolation of the desired products
from the reaction mixtures and facilitate the removal of the non-reacted substrates and byproducts,
without the need for sophisticated separation methods [11–16]. Therefore, click chemistry-based
conjugation methods have been applied to several avenues of research, including biochemical sciences,
material sciences [17–24], drug discovery [25–28], pharmaceutical sciences [29–34], and synthesis of
radiolabeled products [35–41]. Several typically used ligation reactions which are closely related to
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click chemistry include the thiol-Michael addition reaction [42], ring-opening reactions of aziridinium
ions and epoxides [43], hydrazone and oxime formation from an aldehyde group [44] and so on.
However, these reactions showed certain disadvantages such as poor specificity and stability under
aqueous conditions, because of the reactivity of these functional groups with biomolecule residues and
water. In 2003, K. B. Sharpless and M. G. Finn et al. reported that copper(I)-catalyzed azide-alkyne
[3+2] cycloaddition reaction (CuAAC) can be employed as a new class of click reactions for rapid and
reliable bioconjugation [45]. As both azide and alkyne groups are unreactive toward protein residues
or other biomolecules, this ligation brought about a great impact and has been utilized as an efficient
site-specific ligation methodology. Later, some researchers reported that the exogenous metals used to
catalyze the click reaction (e.g., copper) could cause mild to severe cytotoxic effects and thus the use of
metal catalyst-free chemical reaction has been recommended for several applications [46]. Therefore,
catalyst-free, rapid, biocompatible, and bioorthogonal reactions such as strain-promoted azide-alkyne
cycloaddition reaction (SPAAC) [47] and inverse-electron-demand Diels–Alder reaction (IEDDA) [48]
have been developed as useful alternatives, and have been extensively used in various research fields
(Figure 1).
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Figure 1. Selected bioorthogonal conjugation reactions. (1) Copper-catalyzed azide-alkyne cycloaddition
reaction (CuAAC); (2) strain-promoted azide-alkyne cycloaddition reaction (SPAAC); (3) tetrazine and
trans-alkene substrates for inverse electron-demand-Diels–Alder reaction (IEDDA); (4) condensation
reaction between 2-cyanobenzothiazole (CBT) and 1,2-aminothiol (N-terminal cysteine).

In recent years, these conjugation reactions have also been applied to the synthesis of
radioisotope-labeled molecules, which have been used for nuclear imaging using positron emission
tomography (PET) and single-photon emission computed tomography (SPECT) as well as for therapeutic
applications. Particularly, several important diagnostic radioisotopes including 11C (t1/2 = 20 min),
18F (t1/2 = 110 min), 99mTc (t1/2 = 360 min), and 68Ga (t1/2 = 68 min) have short half-lives, and thus their
radiolabeling procedures require rapid and efficient reactions which can provide reliable radiochemical
results, such as high radiochemical yield (RCY) and purity, and minimal undesired by-product
formation [49]. In this regard, the catalyst-free click reactions can be highly useful tools for radiolabeling
complex small molecules and biomacromolecules, which are sensitive to harsh reaction conditions such as
elevated temperatures, extreme pH, and the presence of metal catalysts [50]. In addition to in vitro
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radiolabeling applications, these ligation methods have also been investigated for in vivo pre-targeted
strategies for specific imaging and cancer therapy in animal xenograft models [51].

This review aims to highlight the recent and noteworthy results for the synthesis of radiolabeled molecules
using site-specific click reactions. In detail, this review will mainly focus on the following bioconjugation
reactions: (1) strain-promoted azide-alkyne cycloaddition (SPAAC); (2) inverse-electron-demand Diels–Alder
cycloaddition reaction (IEDDA); (3) rapid condensation/cycloaddition reactions based on electrophilic
heterocycles. The review will also showcase the advantages of these reactions, which have empowered
radiochemists in the production of radiolabeled products and radiopharmaceuticals for imaging and
therapeutic purposes. Finally, future directions and emerging trends of these ligation methods will
be discussed.

2. Strained Promoted Copper-Free Click Reaction for Synthesis of Radiolabeled Molecules

In Vitro Radiolabeling of Biomolecules

In SPAAC, the ring strain of cyclic alkynes such as dibenzocyclooctyne (DBCO) is used to drive the
reaction with azide groups in the absence of copper(I) catalysis [52,53]. Generally, two strategies have
been employed for SPAAC-based radiolabeling. The first is the synthesis of radiolabeled cyclooctyne
precursors, which can be used for the labeling of azide containing biomolecules, and the other is
the preparation of radioisotope-tagged azide tracers which are reacted with cyclooctyne modified
biomolecules. In 2011, Feringa group investigated SPAAC reaction for the efficient 18F-labeling of
biomolecules [54]. In this study, three 18F-labeled azides were synthesized, and the prepared tracers
were conjugated with DBCO modified bombesin peptide derivatives. Notably, the reaction proceeded
with high efficiency to provide 18F-labeled cancer-targeting peptides in 15 min with good radiochemical
yields (RCYs) (Figure 2). Particularly, radiolabeling studies using these reactions were also explored in
human plasma to determine their reactivity and specificity in biological media.
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Wuest et al. reported the synthesis of an 18F-labeled DBCO analog for efficient preparation
of a diagnostic probe. (Table 1, entry 1) This tracer was reacted with several azide group-bearing
geldanamycine moieties and carbohydrates to furnish the corresponding 18F-labeled products.
Importantly, these radiolabeling reactions were performed in various media, including in methanol,
DMSO/water (1:1), and bovine serum albumin, wherein the observed RCYs did not decrease
significantly [55]. Along similar lines, Carpenter et al. used a modified 18F-labeled DBCO analog
for the radiolabeling of azide conjugated substrates (Table 1, entry 2). The radiolabeling was performed
at room temperature in N,N-dimethylformamide (DMF) to afford the desired radiolabeled products [56].
The peptide A20FMDV2 (Table 1, entry 3), which has a strong binding affinity with integrinαvβ6-receptor,
was successfully labeled with 18F, using a SPAAC-based ligation. The radiolabeling of the azide group
bearing A20FMDV2 was performed at ambient temperature to give the product in 11% of isolated
RCY. The radiolabeled peptide was highly stable in rat serum, and its binding affinity towards the
target receptor was not affected. However, in vivo studies revealed its decreased targeting ability
due to the structural differences and increased lipophilicity compared to the parent structure [57].
Several other 18F-DBCO analogs have shown good RCY for the preparation of radiolabeled peptides
for targeting cancer [58,59]. To improve the efficiency of 18F radiolabeling, Roche et al. explored a new
18F-labeled azide prosthetic group, 18F-FPyZIDE (Table 1, entry 6). In their study, the radiolabeled
tracers were evaluated in both CuAAC- and SPAAC-based ligations and the labeling results showed that
both radiolabeling methods provided high RCYs under mild reaction conditions (room temperature or
40 ◦C) [60]. Evans et al. investigated the radiosynthesis of 68Ga-labeled peptide using azide group-bearing
1,4,7,10-tetraazacyclododecane-tetraacetic acid (DOTA) chelator and DBCO group conjugated cRGD
peptide (Table 1, entry 7) [61]. The developed novel bioorthogonal click reaction has been used in the
design and preparation of multimodal imaging tracers. Ghosh et al. studied a dual-modal scaffold
in which the precursor was first labeled with 68Ga using a DOTA chelator, and then, a near-infrared
(NIR)-absorbing fluorescent dye, IR Dye 800CW, was incorporated into the tracer using SPAAC ligation.
The dual-labeled tracer was then applied to the targeted imaging of a somatostatin receptor and the
quantification of its biological uptake in vivo (Table 1, entry 8) [62].

Table 1. Examples of SPAAC in labeling reactions using short half-life radioisotopes.

Entry DBCO Precursor Azide Precursor Product a RCY(%) Ref

1
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a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

R = Tyr3-octreotate peptide

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

95 [58]

5

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

R = cRGD peptide

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

93 [59]

6

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

>95 [60]

7

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

R = (PEG)3-DOTA-68Ga

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

94–100 [61]

8

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

R = Tyr3-octreotate peptide

Molecules 2019, 24, x 5 of 29 

 

4 

 

 
R = Tyr3-octreotate peptide 

 

95 [58] 

5 

 
 

R = cRGD peptide  

 

93 [59] 

6 

 

  

>95 [60] 

7 

 
 

R = (PEG)3-DOTA-68Ga 
 

94–100 [61] 

8 

  
R = Tyr3-octreotate peptide  

80 [62] 

a Products were obtained as isomeric mixtures. 

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate 

constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is not 

satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled oxa-

dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide 

containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled 

site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules 

than those of DBCO-based reactions.  

 

Figure 3. Radiolabeling of peptides or proteins using 18F-labeled ODIBO. 

The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and 

purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO- 

modified cancer-targeting peptide (cRGD) and then the desired product was separated from 

unreacted peptide substrates using an azide modified resin as a scavenger for the DBCO group. The 

remarkable two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) 

and radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed 

the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant 

enhancement of the tumor to background ratio [67]. 

80 [62]

a Products were obtained as isomeric mixtures.

Generally, most SPAAC ligations based on DBCO derivatives display second-order rate
constants in the 1–2 M−1 s−1 range with azide groups [63] due to which, the observed RCY is
not satisfactory when using low substrate concentrations. To improve reaction kinetics, 18F-labeled
oxa-dibenzocyclooctyne (ODIBO), which has a k2 value of 45 M−1 s−1, was synthesized to label azide
containing biomolecules with high efficiency (Figure 3) [64,65]. This new prosthetic group enabled
site-specific radiolabeling using much smaller amounts (about one-tenth) of azide bearing molecules
than those of DBCO-based reactions.
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The study reported by Kim et al. used SPAAC ligation in both radiolabeling reaction and
purification steps [66]. For this application, 18F-labeled azide tracer was first reacted with DBCO-
modified cancer-targeting peptide (cRGD) and then the desired product was separated from unreacted
peptide substrates using an azide modified resin as a scavenger for the DBCO group. The remarkable
two-steps process provided the radiolabeled peptide in high decay-corrected RCY (92%) and
radiochemical purity (98%) (Figure 4). Notably, PET imaging and biodistribution data confirmed
the high tumor uptake value of the 18F-labeled peptides in U87MG xenograft along with significant
enhancement of the tumor to background ratio [67].
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polystyrene-supported azide-modified resin for purification of unreacted substrate.

SPAAC reaction has also been applied to the labeling of radioisotopes with longer half-lives,
such as radioactive metals and radioactive iodine. We reported the use of 125I-labeled azide prosthetic
groups for synthesizing radiolabeled biomolecules and nanomaterials. In this process, DBCO group
modified cRGD peptides were efficiently conjugated with 125I-labeled azides in high RCY and
radiochemical purity after HPLC purification (Figure 5) [68,69]. It was reported that 64Cu could
be labeled with cross-bridged cyclam chelator CB-TE1K1P under mild conditions. To employ this
chelator for radiolabeling biomolecules, Anderson et al. synthesized a DBCO modified chelator
(DBCO-PEG4-CB-TE1K1P) and reacted it with an azide-bearing Cetuximab by SPAAC ligation
(Figure 6). The 64Cu labeling proceeded in high RCY (>95%) at 37 ◦C, and the radiolabeled antibody
showed enhanced serum stability when compared with those of previously reported 64Cu chelators [70].
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Figure 6. Reaction of azide-conjugated Cetuximab antibody with DBCO-conjugated crossed bridged
macrocyclic CB-TE1K1P chelator for 64Cu radiolabeling.

Yuan et al. explored the synthesis of 89Zr-labeled PET imaging agents using SPAAC ligation on the
surface of the superparamagnetic feraheme (FH). For this study, azide-functionalized FH nanoparticles
were prepared and were mixed with 89Zr under elevated temperature to deliver the 89Zr-labeled
azide-FH. In the next step, DBCO-conjugated RGD peptide, or Cy5.5 tagged protamine was reacted
with 89Zr-azide-FH to give the desired radiolabeled products with good radiochemical results and
specific radioactivity (Figure 7) [71]. This strategy provided an efficient approach for the preparation
of multimodal/multifunctional nanoprobes, which are suitable for a wide range of diagnostic and
therapeutic applications.
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Figure 7. Preparation of 89Zr-labeled multifunctional nanoprobes using SPAAC ligation.

Several kinds of liposomes are known to be useful vehicles for targeted delivery in biomedical
research as well as clinically approved platforms [72]. Hood and co-workers used SPAAC ligation for
efficient conjugation between 111In-labeled liposomes and single-chain variable fragments (scFv) or
monoclonal antibodies. The radiolabeled tracer, 111In-liposomes-mAb/scFv, was used in the targeted
imaging of the platelet-endothelial cell adhesion molecule (PECAM-1) and intracellular adhesion
molecule (ICAM-1). The uptake value of 111In-liposomes/scFv into the target cells was much higher than
that of 111In-liposomes/mAb [73]. Recently, thermosensitive hydrogels comprising polyisocyanopeptide
(PIC) were labeled with 111In via a SPAAC method. In this research, azide-modified PIC hydrogel was
first conjugated with DBCO-modified diethylenetriaminepentaacetic acid (DTPA) chelator to afford the
PIC-DTPA conjugate. Next, PIC-DTPA was reacted with 111InCl3 to give the 111In-labeled PIC in high
RCY. The radiolabeled PIC was applied in a SPECT imaging study for evaluating the efficacy of PIC
gels in wound mouse models [74]. Figure 8 shows the 99mTc labeling of human serum albumin (HSA)
via a SPAAC reaction. After labeling 99mTc(CO)3 with an azide group-modified dipyridine chelator,
it was then reacted with ADIBO bearing HSA under mild condition to give the radiolabeled protein in
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high RCY (76–99%). The 99mTc-labeled HSA prepared by this procedure showed better stability in vivo,
as compared with those previously reported 99mTc-labeled HSA, which were obtained by direct 99mTc
labeling [75]. The radiolabeled HSA thus prepared, was used in blood pool imaging using SPECT.
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3. Inverse-Electron-Demand Diels–Alder Reaction for Synthesis of Radiolabeled Molecules

3.1. In Vitro Radiolabeling of Biomolecules

The inverse electron demand Diels–Alder (IEDDA) between 1,2,4,5-tetrazine and strained alkene
(such as trans-cyclooctene, TCO) is a well-established bioorthogonal reaction, which is typically
regarded as the fastest click reaction with first-order rate constants ranging up to 105 M−1 S−1 [76–79]
Since the first report on IEDDA reaction, several kinds of strained alkenes/alkynes and tetrazine analogs
have been synthesized, and these functional group pairs have been applied to the radiolabeling of
various small molecules, biomolecules, and nanomaterials [80,81]. Due to the extremely rapid reaction
rate of IEDDA under mild conditions such as room temperature, neutral pH, and in aqueous media,
this reaction has been a highly useful ligation approach for labeling radioisotopes with short half-lives.
In 2010, Fox et al. reported the IEDDA-mediated 18F-labeling of small molecules. The radiolabeled
TCO (Table 2, entry 1) could be synthesized by a nucleophilic substitution reaction of the tosylated
precursor in 71% RCY. Remarkably, the IEDDA reaction between a model tetrazine substrate and
18F-labeled TCO provided the desired product in more than 98% RCY in 10 seconds [82]. Conti et al.
applied IEEDA to the synthesis of an 18F-labeled cancer-targeting peptide [83]. The labeling reaction of
a tetrazine conjugated cRGD peptide was carried out using an 18F-labeled TCO analog, which was
prepared using a similar protocol, and delivered the radiolabeled peptide in excellent RCY (Figure 9).
The 18F-labeled cRGD thus prepared, was evaluated in the U87MG xenograft model and exhibited
clear visualization of tumor cells by PET imaging.
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Several radioactive metal-labeled tracers have also been prepared by IEDDA ligation for 

diagnostic purposes. Lewis et al. reported tetrazine conjugated metal-chelating agents such as DOTA 

and deferoxamine (DFO) for the radiolabeling of norbornene bearing trastuzumab using 64Cu or 89Zr 

(Figure 10) [94]. By using this procedure, radiolabeled trastuzumab was obtained in high RCY (>80%) 

and high specific radioactivity (>2.9 mCi/mg). Furthermore, PET imaging studies demonstrated that 

radiolabeled antibodies were quite stable in vivo conditions and showed specific uptake in HER2-

positive BT-474 tumor cells. In 2018, IEDDA ligation was employed for the preparation of therapeutic 

radioisotope-labeled human antibodies 5B1 and huA33 (Figure 11) [95]. In this study, a tetrazine 
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Later, the same group reported a maleimide-conjugated tetrazine analog, which was used to
incorporate the tetrazine group onto biomolecules comprising free cysteine moieties. The tetrazine
bearing biomolecules (cRGD peptide and VEGF protein) prepared by the above method was then
reacted with 18F-labeled TCO to give PET-imaging tracers for diagnosis of cancer cells in vivo (Table 2,
entry 2) [84]. Weissleder and coworkers synthesized 18F-AZD2281, a poly-ADP-ribose-polymerase 1,
as a PET imaging tracer (Table 2, entry 3). In this report, 18F-labeled TCO and a tetrazine group-bearing
AZD2281 were incubated for 3 minutes, and the crude product was purified using a magnetic
TCO-scavenger resin for removing the unreacted substrate, without the need for carrying out the
traditional HPLC purification. The process delivered the 18F-labeled AZD2281 in 92% RCY using the
scavenger-assisted method [85]. The prepared radiolabeled tracer was then evaluated in xenograft
models to visualize MDA-MB-436 tumors. Wu and coworkers extended the application of IEDDA
ligation to the radiolabeling of the exendin-4 peptide and applied the 18F-labeled exendin-4 to the
targeted imaging of GLP-1R receptor in an animal model [86]. In 2015, the Schirrmacher group reported
the novel silicon-fluoride acceptor (SiFA) labeling method, which is based on an isotopic exchange
reaction (Table 2, entry 5). This simple labeling step (19F→18F), which is based on a silicon-fluorine
scaffold, provided the 18F-labeled tetrazine in much higher RCY (78%) than those realized with other
18F chemistries [87].

Norbornene analogs are known to be reactive toward tetrazines. Although the reaction rate was
much slower than those of TCO analogs, the preparation of a norbornene substrate is straightforward.
Importantly, norbornene analogs are known to be more stable than TCO analogs, which are prone to
isomerization to their cis-isomers under physiological conditions. Knight and coworkers reported the
reaction of the tetrazine group-conjugated bombesin peptide with an 18F-labeled norbornene prosthetic
group, to provide the radiolabeled product with high efficiency and radiochemical purity (Table 2,
entry 6) [88]. In addition to the radioactive fluoride, 11C is another important cyclotron-produced
radioisotope for preclinical and clinical PET imaging. Particularly, the 11C-labeled methyl triflate and
methyl iodide are the most prominent synthons for nucleophilic methylation of alcohols, amines, and
thiols, which are commonly used for the production of various radiotracers and radiopharmaceuticals.
Herth and coworkers reported the first synthesis of an 11C-labeled tetrazine and its reaction with
a strained cyclooctene (Table 2, entry 7) [89]. The radioactive precursor [11C]CH3I was reacted with
a tetrazine-conjugated phenol group to give the desired radiolabeled tetrazine in 33% RCY, which
underwent a click reaction with a trans-cyclooctenol in 20 seconds, suggesting the suitability of this
conjugation method for preparation of radiolabeled molecules with short-lived isotopes such as 11C.
Devaraj et al. reported the development of a 68Ga-labeled tetrazine modified dextran polymer for
increasing the half-life and in vivo stability of the tracer in blood (Table 2, entry 8), and evaluated its
use in human colon cancer cells (LS174T) and xenograft models [90].

Radioactive iodines have been used for the preparation of various radiotracers for in vivo imaging
and biodistribution studies. The traditional radioiodination method via an electrophilic substitution
reaction typically provides high RCY in a short time. However, the radiolabeled tracer synthesized
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using the above reaction generally exhibited considerable deiodination in the living subjects, and the
liberated radioactive iodines rapidly accumulated in the thyroid and stomach which and resulted in high
background signals in the images. Moreover, the use of a strong oxidant that requires radioiodination
often resulted in decreased biological activity of the molecules. To address these problems, the radioactive
iodine-labeled tetrazine can be used as an alternative method for the efficient radiolabeling of biomolecules.
Valliant et al. reported the rapid radiolabeling of antibody based on IEDDA. In this study, the 125I-labeled
tetrazine analog was incubated with the TCO-modified anti-VEGFR2 for 5 minutes to afford the desired
product in 69% RCY. Interestingly, the radiolabeled antibody, which was prepared using this procedure,
displayed a 10-fold increase in stability to in vivo deiodination, then the same antibody prepared by direct
radioiodination using iodogen (Table 2, entry 9) [91]. Along similar lines, we investigated a modified
125I-labeled tetrazine tracer via oxidative halo-destannylation of the corresponding precursor (Table 2,
entry 10) [92]. The prepared radiolabeled tetrazine was then applied to the labeling of TCO derived cRGD
peptide and human serum albumin (HSA) and delivered excellent RCYs (>99%). The biodistribution
study of the 125I-labeled HSA in normal ICR mice demonstrated enhanced in vivo stability toward
deiodination than the radiolabeled HSA obtained using the conventional iodination method. Valliant
group also synthesized 123/125I-labeled carborane-tetrazine and employed it for the radiolabeling of
TCO-bound H520 cells [93].

Several radioactive metal-labeled tracers have also been prepared by IEDDA ligation for diagnostic
purposes. Lewis et al. reported tetrazine conjugated metal-chelating agents such as DOTA and
deferoxamine (DFO) for the radiolabeling of norbornene bearing trastuzumab using 64Cu or 89Zr
(Figure 10) [94]. By using this procedure, radiolabeled trastuzumab was obtained in high RCY (>80%)
and high specific radioactivity (>2.9 mCi/mg). Furthermore, PET imaging studies demonstrated
that radiolabeled antibodies were quite stable in vivo conditions and showed specific uptake in
HER2-positive BT-474 tumor cells. In 2018, IEDDA ligation was employed for the preparation of
therapeutic radioisotope-labeled human antibodies 5B1 and huA33 (Figure 11) [95]. In this study,
a tetrazine conjugated DOTA chelator was synthesized, and labeled with 225Ac, a useful therapeutic
radioisotope. The radiolabeled tetrazine tracer was then reacted with TCO-modified antibodies to
give the desired products within 5 min. This two-step method provided superior RCYs compared
to the conventional approaches used in clinical applications. In addition, the biodistribution results
demonstrated that the 225Ac-labeled antibody showed high tumor uptake values and relatively low
non-specific accumulation in normal organs.
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Recently, Long et al. reported the radiolabeling process for microbubble, which is a contrast agent
used in ultrasound imaging and relies on an IEDDA reaction for its operation. First, a tetrazine-bearing
metal chelator (HBED-CC) was labeled with 68Ga. The TCO-modified phospholipids were then
treated with 68Ga-HBED-CC-tetrazine under mild conditions to give the 68Ga-labeled lipid molecule
(68Ga-PE). Next, the prepared 68Ga-PE was combined with other types of lipids, and the resulting
formulation was activated to form gas-filled microbubbles (Figure 12). This strategy enabled the
PET-based real-time monitoring and pharmacokinetic study of newly developed contrast agents for
ultrasound analysis [96].
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3.2. In Vivo Pre-Targeted Imaging and Therapy

The tetrazine and TCO groups are not reactive towards amine or thiol nucleophiles and show
high reaction specificity in biological media. In addition, IEDDA can proceed with fast kinetics even at
very low reactant concentrations. Due to these reasons, IEDDA-based ligation is one of the most potent
tools for pre-targeting applications among the existing click reaction approaches. In the pre-targeted
approach, a cancer-targeting ligand and a radiolabeled small molecule are administered separately
into a living subject. Generally, the TCO (or tetrazine) conjugated tumor-targeting antibody is injected
first into the tumor xenograft model and is allowed to accumulate in the tumor cells for a certain
period (Figure 13). Next, the radiolabeled tetrazine (or TCO) group is administered after the excess
amount of antibody in healthy tissues is excreted from the body. The in vivo click reaction through the
above procedure decreases the circulation time of the radioligand and results in reduced non-specific
uptake of radioactivity in healthy tissues. Furthermore, this approach also facilitates the delivery
of radioisotopes with short half-lives, which would not be feasible with antibody-based imaging
studies [97]. Table 3 shows in vivo pre-targeted studies that were conducted using IEDDA-based
ligation in animal models.

Molecules 2019, 24, x 13 of 29 

 

3.2. In Vivo Pre-Targeted Imaging and Therapy 

The tetrazine and TCO groups are not reactive towards amine or thiol nucleophiles and show 

high reaction specificity in biological media. In addition, IEDDA can proceed with fast kinetics even 

at very low reactant concentrations. Due to these reasons, IEDDA-based ligation is one of the most 

potent tools for pre-targeting applications among the existing click reaction approaches. In the pre-

targeted approach, a cancer-targeting ligand and a radiolabeled small molecule are administered 

separately into a living subject. Generally, the TCO (or tetrazine) conjugated tumor-targeting 

antibody is injected first into the tumor xenograft model and is allowed to accumulate in the tumor 

cells for a certain period (Figure 13). Next, the radiolabeled tetrazine (or TCO) group is administered 

after the excess amount of antibody in healthy tissues is excreted from the body. The in vivo click 

reaction through the above procedure decreases the circulation time of the radioligand and results in 

reduced non-specific uptake of radioactivity in healthy tissues. Furthermore, this approach also 

facilitates the delivery of radioisotopes with short half-lives, which would not be feasible with 

antibody-based imaging studies [97]. Table 3 shows in vivo pre-targeted studies that were conducted 

using IEDDA-based ligation in animal models. 

 

 Figure 13. General strategy for pre-targeted imaging and therapy using IEDDA. 

Table 3. IEDDA-based in vivo pre-targeted approach. 

Entry Biomolecule Radiotracer Animal Model Ref 

1 CC49-TCO antibody 
111In-labeled 

tetrazine 
LS174T cells (Balb/C mouse) [98] 

2 CC49-TCO antibody 
111In-labeled 

tetrazine 
LS174T cells (Balb/C mouse) [99] 

3 CC49-TCO antibody 
177Lu-labeled 

tetrazine 
LS174T cells (Balb/C mouse) [100] 

4 CC49-TCO antibody 
177Lu-labeled 

tetrazine 
LS174T cells (Balb/C mouse) [101] 

5 AVP04-07-TCO diabody 
177Lu-labeled 

tetrazine 
LS174T cells (Balb/C mouse) [102] 

6 Z2395-TCO affibody 

111In-labeled 

tetrazine 
177Lu-labeled 

tetrazine 

SKOV-3 cells (Balb/C mouse) [103] 

7 PEGylated-TCO 18F-labeled tetrazine Healthy Balb/C mouse [104] 

8 5B1-TCO antibody 18F-labeled tetrazine BxPC3 cells (athymic nude mice) [105] 

9 
Cetuximab-TCO antibody 

Trastuzumab-TCO antibody 
18F-labeled tetrazine 

A431 cells (nu/nu mouse) 

BT-474 cells (nu/nu mouse) 
[106] 

Figure 13. General strategy for pre-targeted imaging and therapy using IEDDA.

Table 3. IEDDA-based in vivo pre-targeted approach.

Entry Biomolecule Radiotracer Animal Model Ref

1 CC49-TCO antibody 111In-labeled tetrazine
LS174T cells (Balb/C

mouse) [98]

2 CC49-TCO antibody 111In-labeled tetrazine
LS174T cells (Balb/C

mouse) [99]

3 CC49-TCO antibody 177Lu-labeled tetrazine
LS174T cells (Balb/C

mouse) [100]

4 CC49-TCO antibody 177Lu-labeled tetrazine
LS174T cells (Balb/C

mouse) [101]

5 AVP04-07-TCO diabody 177Lu-labeled tetrazine
LS174T cells (Balb/C

mouse) [102]

6 Z2395-TCO affibody
111In-labeled tetrazine
177Lu-labeled tetrazine

SKOV-3 cells (Balb/C
mouse) [103]
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Table 3. Cont.

Entry Biomolecule Radiotracer Animal Model Ref

7 PEGylated-TCO 18F-labeled tetrazine Healthy Balb/C mouse [104]

8 5B1-TCO antibody 18F-labeled tetrazine
BxPC3 cells (athymic nude

mice) [105]

9 Cetuximab-TCO antibody
Trastuzumab-TCO antibody

18F-labeled tetrazine
A431 cells (nu/nu mouse)

BT-474 cells (nu/nu mouse) [106]

10 Porous silicon-TCO
nanoparticle

18F-labeled tetrazine Healthy (Balb/C mouse) [107]

11 PSMA antagonist-tetrazine
conjugate

18F-labeled TCO
LNCaP cells (Balb/C

mouse) [108]

12 Trastuzumab-tetrazine
antibody

18F-labeled TCO
SKOV-3 cells (Balb/C

mouse) [109]

13 A33-TCO antibody 18F-labeled tetrazine
LS174T cells (Balb/C

mouse)
A431 cells (Balb/C mouse)

[110]

14 Mesoporous silica-TCO
nanoparticle

11C-labeled tetrazine Healthy Balb/C mouse [111]

15 Polyglutamic acid-TCO 11C-labeled tetrazine CT26 cell (Balb/C mouse) [112]

16 A33-TCO antibody 64Cu-labeled tetrazine SW1222 cell (mouse) [113]

17 HuA33-TCO antibody 64Cu-labeled tetrazine SW1222 cell (mouse) [114]

18 5B1-TCO antibody 64Cu-labeled tetrazine
BxPC3 and Capan-2 cells

(athymic nude mice) [115]

19 HuA33-dye-800-TCO 64Cu-labeled tetrazine SW1222 cell (mouse) [116]

20 C225-TCO antibody 68Ga-labeled tetrazine A431 cells (Balb/C mouse) [117]

21 HuA33-TCO antibody 68Ga-labeled tetrazine
SW1222 cell (CrTac:NCr-

Foxn1nu mouse) [118]

22 Bisphosphonate-TCO
conjugate

177Lu-labeled tetrazine
99mTc-labeled tetrazine

Healthy Balb/C mouse [119]

23 Bevacizumab-TCO antibody 99mTc-labeled tetrazine
B16-F10 cell (C57 Bl/6J

mouse) [120]

24 CC49-TCO antibody 212Pb-labeled tetrazine
LS174T cells (Balb/C

mouse) [121]

In 2010, the Robillard group reported their pioneering work on in vivo pre-targeted imaging of
cancers using IEDDA ligation [98]. In the first step, TCO group bearing CC49 antibody was injected to
target colon cancer cells in a mouse model. Post administration of the antibody (24 h), only a small
excess (3.4 equivalent) amount of 111In-labeled tetrazine tracer was injected into the same mouse model.
The obtained SPECT images showed the efficient delivery of the radioisotope into the tumor and
indicated a high tumor-to-normal tissue ratio (Table 3, entry 1). In the next study, the same research
group revealed that TCO could be converted to its (Z)-isomer, which is unreactive to tetrazine in the
presence of copper-containing proteins [99]. Thus, a shorter linker was introduced in the tetrazine tracer
to impede interactions with the copper-containing proteins in albumin. By this structural modification,
the reactivity and isomerization half-life of TCO was increased compared to that of the previously
used TCO analog. Later, Robillard and coworkers reported the use of tetrazine-functionalized clearing
agents as a modified pre-targeting system (Table 3, entry 3) [100]. While a portion of the administered
antibody accumulated in the tumor tissue in this approach, a significant portion of it still remained
in the blood. This accumulated antibody could cause a reduced target-to-background ratio because
IEDDA reaction is also feasible at non-specific areas in the body. To address this problem, the group
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added one more step in the animal study (Figure 14). After the TCO-modified antibody was injected
into the xenograft model to target tumor cells in vivo, the tetrazine bearing galactose-albumin conjugate
was injected as a TCO clearance agent to mask the unbound TCO-modified antibody in the blood.
The radiolabeled tetrazine was then injected to enable the IEDDA reaction at the surface of tumor site.
This approach demonstrated that the use of a clearing agent could lead to the doubling of the tetrazine
tumor uptake and a greater than 100-fold improvement of the tumor-to-blood ratio at 3 h could be
realized after injection of the radiolabeled tetrazine.Molecules 2019, 24, x 15 of 29 
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The same group reported a pre-targeted radioimmunotherapy study using a similar strategy.
To achieve high tumor uptake and improved tumor-to-blood ratio, the group employed a linker with
higher hydrophilicity to prepare the TCO-tagged CC49 antibody [101]. In 2015, TCO-functionalized
diabody, AVP04-07 was evaluated in the pre-targeted strategy [102]. In this study, the TAG72-targeting
dimers of single-chain Fv fragments and 177Lu-labeled tetrazine tracers were evaluated in the LS174T
tumor xenograft. As the diabody showed rapid renal clearance kinetics, this strategy could provide
high tumor-to-blood ratio and low non-specific retention in the kidneys. In a related study, the authors
successfully performed an IEDDA-based pre-targeted study by employing HER2 affibody molecules
and 111In/177Lu-labeled tetrazine tracers (Table 3, entry 6) [103].

In addition to these results, several research groups have investigated a variety of pre-targeted
approaches using short half-life radioisotope-labeled TCO or tetrazine derivatives. Denk et al.
developed a novel 18F-labeled tetrazine by the direct 18F-fluorination of the tosylated precursor, which
proceeded in an RCY up to 18% (Table 3, entry 7) [104]. The PET imaging study exhibited fast
homogeneous biodistribution of the 18F-labeled tetrazine, which can also cross the blood–brain barrier.
The high reactivity of this tracer towards TCO-bearing molecules and favorable pharmacokinetic
properties indicated that 18F-labeled tetrazine can be a useful tracer for bioorthogonal PET imaging.
Lewis et al., reported 18F-based pre-targeted PET imaging studies using TCO-modified anti-CA19.9
antibody 5B1 and a 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-conjugated tetrazine analog.
The complexation reaction using AlCl3 and [18F]F− provided the desired radioligand in 54–65%
decay-corrected RCY [105]. The in vivo pre-targeted images displayed its effective targeting ability
with radioactivity up to 6.4% ID/g in the tumors at 4 h post administration. Sarparanta and co-workers
investigated in vivo IEDDA reaction between TCO conjugated monoclonal antibodies and 18F-labeled
tetrazine molecule [106]. For this study, TCO conjugated antibody (trastuzumab and cetuximab) was
injected into tumor-bearing (BT-474 cells and A431 cells) mice and the 18F-labeled tetrazine-containing
hydrophilic linker was injected into the same xenograft models after given time points (1, 2, or 3 days).
The highest tumor-to-background ratio was observed when the radioisotope was injected after 3 days
post the administration of the TCO-modified antibody. In addition, the 18F-labeled tetrazine was
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applied to the pre-targeted in vivo imaging of TCO-modified porous silicon nanoparticles (Table 3,
entry 10) [107]. Bormans et al. developed a new 18F-labeled TCO tracer for in vivo IEDDA. To prepare
radiolabeled TCO, the authors synthesized a dioxolane-fused TCO analog from its cis isomer by using
a micro-flow photochemistry process (Figure 15) [108]. The nucleophilic substitution of mesylated
precursor using dry K[18F]F, K222 complex provided the desired 18F-labeled tracer in 12% RCY and >99%
radiochemical purity. This product showed excellent reactivity and stability toward a tetrazine and
thus it was applied to pre-targeted PET Imaging. In this approach, a tetrazine-modified trastuzumab
monoclonal antibody was injected initially into SKOV-3 xenograft models (Figure 16). After 2 or
3 days, the 18F-labeled TCO was injected, and then the PET images were obtained after 2 h post the
administration of the radioligand. The obtained results showed that the pre-targeted imaging strategy
provided better tumor-to-muscle ratio when compared to that of control groups which did not use the
pre-targeting approach (Table 3, entry 12) [109].
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The radiolabeled small molecule tracers often underwent rapid renal or hepatobiliary clearance,
and therefore, the efficiency of in vivo click reactions is reduced. To increase the blood circulation
time of the functional group, the Weissleder group designed the tetrazine group-bearing polymers
comprising dextran scaffolds [110]. An 18F-labeled polymer-modified tetrazine and TCO-bearing
CD45 monoclonal antibodies were investigated in a living mouse, and the PET imaging study revealed
excellent conversion of reactants and high tumor uptake in the tumor xenograft, which suggested that
the radiolabeled polymer will be a promising candidate for pre-targeted imaging. The use of IEDDA
for pre-targeted PET imaging has also been investigated with 11C. In 2016, Mikula et al. reported
the use of 11C-labeled tetrazine for in vivo click reaction. An amino tetrazine analog was reacted
with [11C]CH3OTf to provide 11C-labeled tetrazine in 52% of RCY (Figure 17) [111], and the resulting
product exhibited high reaction rate with TCO derivatives. Furthermore, the product also showed
good stability under physiological conditions and demonstrated rapid clearance kinetics in mice.
This 11C-labeled tracer was then applied to animal imaging studies with TCO-modified mesoporous
silica nanoparticles in normal mice. Herth et al. reported the improved radiosynthesis of 11C-labeled
tetrazine for pre-targeted PET imaging (Table 3, entry 15) [112]. In this study, the radioligand was
evaluated with TCO-functionalized polyglutamic acid and indicated potential use for brain imaging.
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The use of the TCO-tetrazine ligation in living subjects was also extended to several metal
radioisotopes. Lewis et al. reported a pre-targeted strategy using a TCO-bearing huA33 antibody and
64Cu-labeled NOTA-tetrazine conjugate (Table 3, entry 16). In this study, a tumor-targeted antibody was
administered to SW1222 colorectal cancer xenografts, and the tetrazine tracer was then injected one-day
post administration of the antibody. This approach exhibited enhanced tumor-to-background ratio
and reduced non-specific radiation dose in normal tissues [113]. In the following study, the authors
reported a site-specific conjugation method to construct the huA33-TCO immunoconjugate by using
enzymatic transformations and a bifunctional linker [114]. A similar bioconjugation strategy was also
applied to the preparation of a TCO and fluorescent dye-bearing antibody (huA33-Dye800-TCO) for
bimodal PET/optical pre-targeted imaging of colorectal cancer cells (Table 3, entry 19) [116] using
a 64Cu-sarcophagine-based tetrazine tracer. This strategy demonstrated the non-invasive visualization
of tumors and the image-guided excision of malignant tumor tissue. Aboagye et al., synthesized
68Ga-labeled tetrazine to study its use in pre-targeted PET imaging of EGFR-expressing A431 tumor.
After administration of the TCO-bearing cetuximab, the 68Ga-labeled tracer was injected to the mouse
model, and PET imaging showed a significant improvement in the tumor-to-background ratio compared
to that with the traditional direct radiolabeling method [117]. Recently, Lewis et al. used a modified
pre-targeted PET imaging strategy for obtaining a better tumor-to-blood ratio. The authors employed
a tetrazine-modified dextran polymer to reduce injected TCO-bearing antibody, which remained in
blood circulation. After the TCO-modified antibody was injected into the xenograft model to target
tumor cells, the TCO scavenger was administrated to mask unbounded TCO modified antibody in
the blood. Next, 68Ga-labeled tetrazine radioligand was injected to allow the IEDDA reaction at the
surface of tumor cells. Further, the use of the TCO masking agent in this study showed a significant
improvement in the PET image quality and tumor-to-background ratio (Table 3, entry 21) [118].

The Valliant group demonstrated a pre-targeted strategy for bone imaging and radiotherapy
based on the IEDDA between the TCO-conjugated bisphosphonate and radiolabeled tetrazines
(Figure 18) [119]. In this experiment, TCO-bisphosphonate conjugate was first injected into an animal
model for accumulation of the dienophile in the skeleton. After 12 h post administration, 99mTc-labeled
tetrazine was administered intravenously, and the acquired SPECT/CT imaging revealed high radioactivity
in the knees and shoulder, which suggested that the TCO-bisphosphonate can be a useful probe
for targeting functionalized tetrazine in the bone tissue. A therapeutic radioisotope (177Lu)-labeled
radioligand was also investigated in the same study.

In 2018, Garcia et al. investigated an antibody pre-targeting approach using TCO-bearing
bevacizumab and 99mTc-labeled tetrazine tracer. To increase renal clearance kinetics of the radioisotope,
a hydrophilic peptide linker was introduced between tetrazine and the 6-hydrazinonicotinyl group,
which is a well-known chelator of 99mTc. The pre-targeted bevacizumab SPECT imaging was then
investigated in B16-F10 melanoma cell’s xenograft [120]. In addition to various diagnostic research,
the alpha-particle emitting radioisotope (212Pb) was applied to the pre-targeted radioimmunotherapy
by Quinn et al. (Table 4, entry 24). In this study, the LS174T tumor-bearing mice were injected with
CC49-TCO monoclonal antibody. Two doses of the tetrazine bearing Galactose-albumin as a TCO
clearing agent were injected after 30 and 48 h to remove the unbound antibodies in blood and normal
organs. Then, 212Pb-labeled tetrazine was injected for targeted tumor therapy. This pre-targeted
alpha-particle therapy successfully reduced the tumor growth and improved the survival of model
mice [121].
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4. Other Click Reactions Based on Aromatic Prosthetic Groups

4.1. Condensation/Addition Reactions Using Aromatic Compounds

As shown in previous sections, SPAAC and IEDDA have been two of the most frequently used
radiolabeling methods for several years. To apply these reactions in the labeling procedure, the target
molecule (e.g., peptide, antibody) needs to be modified to incorporate an artificial functional group,
which is then reacted with the radiolabeled prosthetic group. For example, a TCO analog needs
to be conjugated with the target molecule, to facilitate its reaction with a radioisotope-containing
tetrazine. Such modification of biomolecule requires additional synthetic, and purification steps.
Furthermore, the presence of excess amounts of randomly conjugated functional groups can cause
decreased biological activities of the molecules. Therefore, several labeling procedures, which do not
involve a modification of the biomolecules, have been developed. In many cases, these methods utilized
electrophilic aromatic prosthetic groups that displayed rapid reaction rates and high selectivities
toward a specific nucleophile such as thiol or 1,2-amino thiol. Table 4 summarizes recent studies on
the applications of aromatic prosthetic groups for radiolabeling reactions.

In 2012, Jeon et al. investigated the rapid condensation reaction between 18F-labeled
2-cyanobenzothiazole (18F-CBT) and N-terminal cysteine-bearing biomolecules (Table 4, entry 1) [122].
The 18F-CBT was synthesized from the corresponding tosylated precursor using K[18F]F and 18-crown-6
as the phase transfer catalyst. This radiolabeled CBT (18F-CBT) can be reacted with N-terminal cysteine
with a second-order reaction rate of ca. 9 M−1 s−1. The rapid condensation reaction between the
N-terminal cysteine-bearing dimeric cRGD peptide and the 18F-CBT provided the 18F-labeled peptide
(18F-CBT-RGD2) in a high (>80%) RCY under mild conditions, and the prepared 18F-CBT-RGD2 was
investigated for its use in specific tumor imaging in U87MG xenograft models. Later, 18F-CBT was
also applied for the efficient radiolabeling of EGFR-targeting affibody molecules (ZEFGR:1907), and
the radiolabeled affibody provided clear visualization of the A431 tumors in animal models [123].
As the heterocyclic adducts, which result from the condensation reaction between CBT and N-terminal
cysteine are hydrophobic, the injected tracers prepared by the above method showed high non-specific
uptake in normal organs. Therefore, the Seimbille group synthesized a more hydrophilic 18F-labeled
CBT tracer containing a diethylene glycol linker and 2-fluoropyridine moiety (Table 4, entry 2) The
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optimized radiolabeling condition provided 18F-labeled cancer-targeting peptide, which is more
hydrophilic than the ones reported in the previous studies [124]. The same research group also
reported the synthesis of the metal-chelating agent-conjugated CBT prosthetic groups for 68Ga-labeled
tracers for PET imaging of tumor hypoxia [125]. The rapid condensation for radiolabeling procedure
provided the desired radiotracers in high RCY under mild conditions (Table 4, entry 3). In another
study, the same group synthesized the two bifunctional chelators, the desferrioxamine B-bearing
CBT (DFO-CBT) and the cysteine-bearing CBT (DFO-Cys) for efficient radiolabeling. These chelators
were employed in the labeling with the [89Zr]Zr-oxalate and rapid conjugation with cRGD peptide.
The two-step radiochemical process exhibited high RCY under mild reaction conditions [126]. As CBT
structure contained a hydroxy group, it can be a good substrate for facile labeling of radioactive
iodines [127]. Thus, we synthesized a 125I-labeled CBT (125I-CBT) via electrophilic iodination reaction
under mild reaction conditions. The 125I-CBT was then applied to the rapid radiolabeling of N-terminal
cysteine-bearing cRGD peptide in high RCY (Table 4, entry 4).

In 2013, Barbas III group reported the chemoselective ligation of thiol-containing proteins
using methylsulfonyl derivatives [128]. They showed that phenyloxadiazole methylsulfone and
phenyltetrazole methylsulfone react rapidly and selectively with the sulfhydryl group of cysteine
residues in aqueous media under mild conditions (at neutral pH and room temperature) In addition,
the structures resulting from these ligation reactions were more stable under physiological conditions
in comparison to the corresponding products obtained by maleimide-thiol chemistry. These
advantages lead to the development of new prosthetic groups for site-specific radiolabeling reactions.
Mindt et al. reported a 18F-labeled phenyloxadiazole methylsulfone analog([18F]FPOS) for the rapid
and chemoselective radiolabeling of thiol-bearing biomolecules under mild conditions (Table 4,
entry 5) [129]. In this study, [18F]FPOS was applied to efficient radiolabeling of free thiol group-bearing
biomolecules. The radiolabeled affibody (ZHER2:2395) could be successfully applied to the PET
imaging of HER2-positive tumor cells in animal models. Recently, we have reported a radioiodinated
phenyltetrazole methylsulfone derivative as a new thiol-reactive prosthetic group (Table 4, entry 6) [130].
The 125I-labeled (4-(5-methane-sulfonyl-[1,2,3,4]tetrazole-1-yl)-phenol) (125I-MSTP) can be prepared by
using a simple iodination reaction from the phenolic precursor in high RCY (73% isolated yield) and
purity (>99%). The 125I-MSTP was used for site-specific radiolabeling of a single free-thiol-bearing
peptide and protein by using radioiodinated labeling of thiol-containing biomolecules. The radiolabeled
HSA prepared by this method exhibited enhanced in vivo stability upon deiodination compared with
radioiodinated HSA prepared by a direct iodination reaction. In 2018, Park et al. reported a novel
condensation reaction using an aryl diamine linker and 125I-labeled aldehyde prosthetic group
(Table 4, entry 7) [131]. This method was applied to rapid and efficient radiolabeling of bioactive
molecules and the labeled products showed high in vitro and in vivo stability. Samnick et al. proposed
a new phenol-reactive prosthetic group for site-specific radiolabeling reaction of tyrosine-containing
biomolecules (Table 4, entry 8) [132]. The 18F-labeled 1,2,4-triazoline-3,5-dione([18F]FS-PTAD) was
reacted with the model compounds such as phenol, l-tyrosine and N-acetyl-l-tyrosine methyl amide to
evaluate the efficacy of the labeling reaction, which proceeded rapidly under mild aqueous conditions
to furnish the corresponding radiolabeled compounds in good RCY (45–58%) within 5 min.
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Table 4. Aromatic prosthetic groups for radiolabeling reactions.

Entry Radiotracer Target Molecule Product RCY (%) Ref
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SPECT imaging was then investigated in B16-F10 melanoma cell’s xenograft [120]. In addition to 
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bearing mice were injected with CC49-TCO monoclonal antibody. Two doses of the tetrazine bearing 

Galactose-albumin as a TCO clearing agent were injected after 30 and 48 h to remove the unbound 
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In 2018, Garcia et al. investigated an antibody pre-targeting approach using TCO-bearing 

bevacizumab and 99mTc-labeled tetrazine tracer. To increase renal clearance kinetics of the 

radioisotope, a hydrophilic peptide linker was introduced between tetrazine and the 6-
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In 2012, Jeon et al. investigated the rapid condensation reaction between 18F-labeled 2-

cyanobenzothiazole (18F-CBT) and N-terminal cysteine-bearing biomolecules (Table 4, entry 1) [122]. 

The 18F-CBT was synthesized from the corresponding tosylated precursor using K[18F]F and 18-

crown-6 as the phase transfer catalyst. This radiolabeled CBT (18F-CBT) can be reacted with N-

terminal cysteine with a second-order reaction rate of ca. 9 M−1 s−1. The rapid condensation reaction 

between the N-terminal cysteine-bearing dimeric cRGD peptide and the 18F-CBT provided the 18F-

labeled peptide (18F-CBT-RGD2) in a high (>80%) RCY under mild conditions, and the prepared 18F-

CBT-RGD2 was investigated for its use in specific tumor imaging in U87MG xenograft models. Later, 
18F-CBT was also applied for the efficient radiolabeling of EGFR-targeting affibody molecules 

(ZEFGR:1907), and the radiolabeled affibody provided clear visualization of the A431 tumors in animal 

models [123]. As the heterocyclic adducts, which result from the condensation reaction between CBT 

and N-terminal cysteine are hydrophobic, the injected tracers prepared by the above method showed 

high non-specific uptake in normal organs. Therefore, the Seimbille group synthesized a more 

hydrophilic 18F-labeled CBT tracer containing a diethylene glycol linker and 2-fluoropyridine moiety 

(Table 4, entry 2) The optimized radiolabeling condition provided 18F-labeled cancer-targeting 

peptide, which is more hydrophilic than the ones reported in the previous studies [124]. The same 

research group also reported the synthesis of the metal-chelating agent-conjugated CBT prosthetic 

groups for 68Ga-labeled tracers for PET imaging of tumor hypoxia [125]. The rapid condensation for 

radiolabeling procedure provided the desired radiotracers in high RCY under mild conditions.(Table 

4, entry 3) In another study, the same group synthesized the two bifunctional chelators, the 

desferrioxamine B-bearing CBT (DFO-CBT) and the cysteine-bearing CBT (DFO-Cys) for efficient 

radiolabeling. These chelators were employed in the labeling with the [89Zr]Zr-oxalate and rapid 

conjugation with cRGD peptide. The two-step radiochemical process exhibited high RCY under mild 

reaction conditions [126]. As CBT structure contained a hydroxy group, it can be a good substrate for 

facile labeling of radioactive iodines [127]. Thus, we synthesized a 125I-labeled CBT (125I-CBT) via 

electrophilic iodination reaction under mild reaction conditions. The 125I-CBT was then applied to the 

rapid radiolabeling of N-terminal cysteine-bearing cRGD peptide in high RCY (Table 4, entry 4).  

In 2013, Barbas III group reported the chemoselective ligation of thiol-containing proteins using 

methylsulfonyl derivatives [128]. They showed that phenyloxadiazole methylsulfone and 

phenyltetrazole methylsulfone react rapidly and selectively with the sulfhydryl group of cysteine 

residues in aqueous media under mild conditions (at neutral pH and room temperature) In addition, 

the structures resulting from these ligation reactions were more stable under physiological conditions 

in comparison to the corresponding products obtained by maleimide-thiol chemistry. These 

advantages lead to the development of new prosthetic groups for site-specific radiolabeling reactions. 

Mindt et al. reported a 18F-labeled phenyloxadiazole methylsulfone analog([18F]FPOS) for the rapid 

and chemoselective radiolabeling of thiol-bearing biomolecules under mild conditions (Table 4, entry 

5) [129]. In this study, [18F]FPOS was applied to efficient radiolabeling of free thiol group-bearing 
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CBT-RGD2 was investigated for its use in specific tumor imaging in U87MG xenograft models. Later, 
18F-CBT was also applied for the efficient radiolabeling of EGFR-targeting affibody molecules 

(ZEFGR:1907), and the radiolabeled affibody provided clear visualization of the A431 tumors in animal 
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and N-terminal cysteine are hydrophobic, the injected tracers prepared by the above method showed 

high non-specific uptake in normal organs. Therefore, the Seimbille group synthesized a more 

hydrophilic 18F-labeled CBT tracer containing a diethylene glycol linker and 2-fluoropyridine moiety 

(Table 4, entry 2) The optimized radiolabeling condition provided 18F-labeled cancer-targeting 

peptide, which is more hydrophilic than the ones reported in the previous studies [124]. The same 

research group also reported the synthesis of the metal-chelating agent-conjugated CBT prosthetic 

groups for 68Ga-labeled tracers for PET imaging of tumor hypoxia [125]. The rapid condensation for 

radiolabeling procedure provided the desired radiotracers in high RCY under mild conditions.(Table 

4, entry 3) In another study, the same group synthesized the two bifunctional chelators, the 

desferrioxamine B-bearing CBT (DFO-CBT) and the cysteine-bearing CBT (DFO-Cys) for efficient 

radiolabeling. These chelators were employed in the labeling with the [89Zr]Zr-oxalate and rapid 

conjugation with cRGD peptide. The two-step radiochemical process exhibited high RCY under mild 

reaction conditions [126]. As CBT structure contained a hydroxy group, it can be a good substrate for 

facile labeling of radioactive iodines [127]. Thus, we synthesized a 125I-labeled CBT (125I-CBT) via 

electrophilic iodination reaction under mild reaction conditions. The 125I-CBT was then applied to the 

rapid radiolabeling of N-terminal cysteine-bearing cRGD peptide in high RCY (Table 4, entry 4).  
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methylsulfonyl derivatives [128]. They showed that phenyloxadiazole methylsulfone and 
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residues in aqueous media under mild conditions (at neutral pH and room temperature) In addition, 

the structures resulting from these ligation reactions were more stable under physiological conditions 

in comparison to the corresponding products obtained by maleimide-thiol chemistry. These 

advantages lead to the development of new prosthetic groups for site-specific radiolabeling reactions. 

Mindt et al. reported a 18F-labeled phenyloxadiazole methylsulfone analog([18F]FPOS) for the rapid 
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The 18F-CBT was synthesized from the corresponding tosylated precursor using K[18F]F and 18-

crown-6 as the phase transfer catalyst. This radiolabeled CBT (18F-CBT) can be reacted with N-

terminal cysteine with a second-order reaction rate of ca. 9 M−1 s−1. The rapid condensation reaction 

between the N-terminal cysteine-bearing dimeric cRGD peptide and the 18F-CBT provided the 18F-

labeled peptide (18F-CBT-RGD2) in a high (>80%) RCY under mild conditions, and the prepared 18F-

CBT-RGD2 was investigated for its use in specific tumor imaging in U87MG xenograft models. Later, 
18F-CBT was also applied for the efficient radiolabeling of EGFR-targeting affibody molecules 

(ZEFGR:1907), and the radiolabeled affibody provided clear visualization of the A431 tumors in animal 

models [123]. As the heterocyclic adducts, which result from the condensation reaction between CBT 

and N-terminal cysteine are hydrophobic, the injected tracers prepared by the above method showed 

high non-specific uptake in normal organs. Therefore, the Seimbille group synthesized a more 

hydrophilic 18F-labeled CBT tracer containing a diethylene glycol linker and 2-fluoropyridine moiety 

(Table 4, entry 2) The optimized radiolabeling condition provided 18F-labeled cancer-targeting 

peptide, which is more hydrophilic than the ones reported in the previous studies [124]. The same 

research group also reported the synthesis of the metal-chelating agent-conjugated CBT prosthetic 

groups for 68Ga-labeled tracers for PET imaging of tumor hypoxia [125]. The rapid condensation for 

radiolabeling procedure provided the desired radiotracers in high RCY under mild conditions.(Table 

4, entry 3) In another study, the same group synthesized the two bifunctional chelators, the 

desferrioxamine B-bearing CBT (DFO-CBT) and the cysteine-bearing CBT (DFO-Cys) for efficient 

radiolabeling. These chelators were employed in the labeling with the [89Zr]Zr-oxalate and rapid 

conjugation with cRGD peptide. The two-step radiochemical process exhibited high RCY under mild 

reaction conditions [126]. As CBT structure contained a hydroxy group, it can be a good substrate for 

facile labeling of radioactive iodines [127]. Thus, we synthesized a 125I-labeled CBT (125I-CBT) via 

electrophilic iodination reaction under mild reaction conditions. The 125I-CBT was then applied to the 

rapid radiolabeling of N-terminal cysteine-bearing cRGD peptide in high RCY (Table 4, entry 4).  

In 2013, Barbas III group reported the chemoselective ligation of thiol-containing proteins using 

methylsulfonyl derivatives [128]. They showed that phenyloxadiazole methylsulfone and 
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labeled peptide (18F-CBT-RGD2) in a high (>80%) RCY under mild conditions, and the prepared 18F-

CBT-RGD2 was investigated for its use in specific tumor imaging in U87MG xenograft models. Later, 
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high non-specific uptake in normal organs. Therefore, the Seimbille group synthesized a more 

hydrophilic 18F-labeled CBT tracer containing a diethylene glycol linker and 2-fluoropyridine moiety 

(Table 4, entry 2) The optimized radiolabeling condition provided 18F-labeled cancer-targeting 

peptide, which is more hydrophilic than the ones reported in the previous studies [124]. The same 

research group also reported the synthesis of the metal-chelating agent-conjugated CBT prosthetic 
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4, entry 3) In another study, the same group synthesized the two bifunctional chelators, the 
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radiolabeling. These chelators were employed in the labeling with the [89Zr]Zr-oxalate and rapid 

conjugation with cRGD peptide. The two-step radiochemical process exhibited high RCY under mild 

reaction conditions [126]. As CBT structure contained a hydroxy group, it can be a good substrate for 

facile labeling of radioactive iodines [127]. Thus, we synthesized a 125I-labeled CBT (125I-CBT) via 

electrophilic iodination reaction under mild reaction conditions. The 125I-CBT was then applied to the 
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in comparison to the corresponding products obtained by maleimide-thiol chemistry. These 
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5) [129]. In this study, [18F]FPOS was applied to efficient radiolabeling of free thiol group-bearing 
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4.2. Miscellaneous

Neumaier and coworkers demonstrated the 18F-radiolabeling of biomolecules using [3+2]
cycloaddition reactions between 18F-labeled nitrone and maleimide-bearing molecules [133].
This reaction can provide high efficiency for the synthesis of radiolabeled small molecules. However,
the cycloaddition reaction required elevated temperatures in organic solvents, and thus, this method was
not suitable for radiolabeling of proteins or antibodies. Continuing this theme, the same group explored
more efficient [3+2] cycloaddition reactions using 18F-labeled nitriloxides and N-hydroxyimidoyl
chloride (Figure 19). Interestingly, these radiolabeled tracers showed high reactivity with a strained
alkene and norbornene analogs under ambient temperature, suggesting that this method can be a useful
alternative to the copper-free azide–alkyne click reactions for the radiolabeling of biomolecules [134].

Recently, Wuest et al. demonstrated the first application of the sulfo-click chemistry in the
18F-labeling reaction (Figure 20). In this study, 18F-labeled thiol acids were synthesized and treated
with sulfonyl azide-modified small molecules and peptide substrates to afford the corresponding
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radiolabeled products in moderate to good RCYs [135]. Furthermore, this labeling reaction can be
selectively performed in aqueous solvents with a high degree of functional group compatibility.
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Recently, a novel photochemical conjugation reaction was developed for one-pot radiolabeling of
antibodies by the Holland group [136,137]. The group synthesized the 68Ga-labeled photoactivatable
ligand, which contained an aryl azide group ([68Ga]GaNODAGA-PEG3-ArN3) (Figure 21).
The prepared radiotracer underwent a facile reaction with an amino group of the antibodies, including
GMP-grade HerceptinTM upon light irradiation (λmax ~ 365 nm) within 5 min. The radiolabeled product
was also utilized for the specific tumor imaging in SK-OV-3 tumor xenograft. A similar method was
also applied to the radiosynthesis of 89Zr-labeled antibody by using a desferrioxamine B conjugated
aryl azide group [138]. As the radiolabeling of trastuzumab has been carried out over a short time with
high efficiency and purity, this approach will be applicable for the efficient radiolabeling of various
biologically active molecules.
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5. Conclusions and Future Perspectives

In this review, we focused on recent examples that highlight the application of bioorthogonal click
chemistries for the preparation of radiolabeled products. For many years, rapid and selective
conjugation reactions including SPAAC and IEDDA have been successfully employed for the
straightforward, site-specific, and efficient labeling of various radioisotopes to the small molecules,
biomacromolecules, functional nanomaterials, and living cells. In addition, electrophilic aromatic
prosthetic groups which display fast reaction kinetics and high selectivity towards the amine or thiol
groups could also be the preferred methods for the radiolabeling procedure, because these reactions
do not need the introduction of an artificial functional group to the target the biomolecule. Regarding
future perspectives, it is anticipated that the relevance of bioorthogonal strategies will continue to be
applicable beyond the rapid labeling of a radioisotope to a target molecule of interest. For example,
the development of in vivo ligation based on IEDDA enabled the investigation of various approaches
for specific tumor imaging with decreased non-specific accumulation of radioligand in normal tissues.
Particularly, the introduction of clearing agents before administration of radiotracers demonstrated
improved tumor-to-background ratio with enhanced uptake values in the target sites. Although some
recent advancements can provide potent tools in nuclear medicine, several key challenges need to
be addressed for their further development. The functional groups and resulting adducts obtained
by bioorthogonal ligations are normally hydrophobic, which may result in non-specific uptake and
retarded excretion kinetics in a living subject. Moreover, conjugation of a relatively large functional
group to the small molecule probes or short peptides will affect their pharmacokinetic profiles and
induce undesired accumulation or retention of radioactive signals in healthy tissues. For instance, we
have synthesized 18F-labeled dimeric cRGD peptide by using the condensation reaction between CBT
and N-terminal cysteine (Table 4, entry 1). This method provided an efficient radiochemical result.
However, the hydrophobic adduct produced by the radiolabeling reaction afforded high uptake values
in normal organs, including in liver and kidneys compared with [18F]FPPRGD2, which is a clinically
approved radiopharmaceutical [122]. Such undesired biodistribution results would hamper further
investigation of new radiotracers. Therefore, development of fine-tuned functional group pairs, which
are smaller and less lipophilic, and at the same time possess high reactivity and selectivity must be
investigated to maximize specific targeting ability of the radioligand with minimal background signal.
Consequently, bioorthogonal click reactions have exhibited enormous potential for development
of radiopharmaceuticals and applications in the field of nuclear medicine. The optimization of
these ligation methods will enable the exploration of advanced theranostic strategies as well as the
investigation of sophisticated biological phenomena. We expect that these tools will continue to be used
as a key technology for the development of various radiolabeled molecules and radiopharmaceuticals,
which can offer benefits across preclinical studies and ultimately in clinical applications in the future.
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Abbreviations

CBT 2-cyanobenzothiazole
CuAAC copper(I)-catalyzed azide-alkyne [3+2] cycloaddition reaction
DBCO dibenzocyclooctyne
DFO deferoxamine
DMF N,N-dimethylformamide
DMSO dimethyl sulfoxide
DOTA 1,4,7,10-tetraazacyclododecane-tetraacetic acid
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DTPA diethylenetriaminepentaacetic acid
FH feraheme
HPLC high-performance liquid chromatography
HAS human serum albumin
ICAM-1 intercellular adhesion molecule
IEDDA inverse-electron-demand Diels–Alder reaction
MSTP (4-(5-methane-sulfonyl-[1,2,3,4]tetrazole-1-yl)-phenol)
NOTA 1,4,7-triazacyclononane-1,4,7-triacetic acid
ODIBO oxa-dibenzocyclooctyne
PBS phosphate-buffered saline
PECAM-1 platelet-endothelial cell adhesion molecule
PET positron emission tomography
PIC polyisocyanopeptide
RCY radiochemical yield
SPAAC strain-promoted azide-alkyne cycloaddition reaction
SPECT single-photon emission computed tomography
TCO trans-cyclooctene
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